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Abstract: Age-related hearing loss (ARHL) represents one of the most prevalent chronic sensory deficits experienced 
by the elderly, significantly diminishing their quality of life and correlating with various medical and psychological 
morbidities. This condition arises from the cumulative effects of aging on the auditory system, implicating intri-
cate interactions between genetic predispositions and environmental factors. Aging entails a progressive decline 
in immune system functionality, termed immunosenescence, leading to a chronic low-grade inflammation known 
as inflammaging. This phenomenon potentially serves as a common mechanism underlying ARHL and other age-
related pathologies. Recent research suggests that rejuvenating immunosenescence could mitigate inflammaging 
and ameliorate age-related functional declines, offering promising insights into anti-aging therapies. Consequently, 
this review endeavors to elucidate the role of immunosenescence-mediated inflammaging in ARHL progression and 
discuss its therapeutic implications.
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Introduction

Age-related hearing loss (ARHL) stands as a 
prevalent chronic sensory deficit commonly 
experienced by the elderly, characterized by 
bilateral and progressive sensorineural hearing 
loss [1]. This condition ensues from the cumu-
lative effects of aging on the auditory system, 
involving complex interactions between genetic 
predisposition and environmental factors [2]. 
According to estimates by the World Health 
Organization (WHO), by 2050, approximately 
2.5 billion individuals over the age of 60 will 
encounter some degree of hearing loss, impos-
ing a significant burden on medical insurance 
[3]. While ARHL is not life-threatening, it is 
associated with various medical and psycho-
logical morbidities, including cognitive decline, 
social isolation, depression, and loss of self-
esteem [4-6]. Presently, effective preventative 
and treatment strategies beyond prosthetic 
devices are scarce [7], underscoring the neces-
sity for a deeper understanding of the mecha-
nisms driving ARHL progression.

Aging is marked by a progressive dysfunction of 
the immune system, referred to as immunose-
nescence, which encompasses lymphoid organ 
remodeling and a diminished ability to regulate 
inflammation [8]. Consequently, immunosenes-
cence can give rise to chronic low-grade inflam-
mation and associated damage in various aging 
tissues, a process often termed inflammaging. 
Dysregulated immune function and elevated 
serum levels of pro-inflammatory cytokines 
have been linked to age-related morbidities, 
suggesting that immunosenescence-mediated 
inflammaging may represent a common mecha-
nism underlying ARHL and other age-related 
pathologies, providing new clues for the devel-
opment of anti-aging therapy [9-12]. Therefore, 
this review examines the role of immunosen- 
escence in age-related cochlear inflammaging 
and discusses its therapeutic implications for 
ARHL.

The cellular pathology of ARHL

Prior research has established that the primary 
etiology of ARHL lies in irreversible damage to 
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the sensorineural tissues within the cochlea, 
with the gradual loss of cochlear hair cells (HCs) 
serving as an early indication of cochlear func-
tion decline [13-16]. Additionally, histological 
investigations have confirmed extensive age-
related degenerative changes in the cochlea, 
encompassing HCs and spiral ganglion neurons 
(SGNs) loss, diminished vascularization, stria 
vascularis (SV) atrophy, and impaired function 
of supporting cells (SCs) [17-21]. Moreover, 
recent studies have highlighted aging’s detri-
mental effects on auditory pathways, resulting 
in the loss of auditory nerve afferent fibers and 
synapses [22, 23].

Numerous studies have delved into the cellular 
mechanisms underlying age-related hearing 
loss (ARHL) at the single-cell level. Shrestha et 
al. conducted a systematic investigation into 
the effects of aging on different subpopulations 
of type I spiral ganglion neurons (SGNs), reveal-
ing that type IC SGNs were particularly suscep-
tible to aging [24]. Besides, Liu et al. performed 
molecular and cytological profiling of murine 
hair cells (HCs), uncovering an age-related 
upregulation of genes associated with DNA 
damage, oxidative stress, and autophagy. This 
suggests that functional impairment preced- 
es HC loss and contributes to ARHL [25]. 
Furthermore, Sun et al. recently presented the 
first dynamic single-cell landscape of aging 
cochlear tissue in mice, identifying aging-asso-
ciated transcriptomic changes in 27 types of 
cochlear cells. Intriguingly, this study revealed 
unexpected age-related transcriptional fluctua-
tions in intermediate cells localized in the stria 
vascularis (SV). Moreover, it demonstrated that 
upregulation of the endoplasmic reticulum (ER) 
chaperone protein HSP90AA1 could alleviate 
ER stress-induced damage associated with ag- 
ing, offering a potential therapeutic target for 
preventing ARHL [26].

In summary, the cellular pathology of ARHL 
reveals an age-related increase in inflammato-
ry responses within the cochlea, suggesting 
that inflammaging may significantly contribute 
to the onset and progression of ARHL.

Inflammaging as an important underlying 
mechanism of ARHL

The cochlea was previously considered an 
immune-privileged organ; however, recent 
research has demonstrated the significant 

impact of systemic inflammation on cochlear 
function [27-29]. Accumulating evidence sug-
gests that inflammaging serves as a crucial 
pathophysiological mechanism underlying the 
onset and advancement of ARHL [30]. Ver- 
schuur et al. systematically examined the rela-
tionship between serum inflammatory markers 
and ARHL using data from the British cohort 
study. They identified IL-6, C-reactive protein, 
white blood cell, and neutrophil counts as pre-
cise predictors of hearing loss severity in older 
individuals over a 10-year period, indicating a 
progressive decline in auditory function along-
side systemic inflammation during aging [31, 
32]. This finding was corroborated by Lassale 
et al., who observed a significant correlation 
between white blood cell count and ARHL [33]. 
Furthermore, macrophage migration inhibitory 
factor (MIF), a key innate immunity regulator, 
was previously noted to play a critical role in 
maintaining normal auditory function but was 
found to be downregulated in older adults [34]. 
Additionally, several studies have highlighted 
the influence of individual genetic variations  
on ARHL development, with significant associa-
tions observed between ARHL susceptibility 
and polymorphisms of TNF-α, TNF-α receptors, 
and IL-1 receptors [35-37]. In light of these  
findings, Lowthian et al. initiated a large-scale 
Australian-based clinical trial to investigate the 
potential therapeutic effects of aspirin, a mild 
anti-inflammatory agent, on ARHL progression. 
Upon completion, this trial may furnish further 
evidence supporting the benefits of mitigating 
inflammaging in preventing ARHL.

Furthermore, preclinical investigations have 
provided substantial evidence supporting the 
link between inflammaging and ARHL. Utilizing 
next-generation sequencing technology, Su et 
al. verified the upregulation of multiple inflam-
matory genes during cochlear aging, notably 
enriched in pro-inflammatory pathways such as 
the toll-like receptor signaling pathway and TNF 
signaling pathway [38]. Additionally, Sun et al. 
elucidated a dynamic single-cell transcripto- 
mic profile of aging mouse cochlea, identifying 
a significant accumulation of infiltrated neutro-
phils and a gradual increase in expression of 
senescence-associated secretory phenotype 
(SASP)-related genes, suggesting heightened 
inflammatory responses in the aging cochlea 
[26]. Concurrently, Noble et al. extensively  
documented age-related morphological and 
functional changes in cochlear macrophages, 
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revealing a notable increase in activated mac-
rophages within the aging cochlea, which exhib-
ited enhanced interactions with glia, potentially 
contributing to cochlear inflammaging and con-
sequent ARHL [39]. Furthermore, NOD-, LRR-, 
and pyrin domain-containing protein 3 (NLRP3), 
a pivotal initiator of inflammation, has been 
implicated in aberrant macrophage-glia inter-
actions, thereby contributing to ARHL [40]. 
NLRP3 has been shown to promote the expres-
sion of pro-inflammatory factors in aging tis-
sues, including IL-1β and caspase, thereby 
exacerbating inflammaging [41, 42].

Collectively, these findings underscore an in- 
terconnected and interdependent relationship 
between inflammaging and the development of 
ARHL.

Inflammaging as the central pillar of immu-
nosenescence

Immunosenescence is traditionally perceived 
as deleterious, attributed to its association 
with low-grade chronic inflammation and pro-
gressive functional impairment in mounting 
effective immune responses against infections 
and neoplasms [11, 43]. Immunosenescence-
mediated inflammaging arises from the accu-
mulation of various immune cell subsets with 
impaired functionality. Both the innate and 
adaptive immune systems are impacted by 
immunosenescence, with certain immune cell 
subsets exhibiting notable alterations [44]. 
Overall, immunosenescence diminishes the 
capacity for antigen processing and presenta-
tion in the innate immune system, leading to 
impaired memory formation and a narrowed T 
cell receptor (TCR) repertoire in the adaptive 
immune system. Specifically, compared to 
younger individuals, macrophages in elderly 
individuals downregulate the expression of 
MHC class II molecules and Toll-like receptors 
(TLRs) and display reduced phagocytic activity 
[45-47]. Additionally, immunosuppressive mac-
rophages (M2 phenotype) show a significant 
increase in elderly lymphoid tissues and mus-
cle [48, 49]. A previous study has also indicat- 
ed a gradual downregulation of activating re- 
ceptors, including NKp30, NKp46, and DNAM-
1, in natural killer (NK) cells from elderly indi-
viduals, compromising their cytotoxicity [50]. 
Meanwhile, although immunosenescence was 
thought not to affect the absolute number of T 
cells, substantial changes in T cell phenotypes 

have been observed [51, 52]. Firstly, thymic 
involution impairs the production of naive T 
cells and reduces the diversity of the TCR rep-
ertoire, thereby increasing susceptibility to 
infection, neoplasms, and autoimmunity [53]. 
Secondly, lifelong exposure to antigens further 
contributes to the shrinkage of the TCR reper-
toire, characterized by the transition from naive 
T cells to highly differentiated memory T cells or 
senescent cells with upregulated pro-inflamma-
tory molecules [54, 55]. Furthermore, immu-
nosenescence has been reported to diminish 
the output of B cells and remodel the B cell 
compartment, hindering the efficacy of humor-
al immunity against infection [56-58].

While a comprehensive understanding of the 
pathophysiological processes of immunose-
nescence remains elusive, current research 
has identified its associations with several 
characteristic changes, including thymic involu-
tion, inflammaging, impaired immune respons-
es, and oxidative stress [59-61]. Inflammaging 
is considered as the central pillar of immunose-
nescence, characterized by the systemic up- 
regulation of inflammatory factors [62, 63]. The 
accumulation of cell debris related to cellular 
senescence is accountable for inflammaging 
[64]. During this process, senescent cells 
acquire a distinctive SASP, marked by the 
secretion of various inflammatory markers, 
including interleukin-1 (IL-1), IL-6, IL-8, IL-13, 
IL-18, and tumor necrosis factor (TNF), leading 
to the persistence of unresolved inflammatory 
processes. Simultaneously, the excessive pro-
duction and accumulation of reactive oxygen 
species (ROS) can induce DNA damage and  
disrupt cellular structures, resulting in cell 
apoptosis and subsequent chronic tissue dam-
age. Consequently, inflammaging can contrib-
ute to a spectrum of age-related diseases, 
such as Alzheimer’s disease, cardiovascular 
diseases and ARHL [9-12].

Therapeutic implications of immunosenes-
cence-mediated inflammaging in ARHL

Iwa and colleagues have long been dedicated 
to demonstrating the importance of maintain-
ing systemic immune function in preventing 
ARHL, confirming that immunosenescence and 
related inflammaging are major contributors to 
accelerated ARHL [65, 66]. Utilizing a strain of 
senescence-accelerated mouse (SAMP1), they 
initially observed a reduction in lymphocyte 



Immunosenescence-mediated inflammaging in age-related hearing loss

104	 Am J Stem Cells 2024;13(2):101-109

numbers and age-related impairment of T cell 
function concomitant with age-related auditory 
dysfunction, suggesting a synergistic effect of 
genetic background and systemic immune 
function in ARHL development [65]. To delin-
eate the individual contributions of genetic and 
environmental factors to ARHL, Iwa et al. inves-
tigated the effects of allogeneic bone marrow 
transplantation (BMT) in preventing ARHL in 
SAMP1 mice. As anticipated, mice receiving 
BMT experienced significant relief from ARHL, 
spiral ganglion cell (SGC) degeneration, and T 
cell dysfunction, demonstrating a delayed 
onset of immunosenescence. Notably, no do- 
nor cells were found to infiltrate the spiral gan-
glia, emphasizing that BMT’s rationale lies in its 
modulation of systemic immune function rather 
than direct maintenance of SGCs by locally infil-
trated donor cells [66]. They also showed that 
inoculation of young CD4+ T cells or fetal thy-
mus exhibited similar effects on ARHL as BMT, 
downregulating IL-1R2 expression in splenic 
and lymph nodal CD4+ T cells, reducing natu-
rally occurring regulatory T cell (nTreg) numbers, 
partially restoring their proliferative potential, 
and preventing SGC degeneration, resulting in 
improved responses to diverse auditory stimuli 
[67, 68]. Furthermore, recent studies focused 
on elucidating the specific fractions of CD4+ T 
cells critical in preventing ARHL. Results indi-
cated that inoculation of non-Treg non-IL1R2 
(nTnI) cells, including Treg and IL1R2-deleted 
CD4+ T cells, inhibited serum nitric oxide (NO) 
release, thereby preventing SGC degeneration 
and ARHL development [69]. Additionally, a 
recent study by Mitani et al. further validated 
that inoculation of both fresh and cryopre-
served lymphocytes reduced cellular immu-
nosenescence, suppressed serum NO produc-
tion, prevented spiral ganglion degeneration, 
and alleviated cochlear inflammaging, offering 
novel approaches for clinical prevention of 
ARHL [70]. Collectively, these therapies aim to 
rejuvenate systemic immunity, reduce inflam-
maging levels, and ultimately prevent age-relat-
ed functional impairments (Figure 1).

Recent studies have indicated that platelet fac-
tor 4 (PF4) holds promise as a rejuvenating 
agent for immunosenescence, offering a new 
avenue for preventing ARHL [71-73]. As a mem-
ber of the CXC chemokine family, PF4 is primar-
ily synthesized by the megakaryocytic lineage 
and serves diverse functions in coagulation, 
immune modulation, and angiogenesis [74, 

75]. Despite mounting evidence implicating 
PF4 in thrombocytopenia and atherosclerosis, 
its association with immunosenescence and 
inflammaging remains poorly understood. Tan- 
dem mass tags-based proteomics analysis of 
plasma from the Bama longevity group and a 
control group identified PF4 as one of the  
most significantly downregulated proteins in 
the elderly, suggesting its potential as a clini-
cally useful biomarker for aging [76]. This find-
ing was corroborated by a subsequent study, 
which revealed significantly reduced circulating 
levels of PF4 in blood plasma preparations of 
elderly mice and humans compared to younger 
counterparts [73]. Schroer et al. demonstrated 
that systemic administration of PF4 markedly 
reduced the expression of pro-inflammatory 
factors, complement factors, and microglia 
activation markers in the hippocampus, there-
by attenuating neuroinflammation and restor-
ing cognitive decline in aged mice. Notably, 
these effects were not mediated by a direct 
central mechanism of PF4, as it cannot cross 
the blood-brain barrier (BBB). Instead, PF4 re- 
juvenated the aging peripheral immune system 
in a CXCR3-dependent manner, leading to 
reduced proportions of age-related T effector 
memory cells, a shift toward a youthful gene 
signature with a more naive T cell phenotype, 
and decreased inflammatory signals, subse-
quently lowering serum levels of pro-aging 
immune factors, including CCL2, CyPA, and 
TNF. Collectively, PF4 targets immunosenes-
cence to attenuate inflammaging and alleviate 
age-related cognitive decline [73]. Similarly, 
Leiter et al. demonstrated that elevating sys-
temic PF4 levels could ameliorate age-related 
regenerative and cognitive impairments in  
a hippocampal neurogenesis-dependent man-
ner, while Park et al. showed that PF4-induced 
cognitive restoration occurred through NMDAR 
signaling-mediated synaptic plasticity [71, 72]. 
These findings strongly suggest a potential ro- 
le for PF4 in mitigating age-related functional 
impairments, positioning it as a promising ther-
apeutic target for preventing ARHL.

Summary and perspectives

In summary, aging is characterized by progres-
sive immune system dysfunction, known as 
immunosenescence, which triggers the secre-
tion of pro-inflammatory cytokines such as IL-1, 
IL-6, and TNF, leading to unresolved inflamma-
tory processes in the cochlea. Consequently, 
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Figure 1. Schematic diagram of the interconnections between immunosenescence-mediated inflammaging and 
age-related hearing loss (ARHL). Aging is characterized by progressive immune system dysfunction, termed immu-
nosenescence, which culminates in chronic low-grade inflammation known as inflammaging. Promising approach-
es, such as fetal thymus grafting, adoptive cell transfer, and bone marrow transplantation, rejuvenate the aging 
peripheral immune system. These interventions notably shift age-related senescent immune cells towards a youth-
ful gene signature with diminished inflammatory signals. Consequently, this leads to a reduction in reactive oxygen 
species (ROS)-mediated DNA damage and the restoration of degenerated spiral ganglion neurons and hair cells, 
thereby offering protective effects against ARHL.

cochlear inflammation induces the overproduc-
tion and accumulation of reactive oxygen spe-
cies (ROS), resulting in apoptosis and degener-
ation of spiral ganglion neurons and hair cells 
due to DNA impairment and cellular breakdown, 
thereby contributing to the onset of ARHL. 
Promising interventions, including fetal thymus 
grafts, adoptive cell transfer, and bone marrow 
transplantation, rejuvenate the aging peripher-
al immune system, shifting age-related senes-
cent immune cells towards a youthful gene  

signature with reduced inflammatory signals. 
This subsequently mitigates ROS-mediated 
DNA damage and facilitates the restoration of 
degenerated spiral ganglion neurons and hair 
cells, offering protective effects against ARHL.

In the past decade, mounting evidence has 
established immunosenescence-mediated in- 
flammaging as a pivotal mechanism contribut-
ing to age-related pathologies. It is plausible 
that insights gained from the study of these 
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diverse diseases could be applicable to ARHL. 
Currently, several preclinical studies provide 
evidence that rejuvenating immunosenescence 
delays the onset of ARHL, implying that novel 
agents capable of reversing immunosenes-
cence-mediated inflammaging may offer a pro- 
mising therapeutic avenue for preventing ARHL 
in future research endeavors.
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