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Review Article 
In vivo molecular imaging of cancer stem cells
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Abstract: A rare subpopulation of cancer cells known as cancer stem cells (CSCs) have distinct characteristics 
resembling stem cells, including cell renewal capability, differentiation into multiple lineages, and endless prolifera-
tion potential. Cumulating evidence has revealed that CSCs are responsible for tumorigenicity, invasion, metastasis, 
and therapeutic resistance. Despite continued investigation of CSCs, in vivo behavior of CSCs is not yet fully un-
derstood. The in vivo imaging modalities of optical, nuclear, and magnetic resonance are currently being employed 
to investigate the complexity behind the CSCs behavior. Valuable information that were previously obscured by the 
limitations of in vitro techniques now are currently being revealed. These studies give us a more comprehensive 
insight about what happen to CSCs in vivo. This review will briefly discuss the recent findings on CSCs behavior as 
informed by in vivo imaging studies.
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Introduction

Tumors consist of both tumor cells and those 
that make up the tumor microenvironment. 
Tumor cells are composed of heterogeneous 
subpopulations with distinct genotypes and 
phenotypes, which may harbor divergent bio-
logical behaviors [1]. Recently, there is accumu-
lating evidence on the existence of a tumor 
subpopulation termed cancer stem cell (CSCs) 
with distinct characteristics resembling stem 
cells [2]. This CSCs hypothesis has become one 
of the most intriguing and challenging concepts 
in oncology. This hypothesis states that the ini-
tiation and growth of cancer is controlled by a 
small subpopulation that has stem cells-like 
characteristics. Eradication of the stem-cell 
compartment of a tumor may be essential to 
achieve stable, long-lasting remission, and cure 
of cancer [3]. 

Many studies have been performed over the 
past 40 to 50 years to learn about CSCs [4-8]; 
however, the complex behavior of CSCs in vivo 
remains largely a mystery. Nowadays, in vivo 
imaging technologies provide opportunities to 
deepen our understanding about CSC charac-
teristics. Advances in experimental and clinical 

imaging enable researchers and physicians not 
only to locate the CSCs but also to assess the 
tumor biological processes involving CSCs. This 
review will briefly discuss in vivo imaging modal-
ities and techniques that have been used to 
visualize and track CSCs.

Cancer stem cells

CSCs are defined by The American Association 
for Cancer Research Stem Cell Workshop as 
cells within a tumor that possess the capacity 
to self-renew and to inherit heterogeneous lin-
eages of cancer cells that comprise the tumor 
[9]. Compared to the other tumor subpopula-
tions, CSCs are unique due to three distinctive 
characteristics (Table 1): the capacity of self-
renewal (i.e., one or both daughter cells retain 
the same biologic properties as the parent cell 
at cell division), the capability to develop into 
multiple lineages, and the potential to prolifer-
ate extensively [2]. 

The first evidence of CSCs existence was found 
50 years ago. A single tumor cell derived from 
ascites fluid of teratocarcinomas and leukemia 
had tumorigenic potential and could generate 
heterogeneous progeny [5, 8, 10]. Later, CSCs 
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were found in hematological tumor. Injection of 
a small subset of leukemic cells with a primitive 
hematopoietic progenitor phenotype (CD34+ 
CD38-) into immunodeficient mice gave them 
Acute Myeloid Leukemia (AML). The frequency 
of this subset was found to be rare (± one per 
million tumor cells) [4]. Since then, many stud-
ies were performed to identify and isolate CSCs 
subpopulations in other tumor types including 
brain, breast, colon, pancreas, prostate, lung, 
and head and neck cancer [6, 7, 11-13]. 

CSCs may come from normal tissue stem cells 
(TSCs) that undergo mutation. TSCs, which pro-
liferate throughout life, are more susceptible to 
oncogenic mutations. Moreover, TSC markers 
and differentiation markers such as CD133 
and CD44 have been found in many cancers 
[14, 15]. Also, stem cells and precursor cells 
transformed with oncogenic genes can develop 
cancer in vivo [16]. However, several experi-
ments showed that CSCs might also arise from 

stem cell development (Table 2). For example, 
CD138, a marker for terminally differentiated B 
cells, is negative in multiple myeloma (a plasma 
cell malignancy) CSCs [41]. Likewise, CSC mark-
ers from acute myelogenous leukemia are 
CD34+CD38- which are the same markers 
used to identify normal early hematopoietic 
progenitor cells [42]. Surface markers allow for 
the definition of a precise population. However, 
they may not be sufficiently reliable in discrimi-
nating cancer stem cells from non-stem cell 
subpopulations. Another limitation is that mark-
ers derived from cell-line studies or mouse 
tumors have yet to be validated in human 
tumors [43, 44].

Imaging cancer stem cell

Advances in imaging technology allow us to 
explore the biology of CSCs. Some of these 
modalities are promising as clinical applica-
tions. Modalities used for in vivo imaging of 

Table 1. Characteristics of CSCs
Characteristics of CSCs Reference
Capacity of self-renewal [4, 6, 7, 14] 
Capability to develop into multiple lineages [4, 6, 7, 14] 
Potential to proliferate extensively [4, 6, 7, 14] 
Rare subpopulation of cells [4] 
Radioresistance [22, 23] 
Chemoresistance [19-21] 
Promote invasion and metastatic activity [26-28] 

Table 2. CSCs surface biomarker
Tumor entity Markers Ref.
Breast cancer CD44+CD24-/low [14]

CD133+ [73]
Glioblastoma CD133+ [15]
Prostate cancer CD44+/α2β1

hi/CD133+ [6]
Melanoma CD20+ [74]
Lung cancer CD133+ [75]

CD44 high CD90+ [76]
Liver cancer CD133+ [77]

CD90+CD44+ [78]
Colon cancer CD133+ [79]

EpCAM+CD44+CD166+ [7]
Pancreatic cancer CD44+CD24+ESA+ [12]

CD133+CXCR4+ [27]
Head and neck cancer CD44+ [13]
Acute myeloid leukemia CD34+CD38+ [42]
Multiple myeloma CD138+ [41]

more committed progenitor cells that 
regained self-renewal properties [16-18].

CSCs are less sensitive to conventional ther-
apies such as chemotherapy [19-21] and 
radiotherapy [22, 23]. This resistance is due 
to factors such as the quiescent state of 
CSCs, enhanced DNA repair, upregulated cell 
cycle control mechanisms, reactive oxygen 
species scavenging, and interaction with 
stromal environment. The detailed mecha-
nisms of radioresistance and chemoresis-
tance are well described in other reviews [24, 
25]. CSCs also promote invasion and meta-
static activity [26-28].

The initial approach in CSC investigation is 
isolation and identification. Assays for CSC 
activity should focus on demonstrating both 
self-renewal and tumor propagation, because 
those two properties are the hallmarks of 
CSC. The gold standard assay that fulfills 
these criteria is serial transplantation in ani-
mal models. Unfortunately, this method is 
tedious and time consuming [9]. To overcome 
those limitations, simpler methods have 
been devised such as cell side population 
(SP) exclusion [29-32], floating sphere forma-
tion [20, 33-36], and aldehyde dehydroge-
nase (ALDH) activity assay [37-40].

Another important method used for the iden-
tification of CSCs is based on knowledge 
derived from hematopoietic or embryonic 
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CSCs include radionuclide imaging such as 
positron emission tomography (PET) and single 
photon emission computed tomography (SPE- 
CT), magnetic resonance imaging (MRI), intravi-
tal imaging, bioluminescence imaging, and vari-
ous fluorescence imaging including fluores-
cence-mediated tomography (FMT) and near 
infrared (NIR) fluorescence reflectance 
imaging. 

In case of in vivo CSCs imaging, there is no 
“best” imaging modality. The choice of specific 
imaging modality is depend on the purpose of 
the study. For investigating therapeutic res- 
ponse or metastatic CSCs, PET and MRI are the 
most suitable modality. Whereas optical imag-
ing modality is favorable for investigating tumor 
propagation and plasticity of CSCs with single 
cell resolution. In Table 3, we summarized each 
of imaging modality’s strengths and limita- 
tions.

In CSCs imaging, we need to choose the spe-
cific imaging modality, the reporter gene or 
probe, the imaging requirement (single versus 
repeated acquisition), intended use (animal 
versus human), and spatial requirements (or- 
gan versus cellular resolution) [45]. Because 
CSCs are  rare subpopulation of cells, the imag-
ing modality must be sensitive to the contrast 
agent at a resolution that can detect cells with 
frequency as low as one in one thousand [46]. 

Optical imaging

Optical imaging is unequivocally the most ver-
satile and widely used modality in clinical prac-

tice and research. In addition, optical imaging 
techniques are the easiest to apply to CSCs 
study at the resolution of a single cell, and rela-
tively cheaper than other imaging modalities 
[46] .

As CSCs are a rare subpopulation of cells, the 
main concerns in optical imaging are choosing 
reporter signal and imaging modalities. Biolumi- 
nescence signal can define tumor growth, 
regression, and metastases but its spatial res-
olution and sensitivity in identifying rare cells is 
limited [46]. Luciferase reporter plasmid is 
highly sensitive for measuring biologic activity 
in growing tumor, but in luciferase models, ani-
mals must be injected with the luciferin sub-
strate. Detection of signal in vivo requires 
expression of luciferase in at least 2500 cells 
[47]. 

Fluorescence imaging is currently the best 
choice for imaging CSCs. Sensitive detectors 
and the intensity and stability of fluorescence 
signal allow imaging of fluorescent cells in vivo 
at high resolutions. Multiple fluorophores can 
be used at the same time, which is useful in 
imaging the complex biological features of 
CSCs.

Factors that need to be considered in choosing 
optical imaging devices for studying CSCs are 
depth of tissue penetration, imaging time 
points, and use of multispectral unmixing [46]. 
Depth of penetration is important in studying 
and imaging internal organs or subcutaneous 
xenograft models. Near-infrared fluorescence 
(NIR) probes have the highest penetration. 

Table 3. Advantages and limitations of imaging modality for CSC study [46, 48, 80] 

Imaging modal-
ity

Reso-
lution1 Depth

Time for 
image ac-
quisition

Quanti-
tative2 Target Clinical 

use Notes

MRI
10-100 

µm
no limit

minutes to 
hours

yes
Anatomical, physi-
ological, molecular

yes
Non-invasive, non-radioactive, excellent spa-
tial resolution but costly

CT 50 µm no limit minutes yes
Anatomical, physi-

ological, 
yes

Usually combined with PET or SPECT, high 
radiation exposure

PET/SPECT
1-2 
mm

no limit
minutes to 

hours
yes

Physiological, 
molecular

yes
Versatile imaging modality with many tracers 
and high sensitivity

Fluorescence re-
flectance imaging

2-3 
mm

< 1 cm
seconds to 

minutes
no

Physiological, 
molecular

yes
Suitable for imaging molecular events at sur-
face tumor but have limited depth resolution

FMT 1 mm < 10 cm
minutes to 

hours
yes

Physiological, 
molecular

in devel-
opment

Quantitative imaging of fluorochrome report-
ers

Bioluminescence 
imaging

several 
mm

cm minutes no Molecular no
Can detect gene expression rare cells such 
CSC at high resolution

Intravital micros-
copy3 1 µm

< 400-
800 µm

seconds to 
hours

no
Anatomical, physi-
ological, molecular

in devel-
opment

Single cell resolution but have limited depths 
and coverage for CSC study

1High resolution for small animal imaging. 2Quantitative here means inherently quantitative. All approaches allow relative quantification. 3Laser-scanning confocal or 
multiphoton microscopy.
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Figure 1. In vivo multiphoton microscopy from experiments depicted in scheme (A) followed up the tumor growth 
from cancer stem cells. Projection micrographs (B-D) demonstrate tumor formation over time and three-dimensional 
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reconstructions depicted in micrographs (E, E’) revealed CSCs (white arrows) was associated with blood vessels and 
and grew in proximity with blood vessels (D, E). Over time (from day 13 to 20), a tumor nodule rapidly formed and 
tumor cells (blue arrows) were observed to infiltrate the peripheral regions (D, E). Fluorescent dextran (shown in 
red) was injected into the circulation to illuminate blood vessels prior to imaging. Scale bar represents 50 µm [51].

Figure 2. Fractionated CSCs and non-stem tumor cells were labeled with different fluorescent proteins and trans-
planted into mice at a 10% cancer stem cell (YFP) to 90% non-stem tumor cell (CFP) ratio as shown in experimental 
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Surgical manipulation such as skin flaps can 
also enhance penetration of probes. Multiple 
imaging time points are necessary in longitudi-
nal studies. Spectral unmixing removes auto-
fluorescence and can distinguish between 
emission peaks of nominal separation [48]. 

There have been studies imaging CSCs using 
optical imaging. Tsurumi et al showed in vivo 
detection of CD133, a cancer stem cell surface 
marker for a variety of tumor entities. They 
labeled AC133.1, a CD133-specific monoclonal 
antibody (mAb), with fluorescence dye for quan-
titative NIR fluorescence molecular tomogra-
phy (NIR FMT) imaging on mouse subcutane-
ous xenograft models. They visualized and 
quantified CD133 in lentivirally-transduced 
CD133 overexpressing cells lines. Cells that 
express CD133 at endogenous levels had lower 
signal to noise ratio [49].

Gaedicke et al continued the Tsurumi et al 
study by showing that in vivo CD133 imaging 
using fluorescence labelled-mAb could also be 
applied to an orthotopic glioblastoma model. 
The fluorescence signal of ACC133 mAb was 
significantly higher in the tumor region than in 
the isotype control antibody. This study revealed 
that systemically administered antibodies may 
reach extravascular targets in brain tumors 
with a disturbed blood brain barrier, and also 
showed the potential of clinical translation of 
CD133 imaging [50]. 

Intravital microscopy techniques can be used 
study the behavior of cells by visualizing tissues 
in living animals. Advances in intravital micros-
copy enable visualization of CSCs at a resolu-
tion of up to 1 µm, allowing single cell reso- 
lution imaging. Additional developments are 
deeper penetration, minimal image distortion, 
signal quantification, and three-dimensional 
image reconstruction [51, 52].

Using intravital microscopy, Lathia et al depict-
ed CSCs growth in vivo over a temporal time 
course using lentivirus-transduced fluore- 
scence-labeled CSCs (CD133+ cells). As the 
first intravital imaging study using multiphoton 
microscopy to observe tumor growth from 

CSCs, this study showed how CSCs flourished 
from a perivascular niche and outgrew the non-
CSCs cells over a temporal time course (Figures 
1 and 2) [51].

Stem cells-like properties may not be perma-
nent. CSCs may lose stemness properties, and 
non-CSCs may gain them. This phenomenon is 
known as stem cell plasticity [53, 54]. Intravital 
microscopy has been used to observe cancer 
stem cell plasticity. Zomer et al proved this 
hypothesis by intravital lineage tracing. They 
lineage traced the growth of genetic mammary 
tumors that expressed a tamoxifen-activated 
Cre confetti construct. In this mouse models, 
Cre activation induced random expression of 
one of four confetti fluorescent colors (cyan, 
green, yellow, and red). Cre-expressing cells 
and their progeny would be genetically marked 
by one of the confetti colors, which allowed lin-
eage tracing of these cells. They observed that 
only some of the cell grew and formed single 
colored patches four days after being activat-
ed. This showed that a tumor population devel-
oped from a small tumor subpopulation. Several 
days later, other new patches appeared, while 
some of the previous patches regressed, sug-
gested that CSC properties were occasionally 
acquired and may also be lost [55].

A new NIR-sensitive molecular imaging probe 
based on hydrogel complexes can visualize 
CD44-expressing cancer stem cells in gastric 
cancer. The probe, NIR-sensitive supramolecu-
lar hydrogels (Cy 5.5-conjugated polyethylenei-
mine/hyaluronic acidpolyplexes), was fabricat-
ed by polyplexing in an aqueous medium. This 
probe demonstrated good water-stability, bio-
compatibility, and specificity to CD44 [56]. 

Another approach to study CSC behavior in vivo 
is by using reporter genes. Liu et al applied 
dual-function bioluminescence imaging-fluo-
rescent reporter constructs (Luc2 fused with 
eGFP coding sequence) in breast cancer stem 
cells (BCSCs). Luc2 sequence was employed 
for whole body tracking by bioluminescence 
imaging (BLI) while eGFP was used for intravital 
imaging and ex vivo analysis. These optical 
reporters stably expressed over series of tumor 

design schematic (A). Graph (B) which is calculated based on three-dimensional reconstructions of projection micro-
graphs (C, D) demonstrated that CSCs outgrew non-CSCs in vivo. Additionally, tumor populations did not intermingle 
in vivo (non-stem tumor population indicated by yellow oval). Fluorescent dextran (shown in purple) was injected into 
the circulation to illuminate blood vessels prior to imaging. Scale bar represents 100 µm [51].
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progeny. Using BLI, as few as ten injected 
CD44+ BCSCs could be tracked in vivo, enabling 
studies of early tumor growth and spontaneous 
metastasis [57].

Besides surface protein markers, proteasome 
activity can also be used for in vivo tracking of 
CSCs. Vlashi et al found that 26S proteasome 
activity was reduced in CSCs. Using this finding, 
they performed in vivo CSCs tracking in human 
glioma and breast cancer. They engineered 
cancer cells to stably express fluorescence 
fusion protein (ZsGreen-ornithine decarboxyl-
ase) that accumulates in cells that have 
reduced 26S proteasome activity. ZsGreen-
positive cells were successfully tracked by in 
vivo fluorescence imaging. Compared with the 
ZsGreen-negative population, secondary 
sphere-forming capacity and in vivo tumorige-
nicity of ZsGreen-positive cells were significant-
ly higher. Furthermore, ZsGreen-high cells were 
positive for the stem cell marker nestin, Musa- 
shi-1, and Sox2 and negative for differentiation 
markers such as GFAP and neuron-specific 
class III β-tubulin in vitro. These findings sug-
gest that ZsGreen-high cells are CSCs [58].

Positron emission tomography (PET)

PET quantitatively detects high-energy γ-rays 
emitted from a subject injected with positron-
emitting isotopes or isotope-labeled molecular 
probes. PET is highly sensitive, non-invasive, 
permits real time tracking in vivo, and indepen-
dent of the depth from which the signal is emit-

ted. However, until now, there is no PET technol-
ogy capable of detecting CSC at single cell 
resolutions. 

Jin et al investigated the potential of in vivo 
radionuclide imaging of CSCs using Iodine-125-
labeled ANC9C5, an anti-human CD133 anti-
body, in colon carcinoma xenografts. Although 
a favorable biodistribution profile was not 
obtained, intratumoral distribution of 125I-labe- 
led ANC9C5 depicted on autoradiography was 
overlapped with CD133 immunohistochemistry 
expression in many areas [59]. This study 
revealed the potential of radioimmunotargeting 
of CSCs using PET or SPECT.

Gaedicke et al performed PET imaging to detect 
AC133, an epitope of the second extracellular 
loop of CD133. In this study, two cell lines over-
expressing CD133 (engineered and patient-
derived) were xenografted in mice and imaged 
using 64Cu-NOTA-AC133. The imaging yielded 
accurate and high-resolution images of brain 
tumor lesions 2-3 mm in size, with significant 
tumor-to-background contrast. This study dis-
closed the differences in invasive behavior 
between orthotopically growing U251 (noninva-
sive) and NCH421k (invasive) gliomas. More 
interestingly, PET signal intensity accurately 
reflected the microscopic pattern of tumor 
AC133+ expression. This was observed in 
sharply delineated PET images of U251 tumor 
that has compact and spherical microscopic 
appearance. On the other hand, the chaotic 
and infiltrative growth pattern in NCH421k 

Figure 3. Follow-up volumetric MRI images of BCSC, BCSC treated with docetaxel (BCSC Doc), FTH-BCSC and FTH-
BCSC treated with docetaxel (FTH-BCSC Doc). After docetaxel treatment, the mean R2* values of the BCSC Doc and 
FTH-BCSC Doc tumors were significantly decreased compared with the BCSC and FTH-BCSC tumors at days 5 and 
days 14. Moreover MRI images, revealed significantly different signal intensities (R2* values) between FTH genes- 
transduced BCSCs (FTH-BCSC & FTH-BCSC Doc) and wild type BCSCs (BCSC & BCSC Doc) [69].
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tumors was represented by more diffuse PET 
signal [50].

Magnetic resonance imaging (MRI)

From pre-clinical and clinical point of view, MRI 
is a non-invasive and robust imaging modality 

with high spatial resolution. MRI does not rely 
on radioactive isotopes, which may be an 
important advantage for longitudinal studies. 
Moreover, MRI can collect not only morphologi-
cal but also pathophysiological information in 
living objects. The ability of MRI with contrast 

Figure 4. Histological analysis with H&E staining of the area in the red and black boxes of MRI images on FTH 
genes-transduced BCSCs (FTH-BCSC & FTH-BCSC Doc) and wild type BCSCs (BCSC & BCSC Doc). High R2* value 
pixel showed the area of viable cells and the FTH gene enhances the contrast in MRI images by further increased 
the R2* values (A-D). Similar distribution of R2* value pixels in MRI between the periphery and center of both BCSC 
and FTH-BCSC were confirmed with H&E staining; FTH genes transduction enhanced the R2* values (A & C). After 
Docetaxel therapy, non viable cells were appeared in the center of the tumors (demarcated with black dotted line) 
(B & D). Without FTH genes transduction, different R2* value pixel in MRI (demarcated with white dotted line) failed 
to represent cell viability as shown by H&E staining (B). In FTH-BCSC cells, R2* value pixel correspond well with cell 
viability in both periphery and center of the tumor (D). Scale bar in H&E and MRI represents 100 µm and 500 µm 
respectively [69].
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agents for labeling cells providing dynamic 
assessment of cell migration into target tissues 
[60]. MRI has been used to detect single cells 
in small animals in a wide range of studies 
extending from stem cells to cancer cell track-
ing [61]. 

To pinpoint a cell of interest from background 
signal, a label capable of producing significant 
positive or negative contrast on the appropriate 
pulse sequence is an absolute must. In addi-
tion to strong signal-altering properties (T1, T2 
relaxation), an “ideal” label should have charac-
teristics such as biocompatibility, lack of genet-
ic modification or perturbation to the target 
cell, capability of single-cell detection, ability to 
image target cells over a long period, and ability 
to quantify cell number at a given locus [62]. 

Most of the magnetic resonance labels current-
ly used in cell tracking are ultrasmall super-
paramagnetic iron oxide (USPIO) or superpara-
magnetic iron oxide (SPIO). Advantages of 
these contrast agents over conventional para-
magnetic gadolinium-based contrast agents 
are low toxicity, subnanomolar-range detection 
limits, and higher contrast enhancement [63-
65]. SPIO has successfully detected and 
tracked transplanted human hepatic stem cells 
in vivo and also glioblastoma CSCs in vitro [66, 
67].

In MRI, the amount of USPIO and SPIO, not the 
number of cells, determines signal change. Cell 
proliferation distributes iron into daughter cells, 
so the signal from individual cells decreases 
with each generation. Iron released from apop-
totic or lytic cells can be internalized by macro-
phages in nearby tissue nearby, resulting in 
signal wrongly associated with target cells [68]. 
Choi et al used the MRI reporter gene ferritin to 
overcome these limitations for detecting 
human breast cancer stem cells (BCSCs). The 
overexpression of ferritin enabled cells to 
uptake more iron, producing low signal intensi-
ties in MRI [69]. As MRI reporters are stably 
expressed, even during cell division, they can 
be used for studying dynamic processes, for, 
example, the migration and invasion of cells of 
interest over an extended period. This can pro-
vide temporal and spatial information for anti-
cancer treatment effects on a specific cell pop-
ulation. Quantification of the number of viable 
cancer cells in deep tissues can be monitored 

by calculating R2* ( = 1/T2*) values from T2* 
mapping of MRI images [70, 71].

Choi et al utilized dual reporter gene (human 
ferritin heavy chain [FTH] and enhanced green 
fluorescence protein [eGFP]) transduced-
BCSCs transplanted into NOD/SCID mice to 
allow noninvasive tracking of BCSC-derived 
populations and to show viable cell populations 
of tumors after docetaxel chemotherapy. MRI 
revealed significantly different signal intensi-
ties (R2* values) between BCSCs and FTH-
BCSCs in vitro and in vivo (Figure 3). Histological 
analysis revealed that areas showing high R2* 
values in docetaxel-treated FTH-BCSCs tumors 
by MRI contained more viable cell populations 
with high percentages of BCSCs (Figure 4). This 
experimental model system can be used to 
investigate the best treatments of BCSCs-
derived tumors [69].

Another labelling technique targeting cancer 
stem cells has also been developed. Lim et al 
designed hyaluronan-modified magnetic nano-
clusters (HA-MNCs) for in vitro and in vivo 
detection of CD44-overexpressing breast can-
cer using a MR imaging. Hyaluronan, an 
immune-neutral polysaccharide, is a ligand for 
CD44. Biocompatible magnetic nanoclusters 
(MNC) of less than 100 nm in size is the opti-
mum vehicle for this ligand since it may hinder 
reticuloendothelial trap to prolong its circula-
tion and at the same time ensure tumor accu-
mulation via enhanced permeation and reten-
tion effect. Hence, HA-MNCs exhibited excellent 
targeting efficiency to CD44-overexpressing 
cancer cells. Signal intensity on T2-weighted 
images was decreased in HA-MNCs-treated 
mice, demonstrating a remarkably high MR 
contrast effect. It can be concluded that 
HA-MNCs has high potential to image cancer 
stem cells in vivo and promising for diverse 
applications in tumor diagnosis [72].

Conclusion

Even though CSCs have been investigated 
extensively, their in vivo behavior is still unclear. 
In vitro studies may not sufficiently depict the 
complexity of CSC biology. In vivo imaging tech-
niques allow CSCs tracking and obtaining valu-
able information such as tumor development 
from CSC populations, stem cell plasticity, and 
their interaction with the surrounding environ-
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ment. These techniques may be used to inves-
tigate yet unexplored behavior such as interac-
tion with the immune system, behavior under 
hypoxic conditions and stem cell-like property 
inheritance.

CSCs are also responsible for therapeutic resis-
tance and tumor recurrence. Developing imag-
ing modalities to localize CSCs will help ensure 
CSCs eradication for a complete cancer cure. 
Discovery of more accurate yet biocompatible 
tracers, development of better techniques and 
higher imaging resolution and contrast are in 
progress. MRI, PET, and fluorescence imaging 
are the most promising modalities for clinical 
application of CSCs detection. Integration of all 
aspects of molecular imaging for CSCs detec-
tion will accelerate bench-to-bedside trans- 
lation.
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