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Abstract: Due to their rapid and highly selective nature, bioorthogonal chemistry reactions are attracting a signifi-
cant amount of recent interest in the radiopharmaceutical community. Over the last few years, reactions of this type 
have found tremendous utility in the construction of new radiopharmaceuticals and as a method of bioconjugation. 
Furthermore, reports are beginning to emerge in which these reactions are also being applied in vivo to facilitate 
a novel pretargeting strategy for the imaging and therapy of cancer. The successful implementation of such an 
approach could lead to dramatic improvements in image quality, therapeutic index, and reduced radiation dose to 
non-target organs and tissues. This review will focus on the potential of various bioorthogonal chemistry reactions 
to be used successfully in such an approach.
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Directly radiolabelled antibodies in imaging 
and therapy

The success of molecular imaging and therapy 
depends on the selective accumulation of the 
diagnostic probe or therapeutic agent at the 
site of interest. For imaging studies, this ability 
is required to effectively contrast the target site 
against surrounding tissues, organs and bio-
logical fluids, whilst in therapy it helps confine 
the toxic agent to the site(s) of disease and pre-
vent off-target effects. In oncology, a multitude 
of targets have been identified corresponding 
to the various known hallmarks of cancer [1]. 
These include elevated rates of glucose metab-
olism [2], regions of hypoxia [3], changes in pH 
[4], and a plethora of cellular and chemical bio-
markers [5]. This review will focus on the latter 
category and the development of novel imaging 
and therapeutic strategies towards such tar-
gets based on bioorthogonal chemistry.

Upon identifying a compelling target, several 
important considerations are required in order 
to develop the most effective agent. One of 
these is the selection of an appropriate target-
ing vector which will both localize at the site of 
interest and lead to the specific accumulation 

of the desired ‘payload’. When developing an 
agent against a particular biomarker it is impor-
tant that the targeting vector has (i) high bind-
ing affinity for its intended target, (ii) high speci-
ficity, (iii) high signal-to-background ratio, (iv) 
high metabolic stability, and (v) low immunoge-
nicity [6, 7].

Since the beginning of the 20th century, anti-
bodies have been considered as suitable vehi-
cles for the delivery of imaging and therapeutic 
agents, mostly due to their high affinity and 
specificity [8-15]. Paul Ehrlich first conceived of 
antibody vectors as ‘magic bullets’ capable of 
delivering a payload of toxic agent to antigens 
associated with certain diseases, thus causing 
irreversible damage to sites of disease whilst 
sparing healthy tissue of the toxins deleterious 
effects [8]. Consequently, a vast array of epit-
opes (mostly at the cell surface) have been tar-
geted by antibodies for non-invasive imaging 
and therapeutic applications.

The first examples of radiolabelled antibodies 
for cancer therapy emerged in the early 1950’s 
[16, 17], although it took roughly two decades 
before their ability to target human tumour-
associated antigens was demonstrated in can-
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cer patients [18]. It was the development of 
hybridoma technology in 1975 that enabled the 
relatively facile generation of monoclonal 
(murine) antibodies (mAbs) in useful quantities 
[19] and, as a consequence, the number of 
studies in this area quickly increased. The use 
of murine antibodies in these applications was 
found to be problematic due to the provocation 
of a human anti-murine antibody response 
[20]. Therefore, significant efforts have been 
focused on the production of chimeric, human-
ized, and human monoclonal antibodies which 
are much less likely to invoke an immune reac-
tion. Currently, the vast majority of approved 
mAbs are either chimeric or humanized [21].

Despite their attractive properties, antibodies 
have a few important shortcomings that have 
prevented their development into the magic 
bullets that Ehrlich had envisioned. One of the 
most critical barriers to achieving high tumour-
to-blood (T/B) and tumour-to-muscle (T/M) 
ratios is the slow rate of clearance of antibod-
ies from the blood and non-target tissues due 
to their high molecular weight [22, 23]. This 
necessitates the use of radionuclides with cor-
respondingly long radioactive half-lives (e.g. 
89Zr; t1/2 = 78.41 h [24]). Of course, the radia-
tion dose to the patient increases as a function 
of exposure time and therefore there is a clear 
incentive to improve the pharmacokinetic prop-
erties of antibody constructs. One method of 
achieving this has involved a variety of lower 
molecular weight vectors which retain the 
essential antigen binding pharmacophore yet 
exhibit more rapid elimination. In decreasing 
order of size, these include minibodies, diabod-
ies, single chain variable fragments (scFv), and 
single variable domain fragments (Fv), etc.

administration of (i) a macromolecular (usually 
antibody-based) targeting vector and (ii) a low 
molecular weight radiolabelled effector species 
(Figure 1). Crucially, the radiolabelled species 
is administered following a predetermined lag 
period to allow the antibody sufficient time to 
accumulate at the target site and for any resid-
ual antibody to be cleared from the circulation.

To ensure the two component parts bind 
strongly upon interaction at the site of interest, 
each must be suitably modified with comple-
mentary reactive species. In some cases, an 
additional ‘chaser’ species is administered 
prior to the radiolabelled effector, thus creating 
a ‘three-step’ approach. The purpose of this 
chaser species is to assist in the removal of any 
unbound antibody from the circulation. As a 
result, improved T/B ratios have been achieved 
[27].

The successful implementation of a pretarget-
ing approach combines the high target specific-
ity and affinity offered by antibody vectors with 
the superior pharmacokinetic properties of a 
low molecular weight compound. As a result, 
pretargeting strategies can lead to an improve-
ment of imaging contrast at earlier time points 
following administration of the radiolabelled 
agent. Furthermore, this approach has been 
shown to decrease the overall radiation burden 
to non-target organs and tissues [28].

Whilst the concept of pretargeting has been 
known for several decades, the number of pre-
targeting systems has been limited to a few dis-
tinct classes. This is mostly due to the inherent 
difficulties of developing chemical reactions 
which proceed rapidly within living systems 
without also reacting with the vast array of 

Figure 1. A simplified representation of a two-step pretargeting approach.

Pretargeted imaging and 
therapy: an alternative 
approach

In the mid-1980s, an alter-
native strategy referred to 
as pretargeted radioimmu-
notherapy (PRIT) was de- 
veloped to circumvent the 
issues associated with the 
prolonged residence times 
of radiolabelled antibody 
constructs [25, 26]. In 
essence, this approach 
involves the sequential 
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chemical entities that are present often in vast 
molar excesses.

Conventional pretargeting systems

Bispecific antibodies and radiolabelled hap-
tens

The original pretargeting concept is based on 
the use of bispecific antibodies which are capa-
ble of binding to both a target antigen and a 
radiolabelled hapten [11, 29-33]. This approach 
was made possible when Reardan et al. devel-
oped monoclonal antibodies which were capa-
ble of binding radiometal chelates, specifically 
111In complexes based on the hexadentate che-
lator ethylenediamine tetraacetic acid (EDTA) 
[25]. It was later found that an affinity enhance-
ment effect could be achieved by tethering two 
of these haptens together via a short two amino 
acid linker [34]. This modification led to 
improved uptake and retention of the radiola-
belled divalent hapten at the tumour site whilst 
still retaining the essential rapid clearance 
from the circulation and surrounding tissues.

A notable example of this approach involved an 
anti-CEA × anti-111In-benzyl-EDTA Fab’ × Fab’ 
bispecific mAb and an 111In-EDTA derivative 
(111In-EOTUBE) as the radiolabelled effector 
[35]. A clinical trial involving 14 patients with 
recurrent or metastatic adenocarcinoma of the 
colon revealed rapid clearance of the radiola-
belled species from normal tissues while 
affording high T/M ratios [35].

Potential limitations of this approach include 
the practical complexities and high costs 
involved in the development of bispecific anti-
bodies. Furthermore, a critical aspect of any 
pretargeted imaging approach is the affinity 
between the radiolabelled effector species and 
the antibody vector. Here, the binding interac-
tions between radiolabelled haptens and bispe-
cific antibodies are entirely non-covalent and 
binding constants greater than ~10-10 M are 
rarely achieved. In an effort to obtain greater 
binding constants, alternative systems offering 
much higher affinities such as the biotin-(strept)
avidin interaction have been explored.

Biotin-(strept)avidin systems

Shortly after the development of bispecific anti-
bodies for pretargeting, Hnatowich et al. report-

ed an alternative strategy exploiting the ex- 
tremely high binding affinity between biotin and 
(strept)avidin (Kd = 4×10-14 M) [36, 37]. This 
approach has since been used in various forms 
which are discussed in depth in several com-
prehensive reviews [38-42]. The benefits of this 
approach were clearly demonstrated in a study 
by Axworthy et al. who compared the uptake of 
a 90Y-radiolabelled biotin in a tumour pretarget-
ed with a streptavidin-modified mAb against a 
conventional directly radiolabelled antibody 
[43]. Promisingly, significantly higher T/B ratios 
were found using the pretargeting method.

Whilst this system shows clear promise, there 
are a number of limitations to this approach 
which require consideration. Perhaps most sig-
nificant is the immunogenic response that 
occurs following administration of avidin/strep-
tavidin foreign proteins. Another consideration 
is the presence of endogenous biotin (10-7-10-8 
M) which could interfere with (strept)avidin pre-
targeting systems by saturating the biotin bind-
ing sites, as well as endogenous biotinidase 
which mediates the hydrolysis of radiolabelled 
biotin effector species. Lastly, more so than the 
other conventional pretargeting strategies dis-
cussed herein, it is often necessary to adminis-
ter a chaser species to remove residual anti-
body from the circulation prior to the 
administration of the radiolabelled effector 
[44-49].

Complementary oligonucleotides

A comparatively more recent approach (also 
developed by Hnatowich and co-workers) relies 
on the high affinity interaction between com-
plementary oligomers (such as DNA) [50-59]. 

Depending largely on the length and the base 
sequence of the complementary oligomeric 
chains, this chemical pairing can potentially 
lead to binding affinities that would rival, or 
even exceed, that of the biotin-(strept)avidin 
interaction. This approach can also potentially 
eliminate some of the inherent limitations of 
the biotin-(strept)avidin approach. For example, 
studies in which high doses of single strand 
DNAs have been repeatedly administered to 
patients have not revealed any significant 
immunogenic response or obvious toxicity [60]. 
Furthermore, unlike the biotin-(strept)avidin 
approach, the use of complementary oligomers 
would not be complicated or obstructed by the 
presence of competing endogenous species. It 
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is important, however, that oligonucleotides are 
suitably modified to prevent their rapid degra-
dation by nucleases [61]. The most successful 
oligomers from a pretargeting perspective have 
been those based on a morpholino backbone 
(MORFs). These agents have been used in con-
junction with a variety of radionuclides for 
applications in imaging (99mTc [51-54, 58], 111In 
[55, 56]) and therapy (90Y [50], 188Re [57]).

Using bioorthogonal chemistry for pretargeted 
imaging of cancer

For a chemical reaction to be described as 
being truly bioorthogonal, it must result in the 
rapid formation of a covalent bond (even at low 
concentrations) whilst remaining completely 
selective against any other chemical species 
present within a living system. Given the abun-
dance and variety of reactive functional groups 
within such a biologically and chemically com-
plex environment, this reduces the number of 
possible reactions to a small selection [62-73]. 
In addition, it is important that at least one of 
the bioorthogonal species is small, and that 
both reacting components exert minimal toxici-
ty [64].

Click chemistry reactions (as defined by 
Sharpless et al. in 2001 [74]) offer important 
advantages which give them the potential to 
translate well into an in vivo setting and all of 
the bioorthogonal reactions discussed in this 
review fall under this umbrella term.

The archetypal and most prominent click chem-
istry reaction evolved from work started by Rolf 
Huisgen in 1963 [75-77], although the develop-
ment of the click chemistry concept itself did 
not arise until much later [74]. The Huisgen 
1,3-dipolar cycloaddition involves the reaction 
between azide and alkyne starting materials 
yielding a triazole species (Figure 2). By itself, 
the reaction requires elevated temperatures or 
pressures and often results in a mixture of 

regioisomers (specifically, 1,4- and 1,5-substi-
tuted triazoles). However, in the early 2000s, 
the laboratories of both Sharpless and Meldal 
independently discovered that in the presence 
of a copper(I) catalyst the reaction proceeds at 
room temperature, at much higher rates (~106-
fold), and yields only the 1,4-substituted regioi-
somer [78, 79]. This click chemistry reaction is 
particularly attractive as both the alkyne and 
azide functional groups are easily incorporated 
into a diverse array of organic species and 
exhibit high stability under a variety of reaction 
conditions. As such, the Huisgen 1,3-dipolar 
cycloaddition has found tremendous utility in 
the construction of radiopharmaceuticals [80, 
81]. In particular, this click chemistry reaction 
has been used very effectively in the mild prep-
aration of [18F]-radiolabelled peptides [82-84].

Despite having many desirable qualities that 
would render the Huisgen 1,3-dipolar cycload-
dition an attractive choice for a pretargeting 
strategy, the necessity of a copper(I) catalyst 
presents a major limitation due to its in vivo tox-
icity. As a result, the comparatively recent 
development of alternative click chemistry 
reactions which proceed without the presence 
of a copper(I) catalyst has attracted a signifi-
cant amount of interest in the molecular imag-
ing community [85]. The copper-free click 
chemistry reactions are instead usually driven 
either by the relief of steric strain (strain-pro-
moted azide-alkyne cycloadditions, or SPAAC 
[63-68, 72]), or by a so-called inverse electron-
demand Diels-Alder mechanism [86] (Table 1).

One of the first copper-free bioorthogonal reac-
tions to be evaluated was the Staudinger liga-
tion (Figure 3) [87]. This involves the reaction 
between azide and phosphine functional 
groups resulting in the formation of an amide 
bond. There are essentially two forms of this 
reaction: (i) a non-traceless version in which a 
phosphine oxide moiety remains attached to 
the final product, and (ii) a traceless version in 
which the phosphine oxide group is eliminated. 
This ligation and its precise mechanism [88] 
have been discussed in detail in several excel-
lent review articles [89, 90].

The Staudinger ligation is a reliable and highly 
selective reaction which has been used suc-
cessfully for the modification of proteins [91], 
and the engineering of cell surfaces both in 
vitro [92, 93] and in living animals [94]. It has 

Figure 2. The Huisgen 1,3-dipolar cycloaddition is an 
extremely efficient click chemistry reaction, however 
the requirement of a toxic copper(I) catalyst to en-
hance the reaction rate has prevented its application 
in living systems.
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also been used in combination with fluoro-
phores in in vitro studies targeting azide groups 
present on the surface of live cells [95, 96]. 
Furthermore, the traceless form of this reaction 
has also been used to synthesize heterobifunc-
tional linkers to facilitate the construction of 
radiometal-containing imaging agents [97].

A study conducted by Vugts et al. in 2011 
explored the possibility of using the Staudinger 
ligation to facilitate a pretargeted imaging strat-
egy [98]. In this case, an anti-CD44v6 chimeric 
monoclonal antibody which had been modified 
with multiple azide functionalities was em- 
ployed as a targeting vector. A series of phos-
phine-containing small molecules incorporat-

of any ligation was observed. Experiments in 
serum revealed that the phosphine species is 
prone to oxidation which renders it unable to 
undergo reaction with azide groups. Further- 
more, the rate of the Staudinger ligation was 
found to be sub-optimal for in vivo bioorthogo-
nal reactions, particularly considering the rapid 
clearance and elimination of the secondary 
phosphine agent.

Strain-promoted alkyne-azide (SPAAC) and 
alkyne-nitrone (SPANC) cycloadditions

In another effort to circumvent the use of a 
toxic Cu(I) catalyst required for traditional 
Huisgen-type click chemistry reactions, a relat-
ed class of azide-alkyne [3 + 2] cycloadditions 
which are promoted by the relief of steric strain 
have gained prominence. Mostly, these reac-
tions involve an alkyne moiety within a cyclic 
8-membered (cyclooctyne [99]) system which 
causes the bond angles surrounding the two 
alkyne sp-hybridised carbon atoms to be 
severely constrained away from the ideal 180° 
(Figure 4).

Table 1. Rates of reaction for a selection of bioorthogonal reactions
Reaction type Reacting species k (x 10-3 M-1s-1)a References
Staudinger (non-traceless) Phosphine + azide 0.83-3.8 [88, 89]
Staudinger (traceless) Phosphine + azide 0.12-7.70 [89, 90]
Strain-promoted cycloadditions Cycloalkyne + azide 0.9-4,000 [93, 99-106, 108, 110, 119, 132, 170-174]

Cycloalkyne + diazo 2.5-13,500 [174]
Cycloalkyne + nitrone 1,660-58,800 [105, 115, 116, 136]

IEDDA Cyclopropene + tetrazine 137-137,000 [140]
Norbornene + tetrazine 41-20,000 [145, 148, 150, 151, 175]
TCO + tetrazine 3,100-380,000,000 [152, 166, 175-177]

aThe reported rates of each reaction are dependent on a number of experimental conditions, including the choice of solvent, pH, temperature, 
etc. For a more precise comparison, refer to the individual references.

Figure 3. The non-traceless (A) and traceless (B) versions of the Staudinger ligation 
have been used for in vivo bioorthogonal chemistry reactions.

ing radionuclides for 
imaging (67/68Ga, 89Zr, 
123I, and 177Lu) and 
therapeutic applica-
tions (177Lu) were then 
evaluated as second-
ary agents. Following 
the administration of a 
67Ga-DFO-phosphine 
agent in non-tumour 
bearing mice, the pres-
ence of Staudinger 
products in the blood 
pool was monitored, 
however no evidence 

Figure 4. The use of highly strained cyclooctyne de-
rivatives has circumvented the requirement of a toxic 
copper(I) catalyst and these reactions are therefore 
more compatible with living organisms compared to 
the traditional Huisgen 1,3-dipolar cycloaddition.
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A host of cyclooctyne derivatives have been 
evaluated in terms of their ability to undergo 
copper-free click chemistry reactions. The pur-
pose of these studies is often focused on 
enhancing the rate of the cycloaddition reac-
tion by making structural modifications to the 
cyclooctyne species. For example, it has been 
found that introducing one or more electron-
withdrawing substituents (e.g. fluorine [100]) in 
close proximity to the alkyne group leads to a 
substantial increase of rates of reaction. Other 
modifications, such as one [101] or two [102-
104] adjacent aryl rings (e.g. dibenzocyclooc-
tyne, DBCO), and bicyclic systems (e.g. bicyclo-
nonynes [105, 106]) have also been found to 
improve reaction rates yet further. One cyclooc-
tyne derivative ‘BARAC’ has achieved second 
order rates of reaction up to 0.96 M-1s-1 [104], 
although a recent study has found evidence 
that BARAC itself is prone to rearrangement 
yielding tetracyclic products [107].

Cyclooctyne derivatives can now be purchased 
from commercial suppliers and this increase in 
availability has led to the use of this technology 
in a wide variety of applications [93, 105, 108-
123]. Notably, SPAAC reactions have been 
used in the preparation of fluorine-18 [124-
130] and copper-64 [131] radiolabelled com-
pounds for PET imaging applications.

Several studies have now demonstrated the 
ability of cyclooctyne derivatives to undergo 
bioorthogonal reactions with azide groups in 
vitro [119, 121, 132], in zebrafish [123], and in 
live mice [120]. In most of these examples, the 
azide groups are usually incorporated via meta-
bolic glycoengineering.

Given their apparent high selectivity and prom-
ising rates of reaction in some cases, it is not 
surprising that SPAAC reactions have been con-
sidered as candidates to facilitate a pretarget-
ing approach [130, 133, 134]. Recently, van 
den Bosch et al. reported an in depth study in 
which the reaction between a series of 
177Lu-containing cyclooctyne derivatives and an 
azido-functionalised anti-CD20 mAb (Rituxi- 
mab) was evaluated in non-tumour-bearing 
mice. In this case, the cyclooctyne species 
were derived from DIFO and DIBO as both had 
previously been shown to undergo rapid reac-
tions with benzyl azide [63, 116]. Preliminary in 
vitro studies in phosphate buffered saline and 
50% mouse serum indicated sufficient stability 

within the expected circulation time of these 
low molecular weight probes. Mice were initially 
administered the azide-modified mAb and after 
a lag time of 5 minutes were subsequently 
injected with the relevant 177Lu-labelled cyclooc-
tyne probe. Evidence of bioorthogonal reaction 
products was monitored in the blood pool and 
selected tissues. Unfortunately, this approach 
was unsuccessful as it was evident that the 
cyclooctyne probes did not have sufficiently 
high in vivo reactivity towards azides, particu-
larly considering the rapid blood clearance of 
these agents. Furthermore, in some examples, 
binding to serum proteins was apparent which, 
whilst slightly lengthening the circulatory resi-
dence times, ultimately limited the availability 
of these secondary agents and therefore 
reduced the potential for in vivo cycloaddition 
reactions.

Lee et al. have also recently utilised SPAAC-
based bioorthogonal chemistry for in vivo pre-
targeting using, in this case, fluorine-18 for PET 
imaging [134]. Here, rather than use an anti-
body as the primary targeting agent, the 
authors employed mesoporous silica nanopar-
ticles (MSNs; 100-150 nm) which were expect-
ed to accumulate in tumours via the enhanced 
permeability and retention (EPR) effect. The 
MSNs were PEGylated and then modified with 
DBCO (~0.12 mmole of DBCO per gram of prod-
uct, DBCO-PEG-MSN). These nanoparticles 
were administered intravenously to mice bear-
ing U87 MG tumour xenografts and, after a lag 
time of 24 h, the secondary agent ([18F]fluoro-
pentaethylene glycolic azide) was subsequently 
injected. Promisingly, PET-CT images acquired 
between 0.25-2 h p.i. revealed accumulation of 
radioactivity at the tumour site while control 
experiments performed without prior injection 
of the DBCO-PEG-MSNs exhibited substantially 
lower tumour uptake. This observation was 
supported by data obtained from ex vivo biodis-
tribution experiments which showed an 
improved tumour-to-blood ratio using the pre-
targeting approach. These experiments provide 
a good indication that bioorthogonal chemistry 
reactions based on SPAAC can be used suc-
cessfully to facilitate in vivo pretargeting for 
imaging and therapeutic applications.

A few studies focused on achieving faster rates 
of reaction have found that cyclooctyne deriva-
tives also undergo rapid strain-promoted cyclo-
addition reactions with nitrone species (SPANC) 
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[135]. The reaction between BARAC and one 
cyclic nitrone derivative yielded a second-order 
rate constant of 47.3 M-1s-1, representing a 
47-fold increase compared to the equivalent 
reaction involving benzyl azide [136]. To the 
best of the authors knowledge this class of 
reactions has not yet been evaluated in a pre-
targeting strategy, although it holds clear prom-
ise particularly as cyclic nitrones can be readily 
conjugated to amine and carboxylic acid func-
tional groups and have already been used suc-
cessfully to functionalise extracellular targets 
on live cancer cells [115].

Inverse electron-demand Diels-Alder cycload-
ditions

In an opposite fashion to the traditional Diels-
Alder reaction, inverse electron-demand Diels-
Alder (IEDDA) cycloaddition reactions involve 
the use of an electron-rich dieneophile and an 
electron-deficient diene [86]. The reaction is 
formally accepted as a [4 + 2] cycloaddition, 
however it is still not clear whether it is a truly 
concerted mechanism. In the early 1990s, 
Sauer et al. demonstrated that the rates of 
reaction between electron deficient tetrazines 
and a variety of dienophiles were extremely fast 
[137], and consequently tetrazines have been 
commonly employed as dienes in these 
reactions.

From a bioorthogonal chemistry perspective, 
the two most prominent dienophiles which 
have so far been explored are norbornene and 
trans-cyclooctene (TCO) [138], although recent-

ly other species such as cyclopropene [139, 
140] and terminal alkenes [141] have also 
shown promise in this area.

The norbornene-tetrazine ligation was first 
reported in the 1980s [137, 142] and has seen 
a resurgence of interest in recent years (Figure 
5). Whilst this reaction leads to the formation of 
multiple isomers, it otherwise meets the crite-
ria of a click chemistry reaction and is often 
placed in this category. In particular, this liga-
tion has been shown to be very rapid, modular 
in scope, and high yielding, and has conse-
quently been used very effectively in a variety 
of applications [143-148], including the prepa-
ration of various radiopharmaceutical agents. 
In 2011, Zeglis et al. demonstrated that this 
ligation can be applied as an effective tool for 
bioconjugation in their development of radio-
metallated antibody constructs [149]. Here, the 
authors synthesized both 64Cu-NOTA- and 
89Zr-DFO-containing norbornene derivatives 
which were able to rapidly conjugate to a tetra-
zine-modified antibody under mild reaction 
conditions. In a more recent example, Knight et 
al. synthesised an [18F]-containing norbornene 
prosthetic group ([18F]NFB) which was used 
successfully to radiolabel a bombesin peptide-
derivative, also under mild reaction conditions 
[150].

This reaction has also been used by Devaraj et 
al. in in vitro pretargeting experiments involving 
SKBR3 human breast cancer cells [151]. In this 
case, norbornene-modified trastuzumab 
(Herceptin) was used to pretarget Her2/neu 
growth factor receptors at the cell surface. A 
near-infrared fluorescent VT68-tetrazine spe-
cies was then used as a secondary labelling 
agent. Rapid and highly selective labelling was 
observed which highlights the utility of this 
bioorthogonal reaction.

In addition, experiments performed in whole 
mouse blood have further demonstrated the 
ability of this reaction to proceed efficiently 
even in complex biological environments [150]. 
This reaction has therefore been considered as 
a candidate to facilitate a pretargeted imaging 
strategy, however it should be noted that the 
rate of this reaction (~2 M-1s-1) appears to be 
sub-optimal for in vivo pretargeting applica- 
tions.

The related TCO-tetrazine ligation proceeds via 
a similar inverse electron-demand Diels-Alder 

Figure 5. The norbornene-tetrazine ligation has been 
used successfully in the radiosynthesis of PET im-
aging agents based on peptide and antibody con-
structs. The rate of reaction between these species 
(and derivatives thereof) appears to be too slow to 
facilitate a pretargeting strategy.

Figure 6. The TCO-tetrazine ligation has been the 
most successful bioorthogonal chemistry reaction 
for implementing a pretargeting strategy due to its 
extremely high rates of reaction.



Pretargeted nuclear (PET/SPECT) imaging and therapy

103	 Am J Nucl Med Mol Imaging 2014;4(2):96-113

mechanism (Figure 6), although it is more rapid 
than the norbornene-tetrazine ligation by sev-
eral orders of magnitude. Reaction rates of up 
to 3.8×105 M-1s-1 have been determined [152], 
making this among the most rapid bioorthogo-
nal copper-free click chemistry reactions. As a 
result, the TCO-tetrazine ligation was quickly 
adopted by the radiopharmaceutical communi-
ty and has been used in the preparation of 

stability. This tetrazine species was modified 
with a DOTA chelating agent to facilitate radio-
labelling with the SPECT radionuclide 111In 
(111In-1; Figure 7). Preliminary in vitro experi-
ments conducted in PBS revealed that the 
bioorthogonal reaction between CC49-TCO and 
111In-1 proceeded with a second order rate con-
stant of 13,090±80 M-1s-1. In their in vivo exper-
iments, a lag time of 1 day was used between 

Figure 7. In the first example of in vivo pretargeting using the TCO-tetrazine 
ligation, Rossin et al. used the indium-111 complex of 1 (top) to obtain 
clearly distinguishable SPECT images of colon cancer xenografts. Tumour-
bearing mice were injected with (A) CC49-TCO (100 µg) and after 24 h 
were subsequently injected with [111In]-1 (25 equiv. to CC49; 3.4 equiv. to 
TCO); (B) CC49 (100 µg) followed 24 h later with [111In]-1 (identical amount 
as in (A)); and (C) Rtx-TCO (100 µg) followed 24 h later by [111In]-1 (same 
amount as in (A)); (D-F) single transverse planar images intersecting the 
tumours in (A-C). Images acquired at 3 h p.i. Rossin R, Verkerk PR, van den 
Bosch SM, Vulders RCM, Verel I, Lub J, Robillard MS, In Vivo Chemistry for 
Pretargeted Tumor Imaging in Live Mice, Angew Chem Int Ed. 2010; 122: 
3447-3450. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced 
with permission.

radiolabelled small molecules 
[153] (including PARP inhibitors 
[154, 155]), peptides (e.g. cyclic-
RGD peptide antagonists of αvβ3 
[156, 157], Exendin-4 [158]), 
and proteins (e.g. VEGF [157]).

There are now several reports in 
which the TCO-tetrazine ligation 
has been used to facilitate an in 
vitro pretargeting strategy [132, 
159-166]. In each of these exam-
ples, it is the TCO species which 
is coupled to the targeting vector, 
and a fluorescently-tagged tetra-
zine species is employed as the 
secondary agent. Epitopes at the 
cell surface [132, 159, 161, 163, 
165] and in intracellular regions 
[160-164] have been success-
fully targeted using this strategy.

In their landmark study, Rossin 
et al. were first to demonstrate 
the utility of bioorthogonal chem-
istry as a pretargeting strategy in 
live mice bearing colon cancer 
xenografts [167]. In this exam-
ple, the antigen TAG72 was 
selected as a model target due 
to its limited degree of internali-
sation (which would otherwise 
render it inaccessible) and its 
resistance to shedding. TAG72 
also has clinical relevance as it is 
overexpressed in a variety of 
cancer cell lines. As a targeting 
vector, an anti-TAG72 mAb 
(CC49) was functionalised with 
an average of 7.4 TCO species 
using conventional NHS-based 
conjugation chemistry. A comple-
mentary dipyridyl tetrazine deriv-
ative was selected based on its 
high reactivity with TCO and good 
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the administration of the TCO-mAb construct 
and the radiolabelled tetrazine derivative. 
Promisingly, a rapid reaction between the two 
complementary bioorthogonal species occurr- 
ed in vivo and SPECT/CT images acquired at 3 h 
p.i. revealed high contrast images of the tumour 
xenografts, yielding a T/M ratio of 13:1 (Figure 
7). Importantly, only low levels of radioactivity 
were observed in the blood and non-target tis-
sues (including the liver) at 24 h p.i. which were 
attributed to small amounts of TCO-CC49 which 
remained circulating in the blood pool.

Shortly after, Devaraj et al. reported a study 
which was focused on further elucidating the 
parameters linked to the in vivo behaviour of 
the TCO-tetrazine ligation [168]. In this case, 
the secondary agents were based on dextran 
scaffolds (10 kDa and 40 kDa) modified with 
multiple tetrazine species. In non-tumour-bear-
ing mice, the longer residence times of these 
high molecular weight constructs proved bene-
ficial in achieving higher in vivo labelling effi-
ciencies in the blood pool. This study also 
included pretargeting experiments aimed at 
imaging the A33 glycoprotein in LS174T tumour-
bearing mice. The A33 glycoprotein was select-
ed as a suitable target due to its high persis-
tence at the cell surface and practical half-life 

a similar manner to the previous study, a lag 
time of 24 h was used between the primary and 
secondary agent, and PET/CT images were 
acquired at 3 h p.i. of the radiolabelled probe. 
While T/M or T/B ratios were not reported, the 
A33 tumours were clearly contrasted against 
the surrounding tissues and had substantially 
higher uptake on comparison to control 
tumours which did not express the A33 
antigen.

In another example, Zeglis et al. used the TCO-
tetrazine ligation to successfully implement a 
pretargeted imaging strategy in mice bearing 
SW122 colorectal tumour xenografts (Figure 8) 
[28]. This group also used an anti-A33 mAb 
(this time modified with approximately 5 TCO 
moieties per mAb) and importantly found no 
significant detrimental effect on the overall 
immunoreactivity. Here, the secondary agent 
comprised of a tetrazine group modified with a 
NOTA chelator for labelling with the PET radio-
metal copper-64. In common with the two pre-
vious studies, a lag time of 24 h was used and, 
in this case, PET images were acquired at vari-
ous time points between 2-18 h. This group 
compared their findings against the directly 
labelled construct, 64Cu-NOTA-A33, as well as 
the comparable 89Zr-labelled antibody (in which 

Figure 8. Zeglis et al. successfully employed the TCO-tetrazine ligation for in vivo pre-
targeted PET imaging of SW1222 tumour xenografts (white arrow; transverse [top] 
and coronal [bottom] images) in mice. A33-TCO (100 µg) was administered via tail 
vein injection and after a lag time of 24 h were then administered 64Cu-Tz-Bn-NOTA 
(10.2-12.0 MBq [275-325 µCi], 1.2-1.4 µg, for 2.5-2.8 Tz-to-A33 ratio). Reprinted by 
permission of SNMMI from: Zeglis BM, Sevak KK, Reiner T, et al. A Pretargeted PET 
Imaging Strategy Based on Bioorthogonal Diels-Alder Click Chemistry. J Nucl Med. 
2013; 54(8): 1389-1396. Figure 4.

(>2 days). A33 is also 
overexpressed in >95% 
of all human colorectal 
cancers, including the 
LS174T cell line, and 
therefore represents a 
target with high clinical 
relevance. The target-
ing vector in this case 
was an anti-A33 mAb 
modified with ~3 TCO 
moieties as well as a 
near-infrared VT680 
fluorophore to enable 
the acquisition of com-
plementary optical im- 
aging data. For the 
acquisition of high con-
trast PET images, an 
[18F]-containing 10 kDa 
dextran construct ([18F]
PMT10) containing mul-
tiple tetrazine species 
was administered as 
the secondary agent. In 
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a DFO chelating agent was used). It was found 
that whilst the directly labelled antibody con-
structs resulted in higher overall tumour uptake 
at 12 h and 24 h p.i., the pretargeting approach 
yielded greater T/M ratios. Furthermore, it was 
also found that as a result of the faster clear-
ance rate of the radiolabelled secondary agent, 
the overall radiation burden to off-target tis-
sues and organs was substantially reduced.

belled macromolecules. To date, a small num-
ber of clinical trials involving conventional pre-
targeting strategies have shown such promise, 
despite suffering from a few inherent 
shortcomings.

Bioorthogonal chemistry has the potential to 
circumvent many of the limitations of its prede-
cessors and has shown significant promise in a 

Figure 9. Rossin et al. significantly improved the in vivo sta-
bility and reactivity of the TCO-tetrazine ligation by increasing 
the steric hindrance of the TCO tag. An LS174T tumour-bearing 
mouse was administered CC49-TCO (100 µg) and after a lag-
time of 72 h was then administered the 111In-labelled tetra-
zine secondary agent (2). SPECT/CT images were acquired 1.5 
h (A) and 3 days (B) after injection of the tetrazine species. 
Adapted with permission from Rossin R, van den Bosch SM, 
ten Hoeve W, Carvelli M, Versteegen RM, Lub J, and Robillard 
MS, Highly Reactive trans-Cyclooctene Tags with Improved Sta-
bility for Diels-Alder Chemistry in Living Systems. Bioconjugate 
Chem. 2013; 24(7): 1210-1217. Copyright 2013 American 
Chemical Society.

A major concern regarding the application 
of TCO in a pretargeting strategy has been 
its sub-optimal in vivo stability. Rossin et al. 
recently addressed this issue and were 
able to determine that protein-bound cop-
per likely deactivates TCO by promoting its 
conversion to the comparatively unreactive 
cis-cyclooctene isomer (CCO) [169]. By 
shortening the distance between the TCO 
moiety and the lysine residue to which it 
binds, an increase in steric hindrance on 
the TCO tag was found to obstruct this 
deactivation. As a result, the in vivo stabili-
ty of TCO in mice was greatly improved. In 
addition, the authors also reported signifi-
cantly improved rates of reaction for TCO 
derivatives substituted in axial rather than 
equatorial positions with bulky linking 
groups (~10-fold higher). In vivo pretarget-
ing experiments were performed (Figure 9) 
using a very similar experimental design 
compared to their previous study [167], 
however in this instance the more stable 
TCO-derivative allowed a longer three-day 
lag period prior to the addition of the 
111In-labelled tetrazine secondary agent 
(111In-2; Figure 9). The extended lag period 
resulted in reduced background signal in 
the circulation and, promisingly, a similar 
degree of tumour uptake which substanti-
ates the improved in vivo stability of this 
TCO species. Furthermore, after 3 days the 
radioactivity in the tumour was unchanged 
which indicates that the bioorthogonal 
reaction product is extremely stable in vivo. 

Summary and future perspectives

Pretargeting is a more complex approach 
compared with the use of directly radiola-
belled imaging or therapeutic agents and it 
will require careful optimisation in order to 
be successfully translated into a clinical 
setting. Ultimately, the incentive to under-
take this costly endeavour will come from 
the demonstrable proof that this approach 
is superior to the use of directly radiola-
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few pioneering preclinical studies. From a 
selection of potential candidates, only one 
bioorthogonal chemistry reaction has been 
used successfully to enable pretargeting of 
specific cancer biomarkers, namely the TCO-
tetrazine ligation. However, as bioorthogonal 
reactions continue to be refined through inno-
vative chemical design, this number is likely to 
increase, yielding chemical pairings with 
improved bioavailability, bioorthogonality, met-
abolic stability, and rates of reaction.

It is also worth noting that many of the most 
compelling biomarkers of cancer exist within 
the intracellular (and, indeed, intranuclear) 
compartments of tumour cells. This presents a 
significant challenge to the imaging community 
as these targets are much less accessible, par-
ticularly to the types of macromolecular target-
ing vectors that are involved in a pretargeting 
strategy. Therefore, research efforts should 
also be focussed on enhancing the cell perme-
ability of these constructs. So far, only a hand-
ful of publications have addressed this.

In summary, the continual improvement of 
bioorthogonal chemistry reactions over recent 
years has facilitated an alternative pretargeting 
strategy which is demonstrating much promise 
for both imaging and therapy of cancer. This 
approach offers key advantages over more con-
ventional strategies which will undoubtedly 
increase its potential for translation into a clini-
cal setting.
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