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Abstract: Objectives: To identify the effect of adipose-derived mesenchymal stem cell-loaded β-chitin nanofiber 
(ADSC-loaded β-ChNF) hydrogel on diabetic wound healing and clarify its mechanism of action. Methods: We pre-
pared the ADSC-loaded β-ChNF hydrogel to repair wounds of db/db diabetic mice. Wound healing rate, histopa-
thology, enzyme-linked immunosorbent assay, and western blot were used to confirm its role and mechanism in 
promoting diabetic wound healing. Results: The ADSC-loaded β-ChNF hydrogel accelerated wound healing in db/
db diabetic mice, as indicated by increased cell proliferation, epithelization, and tissue granulation in the skin. 
Moreover, expression of vascular endothelial growth factor (VEGF) and its receptor (VEGFR), matrix metalloprotein-
ase 9 (MMP9), and TIMP metallopeptidase inhibitor 1 (TIMP1) were upregulated. These results demonstrate the 
beneficial effects of this ADSC-loaded β-ChNF hydrogel on diabetic wound healing. Furthermore, we show that the 
ADSC-loaded β-ChNF hydrogel activated aldolase A (AldoA)/hypoxia-inducible factor 1α (HIF-1α) signaling. An inhibi-
tor of HIF-1α markedly decreased the promotive effects of the ADSC-loaded β-ChNF hydrogel on wound healing and 
reduced expression of VEGF, VEGFR, MMP9, and TIMP1. Conclusions: Our findings suggest that the ADSC-loaded 
β-ChNF hydrogel activated the HIF-1α/MMP9 axis through AldoA feedback to promote diabetic wound healing.
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Introduction

Skin is the largest organ covering the surface of 
the human body. Trauma, surgery, ulcers, and 
many other causes can lead to the formation of 
skin wounds, thus damaging the body’s defen- 
se barrier [1]. Wounds in patients with diabetes 
tend to develop into chronic wounds and heal 
more slowly than those in healthy people. The 
process of wound repair is complex, involving 
four stages: hemostasis, inflammation, prolif-
eration, and remodeling. Each stage overlaps 
in time and progresses in an orderly manner 
through activation of different cell types and 
regulation of various functions. Processes of 
acute and chronic wound repair and recon-

struction involve cell proliferation and migra-
tion, angiogenesis, collagen production, and 
extracellular matrix (ECM) remodeling, which 
require the involvement of many cytokines and 
key proteins. Although the healing process of 
chronic wounds is basically the same as that of 
acute wounds, abnormalities occur at some 
point during this process. Compared with acute 
wounds, hypoxia, dysfunction of epidermal cells 
and fibroblasts, angiogenesis disorders, chang-
es in metalloproteinase levels, secondary dam-
age of reactive oxygen species, increased ad- 
vanced glycosylation end products, decreased 
host immune resistance, and neuropathy are 
observed in chronic wounds. Chronic wounds 
have no orderly and timely repair process or are 
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unable to complete wound healing after 1 
month of treatment. In addition, chronic wo- 
unds show no healing tendency and involve 
more complex repair mechanisms than acute 
wounds. Accordingly, chronic wounds are diffi-
cult to heal without effective treatment, leading 
to infection, amputation, and even threats to 
patients’ lives. 

Current treatment methods for diabetic wounds 
mainly include autologous skin transplantation, 
biological dressing, negative pressure suction, 
tissue engineering, vascular revascularization, 
growth factor therapy, and stem cell therapy. 
However, most treatment methods for large-
area and chronic wound repair are limited in 
use or effect. Cellular hypoxia is the main char-
acteristic of diabetic wounds. In addition to cell 
proliferation, angiogenesis and ECM remodel-
ing are essential for the healing of diabetic 
wounds. Vascular endothelial growth factor 
(VEGF) not only affects vascular remodeling 
and provides nutrients for new granulation tis-
sue, it promotes collagen formation and depo-
sition. Matrix metalloproteinases (MMPs) and 
tissue inhibitor of matrix metalloproteinases 
(TIMPs) are involved in ECM remodeling pro-
cesses. Therefore, regulation of hypoxia, angio-
genesis, and ECM remodeling is expected to 
accelerate diabetic wound healing. At present, 
the mechanisms and characteristics of diabetic 
wound injury are not completely clear, and the 
treatment strategy needs to be perfected [2, 
3]. 

With the development of regenerative medi-
cine, stem cells bring new possibilities for 
wound treatment. Adipose-derived mesenchy-
mal stem cells (ADSCs) can improve the wound 
environment and contribute to vascularization, 
collagen generation, and ECM remodeling in 
damaged tissues. However, problems such as 
limited drug delivery, low colonization rates, 
and low cell survival rates continue to hinder 
clinical applications [4, 5]. Hydrogels can pro-
vide a carrier for local immobilization of stem 
cells and themselves exert certain effects to 
promote healing. Indeed, combinations of stem 
cells and hydrogels can exert greater biological 
activity [6, 7]. We previously observed benefi-
cial effects of an ADSC-loaded β-chitin nanofi-
ber (ADSC-loaded β-ChNF) hydrogel in healthy 
rats [8], but its therapeutic effect and under- 
lying mechanism for diabetic wound injury 

remained unclear. Aldolase A (AldoA) reporte- 
dly has a beneficial role in cell proliferation. It 
can affect expression of downstream proteins 
through feedback activation of hypoxia-induc-
ible factor 1α (HIF-1α) and plays an important 
role in promoting proliferation and angiogene-
sis in a variety of tissues [9, 10]. Based on 
omics analysis, we found that ADSC-exosome 
hydrogels could regulate AldoA protein expr- 
ession in wounds [11]. Determining whether 
ADSC-loaded β-ChNF hydrogels can activate 
the AldoA/HIF-1α axis to promote diabetic wo- 
und healing could provide a new direction for 
wound treatment research.

Here, we studied the effect of an ADSC-loaded 
β-ChNF hydrogel on diabetic wounds and deter-
mined whether it could activate the AldoA/HIF-
1α signaling axis to promote diabetic wound 
healing.

Methods

Preparation of ADSC-loaded β-ChNF hydrogel

Squid pens were used to prepare a β-chitin 
nanofiber dispersion by acid hydrolysis and 
alkali extraction. Briefly, squid pens were treat-
ed with 0.1 mol/L hydrochloric acid (Sinopharm 
Chemical Reagent, Shanghai, China) and 4  
wt% sodium hydroxide (Sinopharm Chemical 
Reagent) until dissolved completely. An ultra-
sonic homogenizer (JY92-IIDN; Scientz, Zhe- 
jiang, China) was used to generate a β-ChNF 
suspension, which was subsequently auto-
claved and reacted with culture medium to 
form a gel that was subsequently used for fur-
ther culture of ADSCs. A total of 1*106 ADSCs 
(MUBMD-01001; Cyagen Biosciences, China) 
were added to 500 μL of hydrogel and cultured 
for 3 d for wound intervention.

Animals

Diabetic mice (db/db, aged 12 w) were pur-
chased from Liaoning Changsheng Biotechno- 
logy (Liaoning, China) and kept in cages main-
tained at 22 ± 3°C with a humidity of 45%-60%. 
Mice were allowed free access to food and 
water. After acclimation, mice were randomly 
divided into hydrogel, ADSCs, and ADSC-loaded 
β-ChNF hydrogel groups (n = 6 per group). The 
left wound of all mice was used as self control 
without any treatment, and the right wound was 
treated immediately after injury. Hydrogel group 
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mice were directly covered with 500 μL of 
β-ChNF hydrogel. ADSCs group mice were sub-
cutaneously injected with 1*106 ADSCs at mul-
tiple sites around the wound. ADSC-loaded 
β-ChNF hydrogel group mice were directly cov-
ered with 500 μL of ADSC-loaded β-ChNF 
hydrogel. Animal experiments were approved 
by the Ethics Committee of the General Hospi- 
tal of the Northern Theater Command. At the 
end of the experiment, mice were intraperitone-
ally anesthetized with 2% sodium pentobarbital 
(30 mg/kg) and their skin was harvested for 
pathology and protein detection. After that, 
mice were performed the euthanasia by cervi-
cal dislocation.

Wound healing activity

A full-thickness defect wound model was estab-
lished according to a procedure used in a previ-
ous report [8]. Circular full-thickness cutane-
ous wounds were created and carefully ob- 
served at 0, 3, 6, 9, 12, and 15 d post-surgery. 
Each wound was photographed and its area 
was measured using ImageJ (National Institut- 
es of Health, Bethesda, MD, USA). The wound 
healing rate was calculated as follows: wound 
healing rate (%) = (A0 - At)/A0 × 100%.

Histological examination

Hematoxylin and eosin (HE) staining was used 
to observe histopathological changes in mice. 
Skin samples were fixed in 10% formalin solu-
tion, dehydrated, paraffin embedded, and cut 
into 5 μm-thick sections. Sections were stained 
with HE solutions for 10 min and 3 min, respec-
tively. Immunohistochemistry was performed 
with a kit according to the manufacturer’s 
instructions (Hangzhou Maixin Biotechnology 
Development, Hangzhou, China). The results 
were observed by light microscopy.

Enzyme-linked immunosorbent assay (ELISA)

After homogenizing tissue, the supernatant 
was taken for detection. Fifty microliters of 
standard, buffer, or sample diluted to various 
concentrations were added to standard, blank, 
or sample wells, respectively. The optical den-
sity value of each well was measured at a 450 
nm wavelength. The linear regression curve of 
the standard was drawn and the concentration 
value for each sample was calculated accord-
ing to the curve equation.

Western blot

Proteins for western blot analysis were extract-
ed from skin tissues and evaluated using a BCA 
Protein Assay Kit (FD2001; Hangzhou Fude 
Biological Technology Company, Hangzhou, 
China) to determine concentrations. Antibodies 
included cytokeratin (1:1000; ab191208; Ab- 
cam, Cambridge, UK), Ki67 (1:1000; ab16667, 
Abcam), AldoA (1:1000; 11217-1-AP; Protein- 
Tech, Rosemont, IL, USA), HIF-1α (1:1000; 
ab179483, Abcam), GAPDH (1:4000, 2118, 
Cell Signaling Technology, Danvers, MA, USA), 
and an anti-rabbit IgG secondary (1:4000; 
ab6721, Abcam). Proteins were visualized us- 
ing ClarityTM Western ECL Substrate (170-5061; 
Bio-Rad, Hercules, CA, USA) and a Tanon 5200 
fully automatic chemiluminescence image an- 
alysis system (Tanon Science and Technology, 
Shanghai, China). 

Statistical analysis

All data were analyzed using SPSS 22.0 (IBM, 
Armonk, NY, USA). Quantitative data are ex- 
pressed as mean ± standard deviation. A two-
tailed paired Student’s t-test was used for com-
parisons of two groups. Comparisons between 
multiple groups were performed by one-way 
ANOVA. P-values less than 0.05 were consid-
ered statistically significant.

Results

ADSC-loaded β-ChNF hydrogel accelerated 
wound healing

After treatment with the ADSC-loaded β-ChNF 
hydrogel, skin wounds of mice were observed 
and photographed at 0, 3, 6, 9, 12, and 15 d. 
As shown in the representative images in Figure 
1A, the wound areas of mice treated with 
ADSC-loaded β-ChNF hydrogel were notably 
smaller compared with the model group (P < 
0.05). Indeed, wounds were basically healed at 
15 d in mice treated with ADSC-loaded β-ChNF 
hydrogel but still large and had scabs in the 
model group. The wound area was measured 
and the relationship between wound healing 
rate and postoperative day was evaluated. As 
shown in Figure 1B, the wound healing rate of 
the ADSC-loaded β-ChNF hydrogel group in- 
creased from 18.7% to 80.5% from 3 d to 15 d, 
significantly faster than observed in the model 
group (P < 0.05). As shown in Figure 1C, there 
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were no significant differences in blood glucose 
levels among the groups (P > 0.05). Collectively, 
these results indicate that the ADSC-loaded 
β-ChNF hydrogel significantly increased the 
rate of wound healing in diabetic mice.

HE staining indicated ADSC-loaded β-ChNF 
hydrogel promoted epithelialization

As shown in Figure 2, the internal structure of 
skin tissue in model-group mice was not fully 
developed and epidermal regeneration ability 
was poor. In hydrogel, ADSCs, and ADSC-loaded 
β-ChNF hydrogel groups, the internal tissue 
structure began to develop and an epithelium 

gradually formed. Compared with the other 
groups, hair follicles, blood vessels, and other 
skin appendages were more plentiful in the 
ADSC-loaded β-ChNF hydrogel group, which 
exhibited complete epithelialization.

ADSC-loaded β-ChNF hydrogel promoted 
wound cell proliferation

Expression of cytokeratin and Ki67 were 
detected by western blot. As shown in Figure 
3A and 3B, cytokeratin and Ki67 expression 
were increased following intervention with 
ADSC-loaded β-ChNF hydrogel compared with 
the model group (P < 0.05). Immunohistoche- 

Figure 1. Effect of an adipose mesenchymal stem cell chitin nanofiber (ADSC-loaded β-ChNF) hydrogel on diabetic 
wound healing in mice. A. Representative images of wound healing. B. Wound healing rate. C. Blood sugar of mice. 
*P < 0.05 compared with model mice.
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mical staining further confirmed these results. 
Cytokeratin was mainly located in the cyto-
plasm. Compared with the model group, cyto-
keratin expression was increased in newly 
formed epithelial tissues after ADSC-loaded 
β-ChNF hydrogel intervention. Protein expres-
sion of the cell-proliferation marker Ki67 was 
mainly located in the nucleus. Compared with 
the model group, Ki67 expression was in- 
creased in newly formed epithelial tissues af- 
ter ADSC-loaded β-ChNF hydrogel intervention 
(Figure 3C, 3D).

ADSC-loaded β-ChNF hydrogel promoted 
wound angiogenesis and matrix remodeling

To further clarify the effect of the ADSC-loaded 
β-ChNF hydrogel on wound healing, we exam-
ined expression of angiogenesis-related pro-
teins in newborn skin tissues of mice using 
ELISA. As shown in Figure 4, expression of 
angiogenesis-related proteins including VEGF 
and its receptor (VEGFR), MMP9, and TIMP1 

were increased after ADSC-loaded β-ChNF 
hydrogel intervention compared with the model 
group (P < 0.05).

ADSC-loaded β-ChNF hydrogel promoted AldoA 
and HIF-1α protein expression 

To further clarify the mechanism by which the 
ADSC-loaded β-ChNF hydrogel promoted wo- 
und healing in diabetic mice, we evaluated 
expression of AldoA and HIF-1α pathway pro-
teins (Figure 5). Western blot results revealed 
increased expression of AldoA and HIF-1α pro-
teins in diabetic mouse wound tissue after 
ADSC-loaded β-ChNF hydrogel intervention 
compared with the model group (P < 0.05).

HIF-1α inhibition decreased expression of an-
giogenesis and matrix remodeling proteins

Mice were administered the HIF-1α inhibitor 
BAY 87-2243 (9 mg/kg) by continuous local 
injection for 5 d at the same time as ADSC-
loaded β-ChNF hydrogel treatment. On the 

Figure 2. Effect of an adipose mesenchymal stem cell chitin nanofiber (ADSC-loaded β-ChNF) hydrogel on wound 
skin structures in diabetic mice. A. Control group. B. Chitin hydrogel group. C. ADSC group. D. ADSC-loaded β-ChNF 
group. 200× magnification.
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ninth day, wound tissues were collected for 
western blot analysis. As shown in Figure 6, 
HIF-1α protein expression in wound tissues was 
lower compared with the uninhibited group (P < 
0.05). Moreover, expression of VEGF, VEGFR, 
MMP9, and TIMP1 proteins in the HIF-1α group 
was significantly reduced compared with the 
uninhibited group (P < 0.05).

HIF-1α inhibition decreased wound healing

Mouse wounds were observed at 0, 3, 6, 9, 12 
and 15 d, and the wound healing rate was cal-
culated. As shown in Figure 7, a HIF-1α inhibi- 
tor reduced the promotive effect of the ADSC-

loaded β-ChNF hydrogel on wound healing (P < 
0.05), indicating an important role of HIF-1α 
during diabetic wound healing.

Discussion

In this study, an ADSC-loaded β-ChNF hydrogel 
promoted healing of a full-thickness defect dia-
betic wound model established in db/db mice 
[12, 13]. The results of our mechanistic study 
show that expression of AldoA, HIF-1α, VEGF, 
VEGFR, MMP9, and TIMP1 were upregulated in 
db/db mice after ADSC-loaded β-ChNF hydro-
gel treatment compared with model-group 
mice. Moreover, an inhibitor of HIF-1α markedly 

Figure 3. Effect of an adipose mesenchymal stem cell chitin nanofiber (ADSC-loaded β-ChNF) hydrogel on cytokera-
tin and Ki67 protein expression in diabetic mouse wound tissue. A. Representative images of western blot analysis. 
B. Relative gray values of western blot analysis. C. Immunohistochemistry analysis of cytokeratin and Ki67. D. Rela-
tive value of positive cells. 200× magnification. *P < 0.05 compared with model mice.
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Figure 4. Effect of an adipose mesenchymal stem cell chitin nanofiber (ADSC-loaded β-ChNF) hydrogel on expres-
sion of angiogenesis- and neovascularization-related proteins in diabetic mouse wound tissue. A. Vascular endothe-
lial growth factor (VEGF) expression. B. VEGFR-receptor (VEGFR) expression. C. Matrix metalloproteinase 9 (MMP-9) 
expression. D. TIMP metallopeptidase inhibitor 1 (TIMP-1) expression. *P < 0.05 compared with the model group. 

Figure 5. Effect of an adipose mesenchymal stem 
cell chitin nanofiber (ADSC-loaded β-ChNF) hydrogel 
on aldolase A (AldoA) and hypoxia-inducible factor 
1α (HIF-1α) protein expression in diabetic mouse 
wound tissue. A. Representative images of western 
blot analysis. B. Relative gray values of western blot 
analysis. *P < 0.05 compared with the model group. 
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Figure 6. Effect of a hypoxia-inducible factor 1α (HIF-1α) inhibitor on skin protein expression in diabetic mice. A, 
B. Western blot to detect expression of HIF-1α. C-F. Enzyme-linked immunosorbent assay of angiogenesis-related 
protein expression. *P < 0.05 compared with the adipose-derived stem cells chitin nanofiber (ADSC-loaded β-ChNF) 
hydrogel group.

Figure 7. Effect of hypoxia-inducible factor 
1α (HIF-1α) inhibition on promotion of wound 
healing by an adipose mesenchymal stem 
cell chitin nanofiber (ADSC-loaded β-ChNF) 
hydrogel. A. Representative images of wound 
tissue. B. Wound healing rate. *P < 0.05 com-
pared with the ADSC-loaded β-ChNF group.
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decreased the beneficial effects of the ADSC-
loaded β-ChNF hydrogel on wound healing and 
reduced expression of VEGF, VEGFR, MMP9, 
and TIMP1. 

As a global health problem, the prevalence and 
incidence of diabetes are increasing. Diabetes 
is a type of metabolic disease and diabetic 
wounds are characterized by tissue hypoxia 
caused by a high-glucose environment and in- 
sufficient local vascular supply; moreover, the 
healing ability of wound tissue cells is decreas- 
ed [14-16]. The ADSC-loaded β-ChNF hydrogel 
promoted wound healing, providing new possi-
ble strategies for chronic wound treatment. 
AldoA is involved in a variety of cell functions 
and may have key roles in cell cycle regulation 
and cell migration. AldoA, a multifunctional 
enzyme in the glycolysis pathway, also pro-
motes HIF-1α expression and its overexpres-
sion can improve HIF-1α stability by inhibiting 
its hydroxylation [17, 18]. HIF-1α is a major reg-
ulatory factor involved in glucose uptake, gly-
colysis, angiogenesis, and stress resistance. 
By increasing HIF-1α expression, cells can in- 
duce expression of glucose transporter 1 and 
some glycolysis enzymes, and further stimulate 
the glycolysis pathway including AldoA [19]. 
Therefore, AldoA protein may have an impor-
tant role during diabetic wound healing. 

HIF-1α can also regulate numerous genes 
involved in cell proliferation, motility, metabo-
lism, and angiogenesis by inducing expression 
of its downstream target genes [20, 21]. 
Hypoxia reportedly inhibited the proliferation of 
mouse embryonic fibroblasts, and HIF-1α inac-
tivation enhanced this effect. Indeed, HIF-1α is 
a master regulator involved in glucose uptake, 
glycolysis, angiogenesis, and stress resistance 
[22, 23]. Hypoxia increased VEGF expression 
through HIF-1α in alveolar epithelial cells, which 
stimulated angiogenesis and increased oxygen 
delivery [24-26]. Furthermore, AldoA was found 
to substantially inhibit the hydroxylation status 
of HIF-1α by inhibiting PHD, thereby stabilizing 
HIF-1α at the protein level and activating its 
downstream signaling targets, including MMP9. 
Moreover, MMP9 was substantially upregulat-
ed following AldoA overexpression and an 
MMP9 inhibitor inhibited cell invasion and 
migration in AldoA/HIF-1α axis-induced lung 
cancer [27, 28]. Consistent with these results, 
we found that expression of AldoA, HIF-1α, and 

angiogenic proteins in neonatal skin tissues of 
diabetic mice was increased following interven-
tion with ADSC-loaded β-ChNF hydrogel com-
pared with the model group; by contrast, there 
was no significant difference in hydrogel or 
ADSCs groups compared with the model group. 
These results further implicate regulation of 
AldoA in the reparative mechanism elicited by 
the ADSC-loaded β-ChNF hydrogel. Notably, the 
effect of the ADSC-loaded β-ChNF hydrogel on 
wound healing likely combined the effects of 
ADSCs and the β-ChNF hydrogel. Furthermore, 
HIF-1α is one of the downstream pathways of 
AldoA changed by the ADSC-loaded β-ChNF 
hydrogel. In this study, a HIF-1α inhibitor par-
tially inhibited HIF-1α expression and decreas- 
ed the effect of the ADSC-loaded β-ChNF hydro-
gel. In future studies, the dose of the HIF-1α 
inhibitor could potentially be increased to com-
pletely inhibit HIF-1α expression.

In conclusion, the ADSC-loaded β-ChNF hydro-
gel proved to be an effective treatment for skin 
wounds in diabetic mice. Mechanistically, our 
findings reveal that the ADSC-loaded β-ChNF 
hydrogel could substantially promote cell prolif-
eration and angiogenesis by activating the HIF-
1α/MMP9 axis through AldoA feedback. Our 
study demonstrates the promise of ADSC-
loaded β-ChNF hydrogels as a new method for 
healing chronic wounds.
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