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Review Article 
Imaging radiation response in tumor and normal tissue
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Abstract: Although X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are the primary imaging 
modalities used in the clinic to monitor tumor response to radiation therapy, multi-modal molecular imaging may 
facilitate improved early and specific evaluation of this process. Fast and accurate imaging that can provide both 
quantitative and biological information is necessary to monitor treatment and ultimately to develop individualized 
treatment options for patients. A combination of molecular and anatomic information will allow for deeper insight 
into the mechanisms of tumor response, which will lead to more effective radiation treatments as well as improved 
anti-cancer drugs. Much progress has been made in nuclear medicine imaging probes and MRI techniques to 
achieve increased accuracy and the evaluation of relevant biomarkers of radiation response. This review will em-
phasize promising molecular imaging techniques that monitor various biological processes following radiotherapy, 
including metabolism, hypoxia, cell proliferation, and angiogenesis.
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Introduction

The goal of molecular imaging is to gain insight 
into biological functions and mechanisms by 
visualizing changes in physiological and cellular 
properties. Observing tissue response to can-
cer therapy may lead to the discovery of 
improved cancer treatments that may be  
tailored to an individual patient’s needs. 
Conventional imaging techniques, including 
ultrasound (US) and X-ray computed tomogra-
phy (CT), have been successful in providing an 
accurate visualization of anatomic features of 
tumors. Recent developments in molecular 
imaging probes and techniques, including bio-
logically active PET tracers and specialized 
magnetic resonance imaging (MRI) pulse 
sequences, allow for the visualization of cellu-
lar properties and microenvironmental ch- 
anges.

Radiotherapy has a long history in cancer treat-
ment, stemming from Röntgen’s discovery of 
the X-ray in 1895 [1]. Radiation therapy is used 
in the treatment of a wide range of cancers and 
is prescribed for over 50% of all cancer patients 
[2]. Since DNA damage is the mechanism by 
which ionizing radiation kills cells [3], exposure 
of normal tissue to radiation commonly limits 

the maximum deliverable dose and hence effi-
cacy of this therapy through the induction of 
treatment-related toxicity [4]. The current clini-
cal standard for evaluating response to treat-
ment is to determine tumor size reduction on CT 
using a unidimensional measurement, termed 
Response Evaluation Criteria in Solid Tumors 
(RECIST) [5]. The RECIST criteria focus solely on 
tumor size reduction, which provides a limited 
view of treatment efficacy [6] and does not nec-
essarily correlate with patient survival [7-9]. In 
addition to CT, other non-invasive imaging 
methods, including US and MRI, have been 
used to determine the response of tumors to 
radiation therapy by monitoring reduction in the 
size of the primary tumor after treatment [10]. 
Crucial information about the location of tumors 
and injury to surrounding areas can also be 
gained from these modalities. However, they 
are insensitive to the underlying biological 
changes that drive tissue response to radiation. 
Combining multiple modalities may improve 
outcomes not only by determining changes in 
tumor size but also by characterizing biological 
processes.

New clinical criteria have been proposed for 
assessing tumor volume changes that include 
biological information gained from PET imaging 
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of glucose metabolism, called PET Response 
Criteria in Solid Tumors (PERCIST) [5]. The inclu-
sion of PET imaging overcomes some limita-
tions of anatomical imaging by allowing the 
assessment of early responses to treatment 
[11]. Whereas anatomical and structural chang-
es have classically been the focus of tumor 
response to therapy, emerging imaging tech-
niques provide crucial biological information at 
the molecular level. Molecular imaging provides 
a means to detect and predict biological 
responses to therapy (Table 1), allowing for  
the development of personalized treatment 
options. Being able to visualize radiation 
response in both tumors and normal tissues 
may aid in the determination of treatment effi-
cacy (Table 2). Given the complex nature of the 
tumor microenvironment and its potential con-
tribution to therapy response, molecular imag-
ing can provide a means to visualize individual 
components of the microenvironment, includ-
ing changes in the vasculature, immune 
response, and stroma [12]. This review high-
lights the current state of post-therapy biologi-
cal response imaging and examines future 
directions for research in this area.

Metabolism

Following radiation therapy, tumor cell meta-
bolic activity changes due to decreases in cell 

on FDG uptake [18]. FDG uptake in normal tis-
sues within the radiation field was evaluated 
independently of tumor response using a quali-
tative scoring system (Figure 1B), and it was 
found that inflammatory changes in normal tis-
sue stemming from radiation pneumonitis and 
pleuritis were positively correlated with the 
tumor metabolic response due to a potential 
relationship between the radiosensitivities of 
the tumor and normal tissue.

Despite its wide use in monitoring response to 
therapy [19-21], FDG lacks tumor specificity. As 
such, other means of monitoring tumor metab-
olism are being explored, including magnetic 
resonance spectroscopic imaging (MRSI), 
which allows for non-invasive, simultaneous 
acquisition of biochemical and anatomical 
properties [22]. Proton (1H)-MRSI has been 
applied toward imaging gliomas in order to plan 
radiation treatments by distinguishing the 
abnormalities in metabolic properties of these 
tumors as compared to normal cerebral tissues 
[23-25]. 1H-MRSI has also been shown to be 
effective in monitoring radiation response in 
brain tumors [22]. Characteristic changes in 
glioma-associated metabolites, including cho-
line, creatine, lactate, and lipids, have been 
shown with 1H-MRSI after radiotherapy, which 
could be indicative of patient response to treat-
ment [26, 27]. Similar to PET imaging which 

Table 1. Methods for visualizing radiation response 
based on biological processes

Method Tracer/Technique Biological 
process References

PET FDG Metabolism [11, 13-21]
FMISO Hypoxia [36, 37, 39, 41-47]
FAZA Hypoxia [40, 48-50]
EF5 Hypoxia [38]

60Cu-ATSM Hypoxia [51, 52]
FLT Proliferation [63-65]

18F-ISO Proliferation [69, 70]
18F-ML-10 Apoptosis [90, 91]

18F-ICMT-11 Apoptosis [84-89]
18F-galacto-RGD Angiogenesis [115-119]

MRI 1H-MRSI Metabolism [22-27]
13C-MRSI Metabolism [28-31]

BOLD Hypoxia [58]
APT Necrosis [94, 95]
DTI Necrosis [96, 97]
DCE Angiogenesis [99, 102-106]

US DCE Angiogenesis [110-114]

survival and proliferation. Imaging these 
metabolic changes is one avenue for 
measuring tumor response to treatment 
(Figure 1A). The most common radiotrac-
er used in PET imaging is 18F-fluoro-2-
deoxyglucose (FDG), an analog of glucose 
incorporating a positron-emitting isotope 
of fluorine (18F). Because glucose uptake 
is increased in most cancers, FDG-PET 
has been widely used to detect elevated 
glucose metabolism in both primary and 
metastatic tumors and to determine 
tumor response to therapy [11]. For 
example, FDG-PET has been used to 
monitor the response of locally advanced 
cervical cancer to chemoradiation [13-
16]. FDG is also taken up by macro-
phages and inflammatory lesions [17]. 
This characteristic has been examined in 
patients with non-small cell lung cancer 
(NSCLC) to determine the response of 
normal lung and pleura to radiation by 
evaluating inflammatory changes based 
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requires the injection of an exogenous probe, 
13C-MRSI uses hyperpolarized agents to in- 
crease the detection sensitivity of injected 13C 
labeled molecules by greater than 10,000 fold 
[28]. 13C-labeled molecules such as [1-13C]- 
pyruvate [29], [1, 4-13C]-fumarate [30], and L-[5-
13C-4-2H2]-glutamine [31] can be used for imag-
ing metabolism, cell death, and cell prolifera-
tion, respectively. The first clinical trial using 
this technique detected elevated levels of 
13C-pyruvate in known areas of prostate cancer, 
showing its feasibility in examining tumor thera-
peutic response (Figure 1C) [32]. Moni- 
toring changes in metabolic processes follow-
ing radiation therapy is promising for detecting 
early treatment response in patients, however 
it is limited to observation of molecules that 
can be delivered and metabolized within the 
lifetime of hyperpolarization, typically 1-2 min-
utes [32].

Hypoxia

It has been established that hypoxia, or low oxy-
gen, is an important factor in tumor response 
and resistance to therapy in many cancers [33]. 
Hypoxia influences tumor cell invasiveness, 
energy metabolism, gene expression, and 
metastasis [34]. Visualizing hypoxic areas with-
in tumors as well as changes in oxygen levels 
after treatment may allow optimized treatment 
selection, planning, and adjustment (Figure 
2A). For example, hypoxia-specific radiotracers 
are being investigated to non-invasively moni-
tor hypoxic tumor populations following treat-
ment [35]. Due to their reduction under low oxy-
gen tension and intracellular binding in hypo- 
xic cells [34, 35], 2’-nitroimidazole-containing 
compounds, such as 18F-fluoromisonidazole 
(FMISO), 18F-fluoroazomycin arabinoside (FAZA), 
and 2-(2-nitro-1H-imidazol-1-yl)-N-(2, 2, 3, 3, 
3-18F-pentafluoropropyl)-acetamide (EF5), are 
being used to quantify hypoxia based on tumor-
to-plasma or tumor-to-muscle uptake ratios 
(T/M) [36-38]. These hypoxia markers exhibit 
similar signal-to-noise ratios (SNR): in head and 

neck cancer, for example, T/M ratios range 
from 1.1-3.2 for EF5 [38] to 1.1-3.0 for FMISO 
[39], and 1.6-2.4 for FAZA [40]. The widely-used 
PET tracer FMISO has been utilized to image 
and quantify hypoxic areas in many types of 
tumors, including lung, head and neck, and 
prostate [41-43]. A clinical trial of head and 
neck cancer patients used FMISO imaging 
before and after radiotherapy to define hypoxia 
kinetics over the course of treatment [44]. 
Another clinical trial conducted in patients with 
head and neck, gastrointestinal, lung, and uter-
ine cancers successfully showed the feasibility 
of using FMISO to monitor the reoxygenation of 
hypoxic areas following radiotherapy [45]. The 
use of FMISO as a universal hypoxia marker is 
limited by contradictory results with respect to 
the correlation of FMISO uptake and hypoxia 
markers in various tumor types [46, 47], so 
FAZA is being evaluated as an additional tracer 
for detecting hypoxia [48]. FAZA has been used 
to image hypoxia in lung, head and neck, blood, 
and brain tumors [49]. In NSCLC patients, FAZA 
was used to monitor changes in hypoxia follow-
ing chemoradiation. Despite limitations in the 
number of patients in the study, results indi-
cated that therapy likely decreased tumor cell 
survival and improved reoxygenation of intratu-
moral regions [50].

PET imaging with copper-60 diacetyl-bis (N 
4-methylthiosemicarbazone) (60Cu-ATSM) is 
also being evaluated to improve upon the lower 
SNR of the previously mentioned hypoxia mark-
ers. T/M ratios between 3.0-3.5 have been 
defined in patients with NSCLC and cervical 
cancer [51, 52]. In both cases, it was found that 
uptake of 60Cu-ATSM was variable based on the 
extent of hypoxia within tumors and that a 
decrease in T/M ratios correlated to patients 
who had responded to therapy. However, this 
technique suffers from time and tumor depen-
dent variation in uptake and retention, which 
limits its use as a general hypoxia marker [53, 
54].

Table 2. Methods for determining normal tissue response following radiotherapy
Modality Tissue Readout References
FDG-PET Normal lung and pleura Normal tissue uptake within radiation field [18]
MRSI Cerebral tissues Normal metabolites [23-25]
FLT-PET Bone marrow Hematopoietic cell uptake [64]
DCE-MRI White matter Ktrans [106]
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Figure 1. Imaging metabolism. A. The complex tumor microenvironment, consisting of tumor cells, vasculature, 
stromal cells, and immune cells, plays a critical role in response to therapy. Techniques such as FDG-PET that 
use glucose analogs to observe cellular uptake or 1H or 13C MRI that monitor metabolites can evaluate metabolic 
changes in the tumor microenvironment following radiotherapy (RT). B. FDG-PET scans performed in 4 different 
patients with NSCLC before (Baseline) and 6-12 weeks after radiotherapy (Post-RT) are shown. Horizontal arrows 
highlight the original tumor site, oblique arrows designate a new tumor site, oblique arrowheads show pleural reac-
tion, and vertical arrowheads indicate parenchymal lung changes. A qualitative scoring system was devised to evalu-
ate normal tissue FDG uptake for the determination of radiation-induced changes in inflammation. Grade 0 shows 
no normal tissue abnormalities within the treatment volume. Grade 1 denotes activity in the pleural reflections and 
soft tissues without parenchymal lung changes. Grade 2 indicates increased parenchymal uptake of equal or lower 
intensity than normal soft tissues while Grade 3 shows uptake in the right lung parenchyma of higher intensity than 
surrounding normal soft tissues. Reprinted with permission from [18]. C. 13C-MRSI study in prostate cancer patient 
who received 0.43 mL/kg of hyperpolarized [1-13C]pyruvate. T2-weighted image through the malignant region (left) 
with corresponding 13C-MRSI spectral array (right). Pink shading represents tumor. Lac = lactate; Pyr = pyruvate. 
Adapted from [32].
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Figure 2. Hypoxia imaging. A. The tumor microenvironment exhibits hetero-
geneous levels of oxygenation, which can vary based on proximity to the vas-
culature: higher oxygen concentrations near vessels (red circle) and lower 
concentrations at greater distances (blue circle). Areas of hypoxia are resis-
tant to radiotherapy. PET and MRI methods to image hypoxia levels before 
and after treatment are being explored. B. T2w and BOLD R2* MRI images 
of a patient with advanced cervical cancer undergoing concurrent chemora-
diotherapy (left panels, before therapy; right panels, 1 month after therapy). 
T2-weighted imaging (top panels) shows the size decrease of a cervical tumor 
(arrows, circles) following treatment. Color-coded R2

* maps (bottom panels) 
demonstrate increases in R2

* values post-therapy. Reprinted with permission 
from [58].

As an alternative to using PET, blood oxygen-
ation level-dependent (BOLD) MRI is being 

used to assess tumor hypoxia 
in patients [55, 56]. BOLD MRI 
utilizes paramagnetic deoxy-
hemoglobin as an endoge-
nous hypoxia marker, as the 
deoxyhemoglobin blood con-
centration alters the trans-
verse relaxation rate R2

* (1/
T2

*) and can indicate the oxy-
genation status of tissues 
adjacent to perfused micro- 
vessels [57]. In a clinical study 
of cervical cancer patients 
pre- and post-chemoradiation 
therapy, it was found that R2

* 
and consequently tumor 
hypoxia increased following 
treatment, potentially indicat-
ing therapeutic efficacy th- 
rough decreases in vascular 
permeability and blood flow 
(Figure 2B) [58]. In addition, 
no changes in the normal uter-
ine myometrium before and 
after treatment were detect-
ed. Although there are limita-
tions in correlating BOLD sig-
nal intensity to absolute pO2 
levels in tumors [59], recent 
pre-clinical work in rat pros-
tate tumor models has com-
bined T2

*-weighted BOLD and 
T1-weighted tissue oxygen lev-
el-dependent MRI to provide 
complementary evaluations of 
tumor oxygenation to better 
evaluate radiation response 
[60], which should be further 
validated in clinical studies.

Cell proliferation

Monitoring cell proliferation is 
an additional method of deter-
mining the success of cancer 
therapies: a decrease in pro- 
liferation can be attributed to 
the killing of rapidly prolife- 
rating cancer cells (Figure  
3A). 18F-fluoro-3’-deoxythymidi- 
ne (FLT), a thymidine analog, 
is being used to detect cell 

proliferation kinetics through phosphorylation 
by thymidine kinase 1, an enzyme involved in 
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Figure 3. Cell proliferation and apoptosis imaging. A. Radiotherapy induces cell death in the tumor microenviron-
ment, which can be monitored by PET either through the loss of cell proliferation or the increase in apoptosis. Trac-
ers such as FLT and 18F-ISO can be used to visualize decreases in cell proliferation while 18F-ICMT-11 and 18F-ML-10 
have been used in the clinic to monitor apoptosis. B. FLT uptake in patients with NSCLC. Coronal 18F-FLT PET (right 
panels) and transverse 18F-FLT PET/CT (left panels) show baseline (top), 2 week (middle), and 4 week (bottom) re-
sponse during chemo-RT. A reduction in proliferation was shown within 4 weeks of treatment. Adapted from [65]. C. 
Visualization of the effect of whole brain RT in two patients with brain metastases. White arrows show baseline 18F-
ML-10 uptake and yellow arrows indicate response after 10 fractions of RT. Uptake increased following RT, indicating 
induced apoptosis. Adapted from [90].
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Figure 4. Tumor vascular im-
aging. A. Changes in tumor 
angiogenesis, vascular nor-
malization, and vessel dis-
ruption (depicted with x) can 
be monitored following ra-
diotherapy. Techniques that 
visualize changes in blood 
flow, including DCE-MRI or 
DCE-US, and angiogenic PET 
markers are being used to 
determine tumor vascular 
properties following therapy. 
B. DCE-MRI evaluation of 
gross tumor volume (white 
contour) in patients with 
advanced head and neck 
cancer. Blood volume maps 
(color) are overlaid on post-
Gd T1-weighted images in 
patients with local control 
(top) and local failure (bot-
tom) before (left) and after 
(right) 2 weeks of fraction-
ated RT. Patients with local 
control exhibited increased 
primary tumor blood volume 
whereas the blood volume 
of patients with local failure 
was not significantly altered. 
Reprinted with permission 
from [103].

the pyrimidine salvage pathway of DNA synthe-
sis that has 3-4 times higher activity in malig-
nant cells compared to benign cells [61, 62]. 
Recent studies have evaluated the use of FLT-
PET to image radiation response in patients 
with head and neck cancer or NSCLC over the 
course of chemo-radiotherapy regimens [63-

65]. In patients with head and neck cancer, FLT 
uptake in tumors significantly decreased in the 
first 4 weeks of therapy but remained the same 
in the surrounding normal tissues [63]. Patients 
with NSCLC exhibited heterogeneous patterns 
of tracer uptake and proliferation within indi-
vidual tumors throughout the study, which 
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could be used to alter treatments based on 
individual responses [64]. A phase II trial con-
firmed that FLT-PET can be used to monitor 
early changes in cell proliferation as a response 
therapy in NSCLC patients (Figure 3B) [65]. The 
group also examined the proliferative response 
in the surrounding normal bone marrow [64]. A 
reduction of tracer uptake was observed in all 
cases, suggesting a decrease in the number of 
proliferating bone marrow cells. These findings 
illustrate the potential of monitoring cell prolif-
eration to determine the extent of normal tis-
sue damage after treatment.

Assessing proliferation based solely on FLT, or 
any thymidine analog uptake, is not feasible 
because these molecules accumulate as a 
function of the thymidine salvage pathway but 
do not necessarily reflect proliferation through 
the de novo thymidine pathway. They will there-
fore underestimate proliferation due to their 
inability to distinguish between proliferative 
cells in the G1, G2, and M phases and quies-
cent cells [66, 67]. Other tracers are being 
developed that can determine proliferative sta-
tus more accurately, including ligands for the 
sigma-2-receptor, a validated cell proliferation 
biomarker [68]. One such proliferation tracer, 
N-(4-(6, 7-dimethoxy-3, 4-dihydroisoquinolin-
2(1H)-yl)butyl)-2-(2-18F-fluoroethoxy)-5-methyl-
benzamide (18F-ISO-1), was tested in a prelimi-
nary clinical trial for evaluation of its biodistri-
bution and dosimetry, and it was found that the 
PET results correlated to Ki67 expression, a 
well-established marker of proliferation, in 
tumor biopsies [69]. Although 18F-ISO-1 has 
been used to monitor response following che-
motherapy in mouse mammary tumors [70], 
more studies are needed to assess how chang-
es in uptake of this agent may report on 
response following radiotherapy in patients.

Apoptosis

The ability to evade apoptosis, or programmed 
cell death, is a defining characteristic of cancer 
cells [71]. The link between apoptosis and radi-
ation response has been studied extensively 
but remains a controversial topic. By evaluating 
the proportion of cells undergoing apoptosis 
following irradiation, some studies suggest that 
apoptosis may play a significant role in the 
response of tumors to radiotherapy [72, 73]. 
However, studies by Brown and Attardi conclud-

ed that while there is evidence of apoptosis fol-
lowing radiation treatment, cell death through 
mitotic catastrophe is the predominant mode 
of cell death [74]. Apoptosis nonetheless con-
tinues to be a focus of radiation research; 
recent studies have reinforced the observation 
that apoptosis is induced by radiation in breast 
cancer while noting an inverse correlation 
between apoptosis and DNA damage [75]. 
Huang and colleagues have also demonstrated 
that caspase-3 may regulate other secreted 
factors that can stimulate the proliferation of 
neighboring cells after the induction of apopto-
sis by radiation [76]. Taken together, these 
observations indicate that apoptosis occurs in 
a subset of tumor cells following radiotherapy 
and monitoring tumor cell apoptosis may be  
a valuable method of determining tumor res- 
ponse to treatment [77-82].

Unlike the previously mentioned PET tech-
niques targeting cell proliferation, metabolism, 
and hypoxia, imaging apoptosis after therapy 
would provide a positive contrast (an increase 
in signal) following a successful therapy (Figure 
3A). Because activation of caspase-3 drives 
the degradation of DNA into fragments during 
apoptosis, it is widely used as a biomarker for 
apoptosis [83]. A radiolabeled isatin sulfon-
amide, 18F-(S)-1-((1-(2-fluoroethyl)-1H-[1, 2, 3]- 
triazol-4-yl) methyl)-5-(2(2, 4-difluorophenoxy-
methyl)- pyrrolidine-1-sulfonyl) isatin (18F-ICMT- 
11), has been identified as a caspase-3-specif-
ic PET tracer [84]. In pre-clinical models, 
18F-ICMT-11 had increased tumor retention in 
murine lymphoma xenografts, which corre-
sponded to drug-induced apoptosis and indi-
cated early response to treatment [85, 86]. The 
tracer is currently being tested in clinical trials 
and has been shown to be safe with a favorable 
dosimetry profile in healthy subjects [87]. 
Further studies regarding the specificity of the 
tracer in vivo need to be done given the poten-
tial for non-specific binding of the probe to 
other nucleophilic cysteine proteases, which 
could limit its use in the clinic [88, 89]. Another 
PET tracer, 2-(5-fluoro-pentyl)-2-methyl-malo-
nic acid (18F-ML-10), has been used to visualize 
apoptosis of brain metastatic cells in patients 
following whole-brain radiation therapy (Figure 
3C) [90]. 18F-ML-10 was shown to have high 
signal-to-background ratios (between 1.75 to 
20.45) in tumors as compared to healthy brain 
tissue and a statistically significant correlation 
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to response as evaluated by MRI after radio-
therapy. This apoptotic tracer also facilitated 
early detection of response to therapy. Another 
advantage of this tracer is the ability to distin-
guish between apoptotic and necrotic cells 
through the loss of signal upon cell membrane 
rupture [91].

Necrosis

Differentiating between necrosis and recurrent 
tumors after radiation has been a long-stand-
ing challenge in the treatment of brain tumors 
[92, 93]. New MRI techniques have emerged 
that exploit inherent biological properties, 
including amide proton transfer (APT) MRI, that 
can detect amide protons of low concentration 
proteins [94]. Since malignant gliomas have 
higher protein and peptide content than normal 
tissue, differentiation of glioma and radiation 
necrosis with molecular APT-MRI has been 
shown to be feasible in a pre-clinical model 
[95]. However, clinical validation is necessary 
to optimize these techniques for use in patients. 
In addition, diffusion tensor imaging (DTI) using 
MRI can measure 3D diffusion of water in vivo. 
This technique has been used to create appar-
ent diffusion coefficient (ADC) maps in order to 
discriminate necrotic areas from glioma recur-
rence following radiotherapy [96]. DTI-MRI has 
also been coupled with 1H-MRS to track brain 
injury as a result of nasopharyngeal carcinoma 
radiation therapy [97]. Distinguishing viable 
tumor cells from radiation-induced necrosis is 
crucial in predicting and monitoring tumor 
response to therapy.

Tumor vascularity

Angiogenesis and abnormal vasculature are 
known to play important roles in tumor metas-
tasis and response to therapy [98]. Monitoring 
changes in tumor vascularity, angiogenesis, 
and vessel normalization is another method of 
evaluating radiation response (Figure 4A). 
Dynamic contrast-enhanced (DCE)-MRI is a 
functional technique that is capable of quanti-
fying vascular perfusion, microvessel density, 
and permeability by evaluating changes in sig-
nal intensity over time [99]. DCE-MRI allows for 
the differentiation of tumors compared to nor-
mal tissues due to their marked differences in 
terms of interstitial volume and permeability 
[100, 101]. In rectal cancer, DCE-MRI showed 
differences in microvessel properties after 

radiotherapy [102]. DCE-MRI has also been 
used to assess differences in tumor blood vol-
ume in head and neck cancer following chemo-
radiotherapy (Figure 4B) [103]. The technique 
has also been used to analyze changes in 
tumor blood flow following fractionated radio-
therapy in glioblastoma multiforme (GBM) due 
to its ability to analyze blood-brain barrier per-
meability as well as to visualize the characteris-
tic abnormal vasculature [104]. Early changes 
in cerebral blood volume (CBV) and thus tumor 
perfusion following treatment were detected. In 
addition to visualizing changes in tumor blood 
flow, the technique has also been used to dis-
tinguish recurrent gliomas from radiation injury 
[105]. Quantitative microcirculatory values 
derived from pharmacokinetic modeling were 
significantly different in tumors, necrotic 
regions, and normal white matter. For example, 
the transfer constant between intra- and extra-
vascular and extracellular space (Ktrans) was sig-
nificantly lower in normal white matter and 
highest in the recurrent glioma group. DCE-MRI 
may be a promising method of imaging chang-
es in blood flow following radiation treatment 
as well as determining treatment efficacy with 
the potential to individualize and modify treat-
ment based on early patient response [106].

Changes in tumor vascularization can also be 
detected through US. US contrast agents such 
as gas-filled microbubbles can be injected 
intravenously to detect a material with different 
acoustic properties from the tissue [107]. For 
example, cyanoacrylate microbubbles targeting 
angiogenic and inflammatory markers have 
been used to assess changes in tumor vascu-
larization following radiation therapy in a pre-
clinical prostate cancer model [108]. In addi-
tion, the dynamic contrast-enhanced (DCE)-US 
technique evaluates microvessel density and 
perfusion [109]. By utilizing sulfur hexafluoride 
microbubbles stabilized by a phospholipid 
shell, changes in vascularization following anti-
cancer treatment, including combination radio- 
and chemotherapy, were observed in patients 
with a broad range of tumors [110]. DCE-US 
imaging of a patient with advanced renal cell 
carcinoma showed decreases in contrast 
uptake and thus tumor vascularity following 
chemotherapy treatment [111]. Many clinical 
trials have moved forward evaluating tumor 
response to chemotherapy [112-114], and 
future use of this technique for determining 
radiation response is reasonable.
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PET tracers that can evaluate molecular mark-
ers of angiogenesis rather than hemodynamic 
characteristics, including radiolabeled argi-
nine-glycine-aspartate (RGD) peptides, have 
also been used to evaluate vascular changes 
following treatment [115]. The most commonly 
used tracer for this purpose is the 18F-galacto-
RGD peptide that binds to αvβ3 integrins [116, 
117]. Clinical trials have successfully correlat-
ed 18F-galacto-RGD uptake to immunohisto-
chemical staining of αvβ3, and have shown the 
feasibility of using this marker for imaging 
angiogenesis [118, 119]. The tracer, however, 
cannot distinguish between endothelial cells 
and tumor cells that express the integrin or 
between vasculature in benign and malignant 
lesions [116].

Future perspectives

Overall, imaging techniques that take biological 
considerations into account are imperative for 
understanding how the complex and heteroge-
neous tumor microenvironment influences 
response to therapy. Imaging biological pro-
cesses from metabolism, hypoxia, proliferation, 
apoptosis, necrosis, and tumor vascularity 
enable the evaluation of the response of indi-
vidual microenvironmental components direct-
ly related to therapy. Current trends focus on 
obtaining biological information in more detail 
to evaluate the underlying mechanisms of 
tumor structural and functional changes. 
Because each technique has its own limita-
tions be it sensitivity, specificity, or patient-to-
patient variation, it will likely be necessary to 
use complementary techniques to obtain a 
more balanced perspective of the response 
rather than using one technique or one biologi-
cal process as a universal solution. In addition 
to determining changes in the tumor itself, 
assessing surrounding damage or normal tis-
sue response is also crucial for the full evalua-
tion of therapeutic response. Establishing early 
response to treatment is also a key for evaluat-
ing treatment efficacy, which has been shown 
in the clinic with MRSI, PET, or MRI techniques 
that assess metabolism, cell proliferation, 
apoptosis, and vascular properties.

Clinical imaging has progressed significantly 
from planar X-ray films to high resolution 3D 
functional imaging. Beyond visualizing tumor 
size and morphology, molecular imaging pro-

vides valuable information about the tumor 
microenvironment and may be used to predict 
and assess clinical outcomes following radia-
tion therapy. Advances in PET, MRI, and US 
techniques have allowed for a deeper under-
standing of the biological response to treat-
ment. A large challenge, however, lies in estab-
lishing the molecular landscape following initial 
treatment to assist physicians in deci- 
sion making for further treatment options. 
Standardization of metrics for image acquisi-
tion and quantitative response assessment are 
also essential for realizing the full potential of 
molecular imaging. Progress in molecular imag-
ing may allow for personalized medicine by 
designing patient-specific therapies based on 
accurate monitoring of patient response to 
treatment.
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