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Abstract: Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeu-
tic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutane-
ous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed 
HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other 
disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hy-
droxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and 
non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission 
tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate 
carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affin-
ity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family 
members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue 
when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of 
the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration 
may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem 
mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen 
compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identi-
fying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi 
brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the 
importance of in vivo PET imaging tools in characterizing putative CNS drug lead compounds and the continued 
need to discover effect PET tracers for neuroepigenetic imaging.

Keywords: Hydroxamic acid, HDAC inhibitors, epigenetic, PET, brain, imaging

Introduction

Histone proteins and their associated DNA 
together comprise nucleosomes, the funda-
mental unit of chromatin structure and the 
structural base for DNA condensation. Covalent 
chemical modification of histones via process-
es such as acetylation, methylation, ubiquitina-
tion and phosphorylation [1], play a critical role 

in the dynamic regulation of gene expression 
through chromatin remodeling and modulating 
transcription factor binding. 

Histone acetylation is regulated by the oppos-
ing actions of two enzyme classes, histone 
acetyltransferases (HATs) and histone deacety-
lases (HDACs) [2-4]. HDAC enzymes are divided 
into four different classes based on sequence 
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homology, cellular localization and phylogenic 
relationships to yeast homologues [5]: class I 
(HDACs 1, 3, 8), class IIa (HDACs 4, 5, 7, 9), 
class IIb (HDACs 6, 10), class III (SIRTs 1, 7), 
and class IV (HDAC 11). Classes I, II and IV are 
zinc dependent enzymes. Increases in histone 
acetylation causes relaxation of higher order 
chromatin structure and contributes to activa-
tion of gene expression [6]. Importantly, his-
tone acetylation-mediated changes in gene 
expression are cell-type specific and outcomes 
range from necrosis, cytostasis, and apoptosis 
in cancerous cells to robust neuronal differen-
tiation in neural precursors and enhancement 
of synaptogenesis [7, 8]. As such, deficiencies 
in histone acetylation and transcriptional dys-
function have been implicated in cancer pathol-
ogy as well as in a number of neurodegenera-
tive diseases including Huntington’s [9-12], 
Parkinson’s and Alzheimer’s diseases [9, 
13-15], amyotrophic lateral sclerosis [16, 17], 
spinal muscular atrophy [18] and stroke [13-
15]. Clarifying the role of HDAC function in nor-
mal and disease biology has direct relevance to 
therapeutic development [19, 20].

HDAC inhibitors (HDACis) have emerged as 
promising drug candidates to restore the bal-
ance of HDAC and histone acetyl-transferase 
(HAT) enzymes in disease. Class I, II and IV 
HDAC enzymes are zinc dependent and can be 
inhibited by compounds with zinc-chelating 
moieties. These compounds comprise diverse 
structural classes [21-27] including the most 
widely-investigated, the hydroxamic acids [22]. 
Following the initial discovery that the 
hydroxamic acid, trichostatin A, was a strong 
inhibitor of HDAC targets (Ki = 3.4 nM) [28], 
research led to the development of suberoyl-
anilide hydroxamic acid (SAHA, vorinostat) 
which was FDA-approved for the treatment of 

cal trials, including belinostat and panobino-
stat. Belinostat is a potent HDACi (IC50 = 27 
nM), with the sulfonamide substitute in the 
meta position, and is undergoing phase II trials 
in solid tumors (ovarian, hepatocarcinoma, 
mesothelioma) [29]. Panobinostat, an almost 
equally potent HDACi (IC50 = 37 nM), is currently 
in phase II/III clinical trials for chronic myeloid 
leukemia, refractory CTCL, and multiple myelo-
ma [30]. In addition to cinnamic acids, the phe-
nyl hydroxamate, PCI 34051 is the most sub-
type selective HDAC inhibitor identified to date. 
This compound has a reported IC50 = 10 nM for 
HDAC8 - revealing greater than 100-fold selec-
tivity over other HDAC subtypes [31]. Selective 
HDAC inhibition is increasingly used to clarify 
understanding of the biological role of HDAC 
subtypes [32, 33]. However, PCI 34051 remains 
underutilized as a highly selective HDAC inhibi-
tor and could provide insight into the role of 
HDAC8. Despite their potential as therapeutic 
leads and tool compounds, little is known about 
how these three inhibitors impact HDAC targets 
in the living brain. 

LC-MS-MS can be used to measure the brain 
penetration of a compound, although is inva-
sive, requiring brain removal thereby limiting its 
application to pre-clinical models. Developing 
an imaging tool that permits detection and 
quantification of HDAC expression in vivo is 
critical to assess the efficacy of HDAC-targeted 
therapies and to clarify the understanding of 
the mechanism of HDAC enzyme dysfunction in 
disease. Positron emission tomography (PET) is 
an excellent tool for the in vivo quantification of 
HDAC biological processes as well as evalua-
tion of the pattern of HDAC distribution in ani-
mals and human. A few fluorine-18 labeled 
compounds ([18F]FAHA [34], [18F]SAHA [35]) 
have been reported and demonstrate the 

Figure 1. Structures of selected HDAC inhibitors on clinical trials and the potential 
PET radiotracers derived from these HDACis.

cutaneous T-cell lympho-
mas (CTCL). This provided 
key evidence that HDAC 
inhibitors, including those 
hydroxamic acid-based st- 
ructures, could have ther-
apeutic potential. 

Thus, cinnamic acid deri- 
vatives have been inten- 
sely investigated as HDAC 
inhibitors. Several com-
pounds from this class 
have advanced into clini-
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potential for in vivo HDAC imaging in animals, 
although to date, no in vivo imaging studies 
have evaluated the brain penetrance of 
hydroxamic acid-based HDACi [36]. Rodent 
studies have shown that the BBB penetrance of 
SAHA is very low, but as a class, the brain avail-
ability hydroxamic acids is largely unexplored 
[37]. 

In our experiments, we utilized in vivo PET imag-
ing in rodent and non-human primate to char-
acterize blood-brain barrier (BBB) penetration 
[38, 39] of select carbon-11 labeled hydroxam-
ic acid-based HDAC inhibitors. We additionally 
compared BBB penetrance predicted by 
LC-MS-MS methods. The results of our findings 
are presented and discussed below.

Results 

Chemical synthesis

To incorporate carbon-11, we modified the 
structures of belinostat and panobinostat, as 
shown in Figure 1. PCI34051 has a methoxyl 
group and thus could be labeled without struc-
tural modification. The synthesis of the HDAC 
inhibitors and their carbon-11 labeling precur-
sors are shown in Figure 2. Briefly, N-methyl-2-
phenylethanamine was reacted with 3-bromo-
benzene-1-sulfonyl chloride to form interme- 
diate 4, which was then coupled with methyl 

acrylate catalyzed by Pd(OAc)2 to provide the 
methyl ester 6. Methyl ester 6 was hydrolyzed 
with 1 M NaOH, then coupled with NH2-OTHP, 
and converted to the target hydroxamate CN89 
after deprotection of THP in the presence of 
HCl. The synthesis of precursor 7 was synthe-
sized by a similar route, starting from phenyle-
thanamine. Reductive amination of 4-formylcin-
namic methyl ester with a primary amines 
afforded methyl esters 10 and 11. Methyl 
esters were treated with hydroxylamine (hydrox-
ylamine, excessive sodium methoxide in meth-
anol/THF) and converted to the target hydroxa-
mates, CN107 and its precursor 12. Methyl 
1H-indole-6-carboxylate was reacted with 13 
or 14 in the presence of sodium hydride to 
afford intermediate 15 or 16. Methyl ester 15 
was treated with hydroxylamine to obtain PCI 
34051. Its precursor 18 was achieved by 
hydrogenation, followed by treatment with hydroxy- 
lamine.

In vitro HDAC assay

The in vitro inhibitory activities of CN89, CN107, 
and PCI 34051 were measured for each HDAC 
isoform HDAC1 through HDAC9 (Table 1). The 
IC50 value for SAHA was measured in parallel as 
a reference. The synthesized belinostat analog 
CN 89 showed low nanomolar IC50 towards 
class-I HDAC isoforms (HDAC1-3) as well as 
toward class-II HDAC isoform (HDAC6). The pan-

Figure 2. Synthesis of HDAC inhibitors and their precursors for carbon-11 labeling.



HDAC imaging

32 Am J Nucl Med Mol Imaging 2014;4(1):29-38

obinostat derivative, CN107, also showed low 
nanomolar IC50 towards the same class-I HDAC 
isoforms, indicating that the methyl group we 
introduced did not significantly degrade the 
affinity or selectivity of these compounds. The 
IC50 value of PCI 34051 for HDAC8, using an 
activity assay different than that previously 
described [40, 41], was found to be 18.2 nM, 
which is greater than 100-fold selectivity over 
each of the other HDAC isoforms. 

Radiosynthesis of selected HDAC inhibitors

The synthesis of the candidate radiotracers 
was accomplished using precursors in DMSO 
with [11C]methyl iodine ([11C]CH3I) as outlined in 
Figure 3. 11CH3I was trapped in a TRACERlab 
FX-M synthesizer reactor preloaded with a solu-
tion of precursor 7 (1.0 mg) and Cs2CO3 (6.0 
mg) for CN89; precursor 12 (1.0 mg) and 10 µl 
of 1 M NaOH for CN107; precursor 18 (1.0 mg)
and 10 µl of 1 M NaOH for PCI 34051 in dry 
DMSO (300 μL). The solution was stirred under 
pressure at 50 °C (CN89) or room temp (CN107 
and PCI 34051) for 3 min and then water (1.2 

The identity of the product was confirmed by 
analytical HPLC by co-elution comparison to a 
reference standard. The average time required 
for the synthesis from end of cyclotron bom-
bardment to end of synthesis was 34 min 
(CN89), 37 min (CN107) and 36 min (PCI 
34051). The radiochemical yield was 9% 
(CN89), 3% (CN107) and 4.5% (PCI 34051) 
(non-decay corrected relative to trapped [11C]
CH3I). Chemical and radiochemical purities we- 
re ≥ 95% for all radiotracers.

PET imaging in rodents and NHPs

Using PET-CT, we determined that all labeled 
compounds exhibited very poor initial BBB pen-
etration and low brain uptake over the scanning 
time (60 min) when administered intravenously 
to rats (0.9-1.1 mCi per scan), as shown in 
Figure 4. A concentration of less than 0.15 
%ID/cc was distributed in the brain tissue after 
administration of [11C]CN89 and [11C]CN107. 
We also conducted the PET imaging study with 
the pretreatment of reference standards (2 

Table 1. HDAC isoforms selectivity data for selected HDAC inhibitors

Compound
IC50 [nM]

HDAC1 HDAC2 HDAC3 HDAC4 HDAC5 HDAC6 HDAC7 HDAC8 HDAC9
SAHA 4 11 3 40200 8750 2.2 42800 1020 70000
CN89 5 32 3.4 500 10732 5 44488 150 16904
CN107 0.19 1.15 0.38 655 99 1.6 2044 1044 4849
PCI 34051 36400 1740 50300 - 70000 7390 70000 18.3 70000

Figure 3. Radiosynthesis of [11C]CN89 (RCY: 9%, non-decay corrected to trapped 
[11C]CH3I with a specific activity 0.8±0.2 Ci/µmol (EOB)); [11C]CN107 (RCY: 3%, 
non-decay corrected to trapped [11C]CH3I with a specific activity 0.9±0.1 Ci/µmol 
(EOB)); and [11C]PCI 34051 (RCY: 4.5%, non-decay corrected to trapped [11C]CH3I 
with a specific activity 0.7±0.2 Ci/µmol (EOB)).

mL) was added. The reac-
tion mixture was purified 
by reverse phase semi-
preparative HPLC and the 
desired fraction was col-
lected. The final product 
was reformulated by lo- 
ading water-diluted elu-
ent onto a solid-phase 
exchange (SPE) C-18 car-
tridge. The SPE was 
rinsed with H2O (5 mL) 
and the isolated material 
was eluted from the SPE 
with EtOH (1 mL followed 
by saline (0.9%, 9 mL). 
The chemical and radio-
chemical purity of the 
final product was deter-
mined by analytical HPLC. 
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To further investigate the 
brain permeability of the 
carbon-11 labeled com-
pounds, we conducted 
imaging in Papio anubis 
baboons. Using PET-MRI, 
we further determined that 
[11C]CN89, [11C]CN107 and 
[11C]PCI 34051 exhibited 
very poor BBB penetration 
and low brain uptake over 
the scanning time (80 min) 
when the radiotracers (4-5 
mCi) were administered 
intravenously, Figure 5. 
Coregistration of the PET 
image with an MRI of the 
same animal indicated 
that some radioactivity 
indeed partitioned into 
brain tissue, albeit at low 
levels. 

Brain uptake test with LC-
MS-MS method

According to the LC-MS-
MS results, CN89 showed 
higher standardized upta- 
ke values (SUV) and brain 
to plasma ratio than 
CN107 and PCI 34051, 
which showed low uptake 
in the brain; as a subse-
quent LC-MS-MS screen, 
we chose three additional 
compounds (19, 20 and 
21) (IC50: 19: HDAC1 = 
19.2 nM, HDAC2 = 109 
nM, HDAC3 = 79.3 nM; 20: 
HDAC1 = 165 nM, HDAC2 
= 660 nM, HDAC3 = 90 
nM; 21: HDAC1 = 56.1 nM, 
HDAC2 = 53.7 nM, HDAC3 
= 7.1 nM) to evaluate for 
brain uptake. We chose 
these compounds based 
on their hydroxamic acid 
structure. Compounds 19 
and 20 showed low SUV 
(0-4% in hippocampus, 
Table 2) indicating they are 
likely not brain penetrant. 

Figure 4. Rodent imaging experiments with radiotracers. Summed PET images (1-
60 min) following injection of [11C]CN89 (A), [11C]CN107 (D) and [11C]PCI 34051 
(G) baseline scans; summed PET-CT images (1-60 min) images acquired follow-
ing pretreatment with corresponding unlabeled inhibitors (B: CN89; E: CN107; H: 
PCI 34051) (2 mg/kg, iv). Images are dose corrected. Whole-brain time-activity 
curves generated from rodents PET imaging data (0-30 min) for [11C]CN89 (C), 
[11C]CN107 (F) and [11C]PCI 34051 (I).

mg/kg); however, we did not observe a change 
in permeability or retention after pretreatment.

Compound 21 showed high SUV (in hippocam-
pus) and brain (hippocampus) to plasma ratio 
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(Table 2) indicating CNS penetrance of this 
compound. 

Discussion

HDACs play an important role in diseases, 
including, but not limited to, brain disorders, 
heart disease and cancers, but there is no 
method to measure the HDAC expression in 
human with such diseases and monitor the dis-
ease progress and evaluate the therapeutics. 
To measure and quantification of HDAC expres-
sion non-invasive in vivo, PET would be an ideal 
tool, however, there is still no validated PET 
radiotracer available for HDAC imaging, particu-

larly in the brain. We chose some HDAC inhibi-
tors, current in the clinical trials, to incorporate 
the positron emission isotopes to test the brain 
permeability of these inhibitors. After structural 
modifications, the compounds are easy to 
incorporated with carbon-11 and remain the 
high binding towards HDACs.

To evaluate their brain permeability, we con-
duct PET imaging with rodents and NHPs. The 
summed PET-CT images showed that the radio-
activity within the skull from all the three trac-
ers is likely outside of the BBB and represents 
the blood pool within the rats brain (Figure 4). 
The NHP imaging results were consistent with 

Figure 5. PET-MRI Imaging (baboon brain). Summed PET images (0-80 min) superimposed with a MEMPRAGE-MRI 
of the brain from the same baboon, following injection of radiotracers (4-5 mCi/baboon). Top row: [11C]CN89; middle 
row: [11C]CN107; bottom row: [11C]PCI 34051.
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the PET experiments we conducted in rodents, 
showing the limited brain uptake with these 
radiolabeled compounds. Additional experi-
ments will be needed both in vitro and in vivo to 
determine the reason these hydroxamic acid 
HDACis have poor CNS permeability.

Given that PET imaging is a relatively slow and 
costly means of ‘screening’ HDAC imaging can-
didates, we additionally utilized LC-MS-MS as 
an established and low-cost method to identify 
lead molecules with good BBB penetration and 
specific binding (at microdoses). LC-MS-MS has 
been used for the assessment of brain tracer 
distribution of dopamine D2, serotonin 2A and 
NK-1 receptors [42]. Using these published 
methods, our LC-MS-MS results indicated that 
CN89 showed higher standardized uptake val-
ues (SUV) and brain to plasma ratio than CN107 
and PCI 34051; however, via in vivo PET imag-
ing, [11C]PCI 34051 had the highest %ID/cc 
compared to [11C]CN89 and [11C]CN107. One 
possibility why the PET and LC-MS-MS data 
were not consistent is that the injected mass of 
unlabeled compounds for LC-MS-MS detection 
is at least 10-fold larger (in 2-3 microgram 
range) compared with nanogram amounts for 
PET imaging (200-300 nanograms). Thus, the 
BBB may only effectively prevent a small 
amount (nanograms) of compound from reach-
ing the brain, resulting in a lack of CNS tracer 
uptake as visualized by PET. Experiments to 
test this directly are not feasible as it is not ethi-
cal to deliver microgram quantities of radiola-
beled compound for in vivo PET imaging nor is 

it possible to detect nanogram amounts of 
compound using current LC-MS-MS methods. 
Additional screening of HDACis with LC-MS-MS 
method indicates that compound 21 has poten-
tial to be used as new CNS radiotracers and 
HDAC inhibitors.

Overall, these results still indicate that LC-MS-
MS could be used as a preliminary screening 
tool for the CNS radiotracer development as, 
compared to PET imaging, it is a low-cost and 
high-throughput technique. However PET imag-
ing provides a unique advantage as a non-inva-
sive technique that can provide a visual repre-
sentation of a labeled compound in a living 
brain. 

Conclusions

In summary, we successfully synthesized and 
characterized binding affinity for [11C]hydroxam-
ic acid-based HDAC inhibitors CN89, CN107, 
and PCI 34051. PET studies performed in con-
junction with CT and MRI evaluated the brain 
uptake of these radiotracers, demonstrating 
poor BBB penetration in rats as well as in 
baboon. Our PET imaging data indicate these 
compounds are not effective tracers for diseas-
es localized in the CNS. However our experi-
ments have not ruled out the potential utility of 
these candidate probes for imaging and thera-
py in non-CNS diseases, such as peripheral 
cancers. The development of CNS-penetrant 
HDAC imaging probes and the evaluation of 
[11C]CN89, [11C]CN107 and [11C]PCI 34051 as 
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peripheral PET imaging probes are currently 
underway.

Supporting information

The section discussing materials and methods 
is included in SI. This section describes chemi-
cal synthesis, radiolabeling used in this study. 
Assay procedures for determination of in vitro 
enzymatic assay for histone deacetylases, 
LC-MS-MS method and animal imaging experi-
ments are also detailed in SI.
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