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Abstract: Metals and metalloids play fundamental roles in many physiological processes in biological systems, but 
imbalance of these elements in the body may cause many diseases, such as Parkinson’s disease, Alzheimer’s 
disease, and even cancers. Thus, to better understand the metallome in health and disease, quantitative deter-
mination of their localization, concentration, speciation, and related metabolism at cellular or subcellular levels 
is of great importance. X-ray fluorescence (XRF) imaging, as a new generation of analytical technique, has been 
reported as an ideal tool to quantitatively map multiple metals and metalloids in tissues with reasonable sensitivity, 
specificity, and resolution. In the current review, we have introduced the general concept of XRF imaging technique, 
reviewed the recent advances using XRF imaging to investigate toxicology of metals and metalloids in life science, 
and discussed the roles of metals and metalloids in various diseases, including cancers and neurodegenerative 
diseases. We believe that future research on revealing the roles of metals and metalloids in biological systems will 
directly benefit from the important breakthroughs in developing XRF imaging techniques. 
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Introduction

In this review paper, metals and metalloids may 
mean the metal ions and any available forms, 
such as metal-oxygen anions and metal ion-
ligand coordinates, and sometimes not strictly, 
mean some non-metals, such as As, P, Cl etc. 
that XRF is able to detect, for simplicity in 
description.

Metals and metalloids in biological systems

Metals and metalloids perform critical roles in 
fundamental processes required for all biologi-
cal species, including osmotic regulation, catal-
ysis, metabolism, biomineralization, and signal-
ling [1, 2]. Most biological organisms do not 
only contain abundant alkali and alkaline earth 
metals but also store and transport transition 
metals and metalloids to provide appropriate 
levels for metalloproteins or cofactors, and pro-
tect themselves against the toxic effects [3-5]. 
In general, the concentration of transition met-
als and metalloids, such as zinc (Zn), copper 

(Cu), manganese (Mn), iron (Fe), nickel (Ni), 
chromium (Cr), arsenate (As) and cadmium (Cd), 
is much lower than that of alkali and alkaline 
earth metals [6]. Nevertheless, metalloproteins 
and metal cofactors are found almost in all 
plants, animals, and microorganisms [1, 7, 8]. 

In living systems, the normal concentration 
range for each metal or metalloid is narrow 
(Table 1) [9], while both deficiency and excess 
of these elements can cause pathological 
changes [8, 10]. For example, the World Health 
Organization (WHO) and the Food and Agri- 
cultural Administration (FAA) suggest that the 
population mean intake of Cu should not 
exceed 10-12 mg per day for adults [11]. The 
deficiency of Cu in the human body would 
increase the risk associated with develop- 
ing coronary heart disease [12-14], while the 
Menke’s disease, Alzheimer’s disease, Parki- 
nson’s disease, Wilson’s disease, and Occipi- 
tal Horn Syndrome are implicated with the 
excessive amount of Cu uptake and excretion 
[13, 15-17]. Since metals and metalloids in liv-
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ing systems are essential, researchers in chem-
istry, biology, and medicine have been attract-
ed to relate their excess or deficiency in living 
systems to specific diseases [9, 16]. Therefore, 
understanding of the localization, speciation, 
and metabolism of these metals and metal-
loids at molecular level is of great importance. 

It is well known that the metals and metalloids 
in biological samples exist in different forms, 
such as free ions, metalloproteins or cofactors 
formed through complexation [7-9], and are not 
homogenously distributed in biological cells 
and tissues [18]. As a consequence, in-situ 
spatiotemporal analysis of their formation, con-
centration and distribution in living systems 
remains a great challenge [4, 5]. Up to now, a 
variety of methods have been developed and 
used to quantitatively determine these metals 
and metalloids in biological samples. Among 
these approaches, in-situ imaging technique 

has been reported as one of the most promis-
ing methods for the study of metals in living 
systems due to its capability of high spatial  
and temporal resolution [1, 16, 19]. Recently, 
several imaging techniques have been pro-
posed to visualize the location and determine 
the concentration level of specific metals in  
biological samples [16, 20-22]. Table 2 illus-
trates an overview of the most important im- 
aging-based microanalytical techniques. Imag- 
ing mass spectrometry (IMS) technology is 
used to record spatial and temporal resolution 
of metals and metalloids in biological samples 
at the cellular and/or subcellular levels [5, 23, 
24]. Another imaging technology that permits 
the mapping of a specific metal in living speci-
mens with high sensitivity and spatiotemporal 
resolution involves utilization of fluorescent 
biosensors [4, 16, 25, 26]. When the intracel-
lular biosensor interaction with specific metals 
or metalloids, the location and level of these 
elements will be immediately recorded as the 
changes in fluorescence output, either through 
an intensity increase or an energy shift of  
the emitted light [25, 26]. Other imaging tech-
niques, such as magnetic resonance imaging 
(MRI), positron emission tomography (PET), and 
single-photon emission computed tomography 
(SPECT), have also been developed for physio-
logical imaging. Although the resolution of 
these techniques is only at the organ level,  
their high sensitivity endows them to be widely 
used in clinical medicine [16, 27-31]. These 
imaging techniques for mapping the metals 
and metalloids in living systems have recently 
been comprehensively reviewed elsewhere [4, 

Table 1. Average relative abundance of selected elements in earth’s crust and mammalian blood 
plasma [6, 9]
Conc. of Metals Ni Cd Zn As Cu Mn Fe Cr Na K Ca
Crust (ppm) 75 0.2 70 1.5 55 950 5 × 104 100 3 × 104 3 × 104 4 × 104

Blood (µM) 0.04 - 17 - 8-24 0.1 22 0.5 1 × 105 4 × 103 2 × 103

Table 2. Comparison of the microanalytical techniques [23-31, 33-35]
Analytical 
technique

Detection 
limit

Spatial  
resolution

Analytical  
depth (mm) Quantification Ref

MS 0.01 mg/g 15-50 mm 200 Semiquantitative [23, 24]
Fluorescence pM to nM 2-3 mm (in vivo), 0.2-0.5 mm (in vitro) < 1 cm Quantitative/semiquantitative [25, 26]
PET High pM 1-2 mm No limit Semiquantitative [27-29]
SPECT Low nM 15-20 mm No limit Semiquantitative [28, 29]
MRI mM to low µM 25-100 mm No limit Semiquantitative [30, 31]
XRF 0.1-1 mg/g 0.03-0.2 mm > 100 Quantitative [33-35]

Figure 1. Basic principle of X-ray fluorescence.
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5, 23-26, 32, 33]. This review will particularly 
highlight the recent progresses of X-ray fluo- 
rescence imaging technology, a new and very 
promising one developed very recently.

X-Ray fluorescence imaging 

XRF is an elemental analysis technique, which 
relies on recording the characteristic second-
ary X-rays emitted from specific atoms when 
the materials are irradiated by a focused X-ray 
beam [34]. The history of XRF dates back to 
1895 when German physicist Wilhelm Conrad 
Röntgen accidentally discovered X-rays during 
his study of cathode rays in high-voltage, gas-
eous discharge tube. Based on Röntgen’s dis-
covery, Henry Moseley in 1913 discovered a 
mathematical relationship between the atom 
number (Z) and emitted X-ray wavelength. The 
technique was quickly realized to quantitative 
analysis of materials using XRF in 1914-1924. 
While the X-rays have been employed as a  
standard elemental analysis since 1950s  
when the first commercial XRF spectrometer 
was developed [35]. Since then, XRF has 
attracted increasing consideration and the  
relevant technique has been widely used for 
non-invasive imaging of thick and deep biologi-
cal specimens with high spatial and temporal 
resolution [36]. 

As one of the advanced imaging approaches, 
X-ray fluorescence (XRF) imaging is a powerful 
technique for the quantitative mapping of distri-
butions and dynamics of elements and chemi-
cal species at the spatial submicrometer reso-
lution within biological samples [16, 18, 34, 
37]. The physical principle of the XRF is illus-
trated in Figure 1. Upon excitation by an X-ray 
photon, a core-shell electron from the specific 
atom is ejected as a photoelectron. The formed 

fluorescence, which enables the multi-element 
analysis. 

Apart from the conventional XRF microprobe, 
different variations of XRF imaging techni- 
ques, such as synchrotron X-ray fluorescence 
imaging (SXRFI) [16, 27, 34, 37], X-ray fluores-
cence computed tomography (XRFCT) [16, 27, 
38], confocal XRF (CXRF) [39, 40], and total-
reflection X-ray fluorescence imaging (TXRFI) 
[41] have been reported in recent years. Am- 
ong these techniques, SXRFI has the highest 
element sensitivity due to absence of the 
bremsstrahlung background, while XRFCT can 
provide three-dimensional elemental composi-
tion in a sample [27, 34]. Therefore, these two 
techniques are most widely used for the imag-
ing of metals in biological samples. 

In particular, SXRFI is a microanalytical tech-
nique for mapping the spatial distribution of 
elements [18, 34, 42-45]. Due to the unique 
fluorescence spectrum of each element, si- 
multaneous multi-element analysis can be 
achieved using SXRFI with qualitative and 
quantitative modalities. Compared with the 
conventional micro-XRF (m-XRF), synchrotron 
X-ray source-equipped SXRFI shows higher  
sensitivity with the detection limit estimated 
between 5.0 × 10-20 and 3.9 × 10-19 mol/mm2 
and the spatial resolution improved to 150 nm 
for the imaging of trace elements [18, 46, 47]. 
By virtue of deep penetration of synchrotron 
X-rays, this technique is highly applicable  
for mapping the metals in biological samples, 
such as in whole cells or tissue at single cell 
and subcellular resolution. A variety of cellular 
studies utilizing SXRF have been conducted, 
especially the investigation of distribution and 
abundance of metals in biological samples.  

Figure 2. Schematic of an X-ray fluorescence microscope construction.

core-hole is then filled by  
a neighbouring higher energy 
orbital electron, which results 
in emission of an X-ray fluo- 
rescence photon. The energy 
of the emitted photon is eq- 
ual to the difference in bind- 
ing energies of the two shells 
involved in the transition [27, 
37]. Since the binding energy 
is varied with the nuclear 
charge, each element has a 
unique photon energy, i.e., 
characteristic fingerprint X-ray 
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The apparatus of SXRFI typically consists of 
X-ray source, undulator, crystal monochroma-
tor, focusing optics, motorized sample stage, 
X-ray fluorescence, and transmission detector 
(Figure 2) [18, 27, 34, 38, 48]. Undulator is 
used to boast a smaller source size of X-ray  
and produce a beam with enhanced bright-
ness. To select the band of the incident X-ray 
beam, a crystal monochromator is equipped. 
The selected X-ray is then focused on the sp- 
ecimen through a Fresnel zone plate [49]. An 
energy dispersive detector is applied to record 
the information of multi-element simultaneous-
ly. The orientation of biological samples on the 
specimen scanning stage is corrected by the 
help of transmission detector.  

Due to its capability of 3-D elemental mapping 
within the sample, XRFCT has attracted in- 
creasing attention for imaging metals in bio- 
logical samples in recently years [50, 51]. This 
technique integrates the CT imaging of X-ray 
attenuation with typical secondary XRF, and 
thus the 3-D elemental mapping can be ob- 
tained by stacking and combining 2-D XRF 
imaging. Using XRFCT, the specimen is irra- 
diated by a micro- or nano-focused X-ray beam, 
and the secondary X-ray is collected with an 
X-ray dispersive detector to record the energy 
of each XRF photon [27, 34]. The XRF detector 
is designed to be 90° position to the incident 
X-ray beam to minimize the elastic and Com- 
pton scattered photons and improve the sig- 
nal-to-background ratio [27, 52, 53]. The con-
ventional XRFI apparatus (Figure 2) with an 
additional rotation stage is used as the micro-
scope for the XRFCT [54]. 

The rotation of the XRFCT microscope is illus-
trated in Figure 3. For the sample with low ele-
mental abundance, the scanning and rotation 
of the sample along a series of angles is  

often used [50, 55, 56]. The focused X-ray 
beam is raster scanned through the sample, 
and the XRF intensity is recorded by the XRF 
detector at each orientation [27]. Typically, the 
measurement of a single slice of the sample 
requires several hours, which limits its applica-
tion in live biological samples. Fortunately, 
thanks for the improvement of XRF detectors 
and fast detector electronics, “on-the-fly” sam-
ple scanning modality can reduce the X-ray irra-
diation time, and the live sample 3-D XRFCT is 
possible [55, 57]. In the case of high elemental 
abundance (circa > 1 wt%), full-field mode of 
XRFCT with a wide-fan X-ray beam can be used 
for the specific elemental mapping. With the 
wide-fan X-ray beam, only several minutes is 
required to map the metals in biological sam-
ples [34, 58]. Thus, a large dimension of the 
sample can be imaged using such a technique 
with low risk of radiation damage. 

XRFCT is a non-invasive and highly sensitive 
technique for imaging metals with the 3-D 
model in living samples. In the XRFCT measure-
ment, the pre-treatment of the biological sam-
ples, such as staining, fixation, and washing, is 
not required, which allows the accurate detec-
tion of metals in its native condition. The map-
ping of elemental abundance in living samples 
can be in the range of submicrogram per gram 
with a high spatial resolution (hundreds of 
nanometers) [59]. In addition, similar to the 
SXRFI, simultaneous multi-element analysis 
with qualitative and quantitative mode is also 
possible for XRFCT [27, 34].

Considering the essential roles of metals and 
metalloids in living systems and the unique 
advances of X-ray fluorescence imaging, we  
will highlight the recent progresses in this 
review on using XRF imaging technique to 
examine metals and metalloids in biological 
systems. We will focus on the application of 
XRF imaging in the investigation of toxicology 
and roles of metals and metalloids, in particu-
lar in various diseases at the organ and tissue 
level, and at cellular or even subcellular level.  
In addition, the current and future challenges  
in this field in terms of X-ray fluorescence de- 
velopment and applications are also discuss- 
ed.  

XRF imaging of toxic elements

It has been reported that some of the heavy 
metals and metalloids, especially Cr, Co, Pb, 

Figure 3. Schematic of a typical XRFCT rotation stage. 
The XRF is collected by a XRF detector, and X-ray at-
tenuation is recorded by a transmission detector.
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Table 3. Typical toxicities of the most encountered metals and metalloids, and their treatment
Metal Acute Chronic Toxic concentration Treatment
As Nausea, vomiting, “rice-water” diarrhea, encephalopathy, 

multi-organ dysfunction syndrome, long QT syndrome, painful 
neuropathy

Diabetes, hypopigmentation/ 
hyperkeratosis, cancer: lung, bladder, skin, 
encephalopathy

24 h urine: 
≥50 µg/L urine, or 100 µg/g 
creatinine

BAL (acute, symptomatic)
Succimer 
DMPS (Europe)

Cr GI hemorrhage, hemolysis, acute renal failure (Cr6+ ingestion) Pulmonary fibrosis, lung cancer (inhalation) No clear reference standard N-cetylcysteine (experimental)
Co Beer drinker’s (dilated) cardiomyopathy Pneumoconiosis (inhaled); goiter Normal excretion:

0.1-1.2 µg/L (serum)
0.1-2.2 µg/L (urine)

NAC
CaNa2 EDTA

Hg Elemental (inhaled): fever, vomiting, diarrhea, acute lung 
injury; 
Inorganic salts (ingestion): caustic gastroenteritis

Nausea, metallic taste, gingivostomatitis, 
tremor, neurasthenia, nephrotic syndrome; 
hypersensitivity (Pink disease)

Background exposure “normal” 
limits:
10 µg/L (whole blood); 20 µg/L 
(24-h urine)

BAL
Succimer
2,3-dimercapto-1-propane-
sulfonic acid

Pb Nausea, vomiting, encephalopathy (headache, seizures, 
ataxia, obtundation)

Encephalopathy, anemia, abdominal pain, 
nephropathy, foot-drop/wrist-drop

Pediatric: symptoms or [Pb] ≥45 
µ/dL (blood); Adult: symptoms or 
[Pb] ≥70 µg/dL

BAL
CaNa2 EDTA
Succimer
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Hg, As, are highly toxic to human health and the 
environment. In biological systems, these ele-
ments have been reported to affect cellular 
organelles and components, such as cell mem-
brane, mitochondrion, lysosome, endoplasmic 
reticulum, nuclei, and some enzymes involved 
in metabolism, detoxification, and repair of 
damages [60]. The relative toxicities, symp-
toms, and the corresponding treatment are 
listed in Table 3 [61, 62]. It has been demon-
strated that the mechanisms of toxicity and 
carcinogenicity of metals and metalloids are 
relevant to the reactive oxygen species (ROS) 
production and oxidative stress. Here, we will 
briefly summarize the progresses of XRF imag-
ing for the most commonly encountered toxic 
metalloids and metals, including As, Cr, Co, Pb, 
and Hg in living systems.  

As imaging

Arsenic (As) is widely distributed in the earth  
via both natural and anthropogenic pathways 
[63]. Despite its reputation as a deadly poison, 
As may be a necessary ultratrace element for 
some biological systems, such as red algae, 
chickens, rats, goats, and pigs. Excessive arse-
nic exposure has been associated with in- 
creased incidence of cancers, including lung 
cancers, skin cancers, and urinary bladder  
carcinoma in humans [64]. Compared to the 
reports on heavy metals, limited XRF imaging 
has been conducted to determine the quantita-
tive spatial distribution of As in live cells and 
tissues, insects, and vertebrate samples such 
as fur and feathers. 

XRF imaging has been applied to visualize the 
As distribution in HepG2 human hepatoma 
cells after exposure to arsenite (1 mM) or  
arsenate (20 mM). Munro et al. found that As 
was accumulated in the euchromatin region of 

the cell nucleus (following arsenite exposure), 
in accordance with As targeting DNA or pro- 
teins involved in DNA transcription [65]. The 
distribution, toxicity and biotransformation of 
arsenate in different life stages (larvae, pupae 
and adults) of a bertha armyworm moth (Ma- 
mestra configurata Walker) (Lepidoptera: No- 
ctuidae) were investigated by Andrahennadi et 
al., and XRF imaging revealed the localized 
arsenic species, as well as zinc and copper 
within the gut [66]. 

Arsenic accumulation induced by chronic in- 
take of arsenic-contaminated water has been 
examined in rat brain using the XRF imaging. 
The data showed that the accumulation of As 
was not linearly proportional to the treated 
arsenic dose, suggesting the existence of a  
protection mechanism that limits the transport 
of inorganic arsenic to the brain. The uniform 
spatial distribution of As was found, which is 
probably caused by the homogenous blood 
spreading to the brain [67]. The spatial dist- 
ribution of As (and Se) has been evaluated at 
the cellular and subcellular levels in the skin  
of mice (Figure 4) [68]. Interestingly, the sup-
plemental Se was found being effective pre-
venting As accumulation in skin, suggesting the 
As-blocking effect of Se. 

XRF imaging has also been applied to study  
the toxicity of As in vertebrate samples, such  
as fur and feathers. For example, using XRF 
elemental mapping of the hair, Kempson re- 
vealed that the cause-of-death of Phar Lap,  
a successful and famous racehorse, could be 
As poison [69]. 

Hg imaging

Hg is a unique heavy metal that exists in three 
types of chemical species: elemental Hg, inor-

Figure 4. Micro-XRF element mapping of hyperplastic epidermis taken from the skin of a mouse exposed to ultra-
violet radiation (UVR) and As (III) for 182 days. These images pointed out the differing subcellular distributions of 
As and Se in mice given As (III) only, particularly in the overlay, where As was clearly evident throughout the nucleus 
(excluding the nucleus), whereas Se was concentrated in the peripheral region of the cells. Scale bar 100 mm. 
Adapted from Environmental Health Perspectives, reference [68].
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ganic Hg, and organic Hg [63]. The Hg com-
pounds are well known as the most toxic spe-
cies [70]. Despite their extreme toxicity, hu- 
mans and animals are all unable to avoid  
exposure to some forms of Hg because some 
Hg compounds are ubiquitous in the environ-
ment. However, it remains difficult to investi-
gate the Hg uptake mechanism and the in- 
teractions with biological species [71]. XRF  
has been recently reported to visualize the 
uptake and distribution of Hg in living systems, 
such as larval stage zebrafish, human brain tis-
sue, teeth, and human bones. 

Using synchrotron X-ray fluorescence mapping, 
Korbas et al. examined the uptake and loca- 
lization of organic Hg in zebrafish larvae [72]. 
They found that methyl and ethyl Hg com-
pounds were mainly accumulated in the rapidly 
dividing lens epithelium, with lower levels in  
the brain, optic nerve and various other organs, 
implying the direct effects of Hg on the ocular 
tissue. The detailed mechanism underlying 
organic Hg transport and accumulation has 
been then investigated [73]. As shown in Fi- 
gure 5, redistribution of Hg to the eye lens was 
observed after removal of fish from treatment 

val zebrafish [76]. The Hg concentration in the 
fish treated with solution of PTU + HgCl2 was 
60-fold lower than that in fish exposed to  
HgCl2 solution. In contrast, both head and  
trunk sections of the larvae treated with 
CH3HgCl and PTU had two fold higher Hg than  
in those treated with CH3HgCl alone. 

XRF imaging has also been employed to study 
the co-localization of Hg in biological samples 
[77]. When the human brain tissues were poi-
soned by methyl-Hg, Hg and Se were co-local-
ized in the grey matter in the form of HgSe 
nanoparticle [78]. Exposure of larval zebrafish 
to inorganic Hg also showed nano-scale struc-
tures containing co-localized Hg and Se [79]. 
Supported by the microscaled X-ray absorption 
analysis, the co-localized deposits were most 
likely comprised of highly insoluble mixed chal-
cogenide HgSxSe(1-x) where x was 0.4-0.9, prob-
ably with the cubic zincblende structure.

Spatial distribution of Hg in human teeth filled 
with amalgams for more than 20 years has 
been determined by XRF imaging analysis [80]. 
Up to ~10 mg/g Hg was detected in the dentin-
al tubules several millimetres away from the 

Figure 5. Histological images (lower) of head and XRF imaging (upper) quan-
titative Hg distributions in zebrafish larvae after a 12-h exposure to 2 µM 
methyl-Hg L-cysteineate (t = 0) followed by recovery time t = 24 h or 60 h in 
fresh system water. Scale bar 100 mm, BR: brain, EL: eye lens. Scale bar 
100 mm. Adapted from JBIC Journal of Biological Inorganic Chemistry refer-
ence [73] with permission.

solutions (contaminated with 
methyl-Hg L-cysteineate), indi-
cating that eye lens are the 
major sink for methyl-Hg in 
early embryonic and larval 
stages.

Inorganic Hg uptake and di- 
stribution were also investi-
gated by Korbas et al. [74]. 
Unlike the methyl-Hg species 
[75], inorganic Hg was highly 
concentrated in olfactory epi-
thelium and kidney in the ab- 
sence of L-cysteine. However, 
with L-cysteine present in the 
treatment solution, mercuric 
bis-L-cysteineate species do- 
minated the treatment, signi- 
ficantly decreasing uptake. In 
addition, quantitative XRF im- 
aging was used to analyze Hg 
uptake in the absence and 
presence of 1-phenyl-2-thio-
urea (PTU), a widely used inhi- 
bitor to generate essentially 
transparent organisms for lar-
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amalgam location. In addition to Hg in human 
teeth, XRF imaging has been also employed to 
determine whether Hg is present in the bone as 
a result of environmental contamination or due 
to biogenic uptake [81]. The results revealed 
that Hg existed in part of the localized subset of 
the osteons. 

Pb imaging

Pb is a toxic heavy metal that is taken up by  
the human body through food, drinking water, 
and inhalation, and is excreted via the gastr- 
ointestinal tract and the renal system [63]. 
Exposure to Pb is associated with chronic dis-
eases in the nervous, hematopoietic, skeletal, 
renal and endocrine systems. It is known that 
Pb accumulates in the skeleton [82]. Thus, the 
understanding of Pb toxicity is of great impor-
tance due to the lack of treatment options for 
Pb-induced diseases. 

XRF imaging could make a significant contribu-
tion, although to date only a few XRF imaging 
studies have been reported about Pb in animal 
systems. In 2006, Zoeger et al. used high reso-
lution XRF imaging to determine the spatial  
distribution of Pb and other trace elements in 
normal articular cartilage and subchondral 
bone from adult humans with no history of 
work-related exposure to Pb [83]. As shown in 
Figure 6, a highly specific accumulation of Pb 
occurred in the tidemark, the transition zone 
between calcified and non-calcified articular 
cartilage. Quantitative fluorescence analysis 
revealed that a 13-fold higher Pb concentra- 

tion was in the tidemark of articular cartilage 
when compared to subchondral bone [83]. The 
observation was further confirmed by the same 
research team through investigation of the 
osteochondral samples, which were long-term 
treated to increased lead (Pb) concentrations 
[84, 85]. 

The distribution of Pb in the human bone tissue 
has been also determined by XRF imaging [86-
88]. The studies conducted by Zoeger et al. 
revealed that Pb was mostly located at the 
outer border of the cortical bone in various 
samples [87]. A remarkable association be- 
tween Pb and Zn content can also be observ- 
ed. Pemmer et al. reported that the levels of  
Pb and Zn were significantly higher in the 
cement lines than the adjacent mineralized 
bone matrix, possibly due to the different 
uptake mechanism [86]. Arora et al. reported 
the first application of XRF imaging technique  
in measuring the distribution of Zn and Pb in 
the ameloblasts in developing Wistar rat teeth. 
Results showed that Pb was only visualized reli-
ably in developing enamel but not in amelo-
blasts [89]. Interestingly, XRF imaging has been 
reported as a useful technology in archaeologi-
cal studies, and used to analyze bone and hair 
samples from Ferrante II of Aragon, King of 
Naples (1469-1496) and Isabella of Aragon, 
Duchess of Milan (1470-1524). Results showed 
that Pb was localized to microanatomical loca-
tions, consistent with bone remodelling events 
and compositionally similar to Pb-substituted 
hydroxyapatite, i.e. Pb binding in bone [90]. 

Figure 6. A. Backscattered electron (BE) image of analyzed chondral/subchondral region of the patella. Non-cal-
cified cartilage (I), tidemark (II), calcified cartilage (III), subchondral bone (IV), and cement-lines (V) can be clearly 
identified. Length of scale bar: 100 mm. B. Ca, Zn, Sr, Pb signal intensity mapping in the corresponding region. C. 
Fluorescence intensity profiles along the marked line. Maximum fluorescence intensities were normalized to 10. Pb 
and Zn maxima can be exactly allocated to the tidemark of articular cartilage. Scale bar 100 mm. Adapted from 
Osteoarthritis and Cartilage reference [83] with permission.
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Co imaging

Co is very much widespread in the natural envi-
ronment [91]. For humans, Co is an essential 
trace element required for the generation of 
vitamin B12. However, it becomes toxic at high 
concentrations, thus leading to adverse health 
effects [16]. There are a few studies done to 
investigate Co toxicity, uptake, transport, and 
distribution using XRF imaging analysis [92, 
93]. 

In 2009, XRF imaging analysis in tomography 
mode was performed for the first time on a  
single cell (HaCaT human keratinocytes) to 
determine the 3D intracellular distribution of 
cobalt [93]. The images showed that Co was 
distributed in the nucleus and perinuclear 
region in HaCaT cells, implying the possible 
direct interactions with genomic DNA and nu- 
clear proteins. The perinuclear accumulation  
in the cytosol suggests that cobalt could be 
stored in the endoplasmic reticulum or the 
Golgi apparatus. In addition, when the cells 
were exposed to exogenous Co, a decreasing 
level of Zn and Mg was found, indicating a  
likely replacement Mg and Zn by Co in protein 
binding sites.

Cr imaging

Cr plays important roles in biological functions 
of life, but can become toxic at higher doses.  
Its toxicity is also dependent on its chemical 
state [63]. It is well known that Cr compounds 
are stable in both trivalent [Cr(III)] and hexava-
lent [Cr(VI)] state. Exposure of human beings 
and animals to Cr has been a major concern 
because of the high risk of Cr-induced cancers, 
such as lung cancer [94]. A generally accepted 
mechanism for Cr(VI)-induced genotoxicity and 
cancers includes intracellular internalization 
(through anion channels for water-soluble chro-
mates or phagocytosis of insoluble chromates), 

transport, reduction to Cr(III), and then forma-
tion of Cr-DNA and Cr-protein complexes. 

The mechanism of Cr toxicity in live systems 
can be directly examined by XRF imaging  
[95]. The investigation conducted by Fayard  
et al. showed homogenous distribution of Cr  
in Chinese Hamster Ovary cells (CHO-AA8) ex- 
posed in vitro to both soluble and insoluble  
Cr compounds. Interestingly, Cr(VI) was not 
detected, suggesting a mechanism of rapid 
intracellular reduction [96]. Further studies in 
the same group confirmed the reduction of 
Cr(VI) to Cr(III) and revealed the distribution in 
nucleus of Institut Gustave Roussy ovarian  
cell line 1 (IGR-OV1) cells [97]. Cr seemed to 
accumulate P-rich regions, such as nucleus 
and the area outside the nucleus (acidic vacu-
ole), as reported by Dillon et al. in V79 Chi- 
nese hamster lung cells. This accumulation 
may indicate that Cr is capable of targeting the 
DNA and causing the genotoxic damage [98].  

Using XRF imaging, Harris et al. investigated 
the dynamic process of intracellular uptake, 
distribution, and biotransformation of Cr(VI) in 
human lung cells [99]. A549 human lung ade-
nocarcinoma epithelial cells were treated with 
Cr(VI) at 100 mM for 20 min and 4 h, respec-
tively. As shown in Figure 7, Cr was found in a 
small area of cytoplasm after 20 min treat-
ment, while distributed to whole cells after  
4 h treatment due to uptake of more Cr. 
Interestingly, a higher Cr concentration in the 
nucleus and cytoplasmic membrane was still 
observed, indicating the accumulation in the 
nucleus and the cytosol [97]. 

XRF imaging of metals for various diseases

Imaging of metals in cancer research 

The association of metal exposure with can-
cers is well documented [100]. Currently, met-

Figure 7. Distribution mapping (A) and relative amount (B) taken up by single A549 human lung carcinoma cell 
treated with 100 µM Cr(VI) in comparison with untreated cells. Adapted from JBIC Journal of Biological Inorganic 
Chemistry reference [99] with permission. 
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als are thought to promote cancer development 
by a number of mechanisms, such as inducing 
reactive oxygen species (ROS) to oxidatively 
damage DNA, protein, and lipids [101, 102]. 
Thus, XRF imaging technique has been actively 
used to study the relationship between the 
metal concentrations and a number of cancers, 
including breast cancer, prostate cancer, and 
colorectal cancer recently [56, 103-105]. 

XRF has been applied to image K, Fe, Cu, Zn, 
and Ca in breast cancer [106-108]. Compared 
to that in the normal tissues, the concentration 
of assessed metals increased in the tumour 
region, especially Zn and Cu [106, 109, 110]. 
Further investigation by Farquharson et al. con-
firmed the increasing concentration of Ca, Cu, 
and Zn in the tumour lesion, but a lower con-
centration of Fe in some of the tested samples 
[109, 111]. Zn is being considered as a possi-
ble marker of human prostate cancer [112]. 
Using XRF imaging, Ide-Ektessabi reported that 
the Zn concentration is significantly lower in 
prostate cancer tissues compared with that in 
health specimens [113]. This finding was fur-
ther confirmed by Podgórczyk et al. [112]. The 
correlation between Zn and Ca suggested that 
Ca mediated Zn accumulation in prostate can-
cer tissues [114]. 

Metals in other cancer lesions and organs have 
been also investigated using XRF imaging te- 
chnology. The localization and the relative con-
centration of Zn, Cu, Fe and Ca in primary co- 
lorectal cancer and secondary colorectal liver 
metastases were examined by Al-Ebraheem  
et al. Significant increase in the concentra- 
tion of Zn, Ca, Cu and Fe was found in necrotic 
tissues [115]. They also quantified the concen-
tration of Fe, Cu, Zn, and K in normal and ma- 
lignant liver and kidney tissues. The data indi-
cated that the Zn concentration was reduced 
by 63% and 26% in liver and kidney tumors, 
respectively. Fe, Cu, and K concentrations were 
increased in kidney tumors by 150%, 8% and 
90%, but reduced in liver tumors by 76%, 29% 
and 43%, respectively [116]. 

Among all metals investigated in cancer re- 
search, Cu is special due to its special roles in 
cancer development [111]. It is well known that 
angiogenesis is vital for supplying oxygen for 
the tumor growth. Thus, depletion of Cu has 
been shown to inhibit angiogenesis in a wide 
variety of cancer cells and xenograft systems 

[117]. Using XRF imaging, Finney et al. investi-
gated the localization and roles of Cu in an- 
giogenesis system. They found that Cu was 
remarkably redistributed from intracellular 
compartments to the tips of nascent endothe-
lial cell filopodia and across the cell membrane 
[118]. 

Imaging of metals for neurodegenerative 
diseases

The brain is rich in metals, such as Fe, Cu,  
and Zn as essential cofactors in metallopro-
teins, and Hg and Pb as neurotoxins [119,  
120]. These metals have been implicated in 
various neurodegenerative diseases, including 
Alzheimer’s disease, Parkinson’s disease, amy-
otrophic lateral sclerosis (ALS), prion diseases, 
and Huntington’s disease [121]. There is in- 
creasing investigation of precise roles of these 
metals in neurodegenerative diseases using 
XRF imaging technology [122]. 

Utilizing XRF imaging, Pushie et al. investigat- 
ed the level and distribution of Cu, Fe and Zn in 
the brain of mice that express different levels 
of prion protein (PrPC), a family of fatal neurode-
generate diseases [123]. Results suggested 
that the amount and distribution of specific 
metals within the central nervous system is 
regulated by the PrPC. Subcellular distribution 
of metals in a childhood neurodegenerative dis-
order revealed that Zn nuclear-to-cytoplasmic 
trafficking was perturbed in diseased cells and 
the Ca subcellular distribution was drastically 
altered in CbCln6nclf cells [124]. 

Mn is well known as the magnetic resonance 
imaging (MRI) reagent in vivo. However, it is 
reported that Mn is neurotoxic, by accumulat-
ing in the hippocampal formation (HPCf) of 
brain and causing symptoms similar to those 
associated with Parkinson’s disease [125, 
126]. Thus, Robison et al. examined the distri-
bution of Mn in the HPCf for Sprague-Dawley 
rats with chronic Mn exposure, and quantita-
tively compared Mn distribution with that of 
other biologically relevant metals, such as Fe, 
Cu and Zn [127]. In consistence with MRI 
results, an increasing Mn concentration in  
hippocampal, especially in the dentate gyrus 
(DG) and the cornus ammonis 3 (CA3) layer, 
was observed. In addition, significant spatial 
correlation of Mn-Zn was observed across the 
HPCf substructures (Figure 8). 
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XRF imaging was also used to investigate the 
roles of metals associated with stroke [128] 
and epilepsy [129-132]. Images showed that 
Cu plays important roles in the pathogenesis of 
epilepsy in the Wistar rats. Lower levels of Cu 
were found in the latent period compared with 
the control group and even in the acute pe- 
riod [131]. In quantitative analysis of rat brain 
undergoing pilocarpine-induced epilepsy, a  
relatively lower Cu level was found in the den-
tate gyrus, and a lower Zn level in the hippo-
campus and dentate gyrus, where a higher Ca 
level was observed in this area [132]. 

Alzheimer’s disease (AD) is the leading cause  
of dementia in the elderly, affecting more  
than 27 million people worldwide (about 2% 
population in the developed world [133-135]. It 
is one of the most prevalent and debilitating 

neurodegenerative diseases and yet it is typi-
cally diagnosed only after cognitive symptoms 
appear, which is normally too late for effective 
treatment [134]. Pathologically, AD is charac-
terized by extracellular amyloid plaques com-
posed of insoluble amyloid beta (Aβ) protein, 
and intra-neuronal neurofibrillary tangles (NF- 
Ts) containing hyperphosphorylated tau pro-
tein. At the molecular level, metals, including 
Cu, Zn and Fe, have been confirmed as neuro-
chemical factors to be involved in the metabo-
lism and functional expression of Aβ and amy-
loid precursor protein (APP) [135]. 

XRF imaging has been developed for the quan-
titative analysis of metal metabolism in ani- 
mal models (Figure 9) [136]. The observations 
reported by Leskovjan et al. revealed that the 
level of Zn, Cu, Ca, and Fe was all increased in 

Figure 8. Analysis of the hippocampal formation regions. A. Two colored images displaying Fe-Mn, Cu-Mn, and 
Zn-Mn respectively. Note that Mn and Zn co-localized in the CA3 of the HPCf, while a small portion of Mn also co-
localized with Fe within the DG as indicated by white pixels in the images. Scale bar: 1 mm. B. Scatter plots of the 
mean metal concentrations in regions identified by clustering. Scale bar 1 mm. Reproduced from reference [127] 
with permission of The Royal Society of Chemistry. 
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human amyloid plaques, suggesting that th- 
ese metals are involved in neurodegeneration 
[137]. Further studies on the time course of  
the metal concentration and distribution by  
the same group revealed that Fe in the cortex 
was 34% higher than age-matched controls  
at an early stage, corresponding to the com-
mencement of plaque formation [138]. Using 
XRF imaging, Wang et al. found that Fe and Ca 
level increased with brain aging in both AD and 
control mice, while the level of Cu, Fe, Zn and 
Ca appeared significantly high in AD mice and 
showed an obvious age-dependent rise [139]. 
The increase of Zn in a small regional hippo-
campal was also confirmed by Adlard et al. via 
XRF imaging [140]. 

Parkinson’s disease (PD) is a progressive neu-
rological condition [141]. PD is the most com-
mon serious movement disorder in the world, 
and affects about 1% adults older than 60 
years and 4% populations older than 80 years. 
The most characteristic hallmark of PD is  
confirmed to be the loss of dopaminergic (DA) 
neurons within the substantia nigra pars com-
pacta (SNc). Nevertheless, the triggers for 
these events are still unclear [142, 143], while 
the changes in biometals in brain have long 
been suspected to play a key role in the PD 
development. Recently, XRF imaging has been 
evaluated by mapping and quantifying metals, 
such as Fe, Zn ad Cu in brain slices from PD 
and unaffected brains [144, 145]. 

Employing XRF imaging of trace elements in  
the pathogenesis of PD, Chwiej et al. demon-

strated that elements P, Cl, Fe, Cu and Zn 
played important roles in the process of differ-
entiation between neurons [145]. Due to the 
importance of Cu, Davies et al. investigated  
the changes in Cu and Cu-associated path- 
ways in the vulnerable substantia nigra (SN) 
and locus coeruleus (LC) and non-degenera- 
tive brain regions. They found a significant 
decreasing in levels of Cu and Cu-transporter 
protein 1 in surviving neurons in the SN and  
LC in PD patients [146]. 

Robison et al. introduced XRF imaging as a new 
quantitative tool to determine the Mn distribu-
tion in the brain [147]. As shown in Figure 10, 
the highest Mn level was observed in the glo-
bus pallidus (GP), the thalamus (Th), and the 
substantia nigra pars compacta (SNc) in the 
brain. But following studies showed that Mn 
accumulation in SNc is higher than GP and Th. 
[126]. Dučić et al. showed that Mn was local-
ized in cytoplasmic/paranuclear in dopaminer-
gic neurons after treated with Mn [148], while 
Mn was accumulated within Golgi apparatus in 
dopaminergic cells, PC-12 [149]. 

Conclusions and future perspectives

Over the past decade, XRF imaging technique 
for determining the level and distribution of 
metals and metalloids has been rapidly devel-
oped. This method has been recognized as an 
ideal tool to reliably determine the elemental 
distribution in tissue specimens at the cellular, 
even subcellular level with high sensitivity and 
low background. In this review, we have pre-

Figure 9. The quantitative images of Ca, Fe, Cu and Zn in the brain section of Alzheimer’s disease mouse. a: Sub-
stantia nigra region, b: Superior colliculus, c: CA3 area of hippocampus, d: Dentate gyrus region. Scale bar 1 mm. 
Adapted from reference [136] with permission of The Royal Society of Chemistry.
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sented the general principle of XRF imaging 
and summarized the recent applications in 
determining the spatial distribution of metals 
and metalloids in biological specimens to ex- 
amine their toxicology and their possible roles 
in development of various diseases. After a 
thorough survey of published papers, we are 
sure that XRF imaging will become a superior 
tool to study metals and metalloids in animals 
and humans in the near future. 

However, this new technique has faced a few 
challenges in the future applications in life sci-
ence. The first challenge is the imaging scan 
speed bottleneck. At current, the scan speed  
is relatively slow, so XRF imaging is still not  
suitable for high-throughput analysis. The sec-
ond challenge is the limited imaging resolu- 
tion. It is true that imaging of metals and me- 
talloids has been reported at the cellular or 
even subcellular levels, higher resolution is  
still required to determine the distribution and 
understand the biomolecule-metal interactions 
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