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Abstract: Development and maintenance of the nervous system are governed by a scheduled cell death mechanism 
known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiat-
ing pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in 
these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative 
illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. 
Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death 
in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell 
size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes 
or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thor-
ough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem 
cells under the effect of different inducers. Through investigating how these inducers influence death, the review 
aims to provide information that might direct the next studies and support treatment plans for neurodegenerative 
diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, 
we examined research to evaluate death rates. The findings offer important new perspectives on the molecular 
processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect 
the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic 
approaches to treat neurodegenerative diseases.
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Introduction

Neural stem cells (NSCs) show significant po- 
tential for regenerative medicine because of 
their amazing self-renewal capacity, which lets 
them proliferate and generate more stem cells 
as well as their predisposition to specialize into 
many cell types within the central nervous sys-
tem (CNS). These cells are mostly located in 
specific brain areas, including the sub ventricu-
lar zone (SVZ) and the dentate gyrus. More- 
over, researchers can obtain NSCs from diver- 
se sources, including embryonic tissues and 
induced pluripotent stem cells (iPSCs). Resear- 

chers utilize neural stem cells (NSCs) as a  
major element in the treatment of several cen-
tral nervous system (CNS) disorders, such as 
stroke, traumatic brain injury, and neurode- 
generative diseases like Parkinson’s and 
Alzheimer’s, owing to their adaptability [1, 2]. 
There is much optimism that NSCs can assist 
individuals in these circumstances. Research 
indicates that motor performance and tissue 
viability markedly enhance following NSC trans-
plantation in ischemic stroke models.

Furthermore, NSCs are integral to drug dis- 
covery and screening, enhancing their appeal. 
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NSCs obtained from Huntington’s disease 
patients have been pivotal in discovering new 
therapeutic agents, underscoring their signifi-
cance in personalized medicine. The capacity 
to genetically alter NSCs to improve their viabil-
ity or to express therapeutic genes broa- 
dens their clinical potential. This component is 
deemed essential for enhancing therapy alter-
natives for neurodegenerative disorders [3].

Though NSCs have great promise for regenera-
tive medicine, we have to overcome certain 
obstacles to properly utilize their features. 
Ensuring that NSCs develop properly into the 
relevant neuronal types, improving transplant-
ing methods, and avoiding immunological rejec-
tion will help us to solve these problems [4]. 
Scholars always create fresh ideas to solve 
these problems. They are using small mole-
cules, for example, to control the growth of 
brain stem cells and creating biomaterials that 
improve the survival and integration of trans-
planted cells [5]. Solving these problems is 
essential for the effective use of NSCs in clini-
cal settings.

Understanding the functional relevance of dif-
ferentiated pseudo-neuronal cells formed from 
NSCs depends on an evaluation of death in 
these cells. A basic step in forming the nervous 
system, apoptosis - also known as programm- 
ed cell death - is connected to dysregulated 
death linked to many CNS diseases includ- 
ing Alzheimer’s and Parkinson’s diseases [6]. 
Developing sensible therapeutic approaches 
depends on an awareness of the regulatory 
systems controlling death in these cells [7].

Standard aspects of many central nervous  
system diseases, oxidative stress, inflamma-
tion, and DNA damage can all cause death. 
Examining how these inducers influence death 
in NSC-derived pseudo-neuronal cells helps us 
to understand the fundamental causes of many 
disorders and point possible therapy targets 
[8]. You are absolutely vital in this understand-
ing and will help to bring about major changes 
in treatment choices, therefore contributing to 
the development of the field.

Moreover, the efficacy of stem cell treatments 
depends on the important function of death. 
After transplantation, NSCs encounter many 
difficulties including immunological responses 
and ischemia that can cause death and com-

promise their survival and integration into host 
tissues. Developing plans to improve the life of 
transplanted NSCs or preconditioning the cells 
or applying immunosuppressive medications 
depends on an evaluation of death in these 
cells. This evaluation will help to improve the 
outcomes of stem cells-based therapy [9, 10].

Many inducers have been investigated for their 
effect on death in pseudo-neuronal cells de- 
rived from NSC. Selegiline is a monoamine oxi-
dase inhibitor noted for its neuroprotective 
properties and ability to stop death in neurode-
generative animals. Retinoic acid can induce 
both pro-apoptotic and anti-apoptotic reactions 
in neural stem cells under suitable timing and 
dosage of treatment. Changing death pathways 
helps to promote cell survival by means of 
growth factors such as epidermal growth factor 
(EGF) and necessary fibroblast growth factor 
(bFGF). Sonic hedgehog (Shh) signaling has 
been observed as protection against oxidative 
stress-induced mortality. Concurrently, bone 
morphogenetic proteins (BMPs) may display 
diverse effects on death based on their modu-
lation of apoptotic signaling channels. More- 
over, neurotrophins have a major role in cell 
survival and differentiation, therefore affecting 
the death process. Cytokines have two func-
tions in control of death: some induce cell 
death while others increase survival by affect-
ing apoptotic proteins. Furthermore, certain 
tiny compounds are known to either induce or 
promote survival by changing the expression of 
apoptotic proteins, hence modulating death.

Harnessing the therapeutic possibilities of 
NSCs in the treatment of neurological diseases 
depends on an awareness of how these induc-
ers influence death. This review attempts to 
fully evaluate the present knowledge on apop-
tosis in differentiated pseudo-neuronal cells 
originating from NSCs, thereby guiding future 
investigations and highlighting the critical need 
of more study to create successful therapeutic 
options in this developing field.

Differentiation of neural stem cells into 
pseudo-neuronal cells

The development of cell-based therapeutics  
for neurological diseases depends on differen-
tiating neural stem cells into pseudo-neuronal 
cells [11, 12]. Stem cell research has advanced 
to expose the intricate interaction among envi-



Apoptosis in pseudo-neuronal cells

252	 Am J Stem Cells 2024;13(6):250-270

ronmental elements, genetic programming, 
and signaling pathways affecting this process. 
Essential in cell fate determination and neuro-
nal differentiation are key pathways including 
Notch, Wnt, and Sonic Hedgehog (Shh) [13-15]. 
With features similar to embryonic stem cells 
(ESCs), induced pluripotent stem cells (iPSCs) 
present a fascinating direction for study [16]. 
Their ability to separate into neural stem cells 
and neuron-like cells offers a special chance to 
investigate elements influencing brain develop-
ment, including signaling pathways and hor-
mones such as thyroid hormone (T3) [17]. The 
production of particular neuronal types by 
microplasma exposure highlights even more 
the possibilities of iPSCs in both studies and 
treatments [18]. Modern approaches, including 
single-cell calcium imaging, are transforming 
our knowledge of brain development. They pro-
vide exact control over the process and analy-
sis of elements influencing neuronal growth. 
These methods improve neuronal growth and 
lower variability by changing signaling pathways 
and using specified reagents. Further empha-
sizes the importance of these cutting-edge 
methods in the encouragement of neuronal  
differentiation by soluble cues, cell-cell con-
tacts, electrical stimulation, and growth factors 
[19-21].

Not only is the creation of cell-based treat-
ments dependent on an awareness of the dif-
ferentiation process, but also the degree of 
death in brain stem cells under the effect of dif-
ferent inducers [22, 23]. Identification of pos-
sible therapeutic approaches and guarantee of 
the safety and effectiveness of these treat-
ments depend on this knowledge.

Understanding neuronal development in neural 
stem cells (NSCs) requires first investigating 
substrate features, cell-cell interactions, and 
extracellular matrix proteins [24]. NSCs are 
quite helpful for a variety of uses in neurosci-
ence research and tailored therapy approaches 
since of their regenerative character and multi-
lineage potential [25]. For example, IL-6, an 
inflammatory cytokine, controls neuronal differ-
entiation, suggesting that changing the inflam-
matory milieu can increase neurogenesis and 
support brain regeneration [26].

Different combinations of growth factors, cyto-
kines, and signaling molecules help neural 
stem cells to develop into pseudo-neuronal 

cells with great efficiency and specificity. While 
FGF2 and IGF1 direct astrocyte development 
[19, 22, 25, 26], FGF2, EGF, and LIF cause neu-
ronal differentiation. Three-dimensional (3D) 
cell culture and organoid development are two 
advanced cell culture methods that help neural 
stem cells differentiate into pseudo-neuronal 
cells mimicking in vivo circumstances. These 
methods enhance cell survival, function, and 
complex neural network building [27-29]. 
Different inducers, such as chemical, physical, 
or biological factors [30, 31], as well as the  
differentiation process itself, can affect the 
degree of death in differentiated pseudo-neu-
ronal cells. Thus, it is crucial to find the ideal 
conditions for converting neural stem cells into 
pseudo-neuronal cells and to pinpoint the 
inducers that might control death in these cells 
[32].

The process of differentiating neural stem 
cells into pseudo-neuronal cells

Understanding neural stem cell (NSC) differen-
tiation into pseudo-neuronal cells and the ele-
ments driving this intricate process has ad- 
vanced significantly recently. With their fate 
decided by a complex interaction of signaling 
pathways, genetic instructions, and many envi-
ronmental elements, NSCs show extraordinary 
capacity for self-renewal and differentiation 
into several brain cell types, including neurons 
and glia [33, 34].

Manipulating transcription factors such as 
Ascl1, Smad7, and Nr2f1 has shown several 
studies of the guided differentiation of NSCs 
into particular neuronal subtypes, such as 
GABAergic and pyramidal neurons. YAP and 
other essential proteins help adipose-derived 
MSCs to develop into neural progenitors and 
neural cells [35, 36]. Emphasizing the need of 
knowledge of molecular control, better tech-
niques for producing and analyzing mutant  
neurons open the path for possible cell re- 
placement treatments in neurodegenerative 
illnesses.

Studying neuronal network formation and iden-
tifying developmental neurotoxicity has been 
much aided by in vitro techniques using neural 
progenitor cells [37, 38]. With controlled differ-
entiation producing the expression of neural-
associated genes and proteins confirming neu-
ronal features, using growth factors, cytokines, 
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and other signaling molecules efficiently pro-
motes NSC differentiation into pseudo-neuro-
nal cells [39, 40]. The multipotential differenti-
ation of NSCs emphasizes their capacity for 
migration and glial and neuronal cell differenti-
ation [41, 42].

Small chemicals like STC2, valproate (VPA), and 
purmorphamine among other elements affect 
NSC differentiation by altering important path-
ways [43, 44]. The activation of neurogenesis 
in response to focal cerebral ischemia helps to 
repair brain tissue, therefore pointing up possi-
ble treatment targets for neurological diseases 
[45].

Providing a useful instrument for investigating 
stem cell activity, Bizy and Sacri R. Ferrón 
(2015) explained the development of neuro-
spheres from undifferentiated NSCs [46]. J. 
Kriska (2021) underlined the fascinating part 
several signaling pathways, including Wnt/β-
catenin, play in inducing neuron-like cell de- 
velopment over glial cells, thereby providing 
possible therapeutic targets for neurological 
diseases [47].

Like electric fields, external elements en- 
courage NSC differentiation into neurons in 3D 
settings, so creating opportunities for 3D- 
engineered neural tissues and thus improving 
therapies for neurological diseases. Using 
markers for tracking neural cell development 
and evaluating the impact of microglial cells on 
neuronal differentiation, studies by Ramila 
Joshi (2016), Y. Hirano (2023), and Ulrica 
Englund Johansson (2002) significantly contrib-
ute to our understanding of the differentiation 
process and molecular regulation, identifying 
markers for tracking neural cell development 
and assessing the effects of microglial cells on 
neuronal differentiation [48, 49].

Types of inducers used to promote differentia-
tion and their mechanisms of action

Recent research has shown how crucial it is to 
comprehend the processes underpinning vary-
ing neural stem cell differentiation into pseudo-
neuronal cells. Though each possesses a dif-
ferent mode of action, these systems can be 
categorized as chemical, physical, or biologi- 
cal. Maximizing the differentiation process and 
improving regenerative therapies depend on 

your knowledge of and contributions to these 
systems.

Retinoic acid, forskolin, valproic acid, tiny com-
pounds like all-trans retinoid acid (ATRA), and 
chemical inducers all help to alter particular 
signaling pathways engaged in neuronal devel-
opment and support transdifferentiation. While 
forskolin stimulates the cAMP pathway, retinoic 
acid promotes the Wnt pathway, fostering neu-
ronal development [50, 51]. Inhibiting histone 
deacetylases, valproic acid stimulates astro-
cyte differentiation [52]. In leukemia cells, ATRA 
restores autophagy, a mechanism for eliminat-
ing damaged cells and preserving cellular 
homeostasis, therefore fostering granulocyte 
differentiation [53].

Mechanical and electrical stimuli, among other 
physical inducers, help neural stem cells devel-
op into pseudo-neuronal cells. Shear or cyclic 
stress applied to neural stem cells causes 
astrocyte and neuron differentiation [54, 55]. 
Simultaneously, electrical and deep brain stim-
ulation fosters the differentiation of several cell 
types and neuronal development [56, 57].

Growth factors and cytokines are among bio-
logical inducers that activate particular signal-
ing pathways and help to transdifferentiate 
cells. Interleukins activate B lymphocyte and 
bone marrow stem-cell differentiation [58]. 
Whereas BMP4 and IGF-1 foster astrocyte dif-
ferentiation, FGF2, EGF, and LIF cause neuronal 
differentiation. Dopaminergic and cholinergic 
neurons are partly developed by GDNF and 
BDNF. Exosomes and other extracellular vesi-
cles help cells to communicate for self-renewal 
and differentiation [59-61].

Apart from these elements, transdifferentia- 
tion also results from Basic Fibroblast Growth 
Factor (bFGF), Wnt proteins, Smoothened ago-
nist (SAG), and B27 supplement. While Wnt pro-
teins change cell proliferation and differentia-
tion by β-catenin-dependent signaling [62], 
bFGF increases neuronal differentiation by up- 
regulating NGFβR and NRP1 following stimula-
tion [63]. SAG targets genes [64] and induces 
Indian Hedgehog (Ihh) expression by modulat-
ing the Hedgehog (Hh) pathway (Figure 1). B27 
supplement enhances neural stem cell devel-
opment and proliferation as well as neuronal 
cell survival [65].
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Figure 1. Chemical, physical, and biological inducers illuminate key mechanisms guiding neural stem cells’ transfor-
mation into pseudo-neuronal cells, enhancing therapeutic.

Mechanisms of apoptosis

Apoptosis, a planned cell death process, is 
essential for the growth and maintenance of 
the nervous system. Different pseudo-neuronal 
cells, particularly sensitive to death, originate 
from neural stem cells. Many elements can 
affect this process, including inducers that  
support differentiation. Developing sensible 
plans to prevent or treat neurodegenerative ill-
nesses depends on an awareness of the mo- 
lecular mechanisms underlying death in these 
cells. The intrinsic pathway, set off by cellular 
stress and DNA damage, is one of the key  
paths in death in differentiated pseudo-neuro-
nal cells. The Bcl-2 family of proteins controls 
this mechanism; members of both pro- and 
anti-apoptotic (e.g., Bax) varieties [66]. Unba- 
lances in the expression or activity of these pro-
teins can activate caspases, which are prote-
ases that cut important cellular proteins and 
finally cause cell death. The function of caspas-
es in cell death emphasizes our study’s need to 
create efficient treatments or preventive mea-
sures against neurodegenerative illnesses 
[67]. Death ligands (e.g., TNF-α, Fas ligand) 
attach to their specific receptors on the cell sur-
face to start the extrinsic route, another impor-
tant actor in death. This event sets caspases 
into action, which finally causes death [68]. 
Crucially, the extrinsic pathway is not a single 
process since it can interact with the intrinsic 

system, enhancing the death signal (Figure 2) 
[69]. This complicated interaction between the 
two routes clarifies death’s several characters 
and helps us regulate it. By changing the activa-
tion of these pathways, inductors - which guide 
the differentiation of neural stem cells into 
pseudo-neuronal cells - have a major impact on 
death. For example, retinoic acid, a promoter of 
neuronal development, has been found in cer-
tain studies to raise Bcl-2 expression and lower 
Bax expression, lowering death [70]. On the 
other hand, valproic acid has been shown to 
raise Bax and caspase-3 expression as a pro-
moter of astrocytic differentiation, hence in- 
creasing apoptosis [71]. These results highlight 
the interesting part inducers play in controlling 
death.

Assessment of apoptosis

Understanding how various variables and 
inducers impact differentiated pseudo-neuro-
nal cells derived from neural stem cells requires 
knowing how much death occurs in these cells. 
To evaluate the degree of death in these cells, 
we have applied flow cytometry, Western blot-
ting, and fluorescence microscopy among other 
approaches. These strong approaches can pro-
duce notable knowledge of the complex and 
many molecular pathways controlling death in 
these cells. Your knowledge is vital in further 
investigation employing these approaches to 
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completely grasp the effect of diverse inducers 
and variables on apoptosis in differentiated 
pseudo-neuronal cells (Figure 2). A fundamen-
tal occurrence in cellular biology, apoptosis 
occurs through two main signaling channels: 
intrinsic and extrinsic ones. The intrinsic pro-
cess consists of opening the mitochondrial 
membrane, synthesis of the apoptosome, and 
caspase activation. This process depends 
heavily on BCL-2 proteins. Understanding the 
fundamental processes of death initiation de- 
pends on this pathway. Conversely, the extrin-
sic pathway distinguishes the activation of 
death receptors, the recruitment of adaptor 
proteins with death domains, and the process-
ing of procaspases, therefore activating cas-
pase-8 and inducing death. Clarifying the envi-
ronmental stimuli triggering death depends on 
grasping these channels. Flow cytometry is a 

stem cells change shape during apoptosis 
when treated with various inducers such as 
basic fibroblast growth factor and insulin-like 
growth factor-1 (Figure 3) [78, 79].

The function of inducers in pseudo-neuronal 
cell apoptosis 

A carefully controlled process, programmed 
cell death - also known as apoptosis - plays a 
vital part in many physiological and pathogenic 
disorders. Many years of neuroscience studies 
have focused on the triggering of death in pseu-
do-neuronal cells. Non-neural cells displaying 
certain functional and physical characteristics 
of neurons are pseudo-neuronal cells, including 
glial cells and neuronal progenitor cells. This 
review will cover the various inducers of apop-
tosis in pseudo-neuronal cells, along with their 
respective modes of action.

Figure 2. The two major pathways of apoptosis. The intrinsic or mitochondri-
al path of apoptosis (left side) affects mitochondrial dysfunction, the libera-
tion of cytochrome c (cyt c), and the next activation of caspase-9 (casp-9) 
at the apoptosome. The anti-apoptotic protein Bcl-2 deters the discharge of 
cytochrome c from the mitochondrion. The extrinsic or death receptor path-
way (right side) is begun via the binding of death ligands to the death recep-
tor and subsequent recruitment of the adapter protein FADD and caspase-8 
(casp-8) into the death-inducing signaling complex (DISC). Both apoptosis 
paths link at the activation of effector caspase-3 (casp-3), which cleaves 
several cellular proteins, ultimately showing the usual changes of apoptosis 
such as DNA fragmentation in the nucleus.

widely used method to quanti-
tate apoptotic cells by measur-
ing changes in cell size, granu-
larity, and DNA content. It uses 
fluorescent dyes that label 
apoptotic cells and distinguish 
them from viable cells based 
on their fluorescence intensity. 
Scientists have used this me- 
thod to check the amount of 
apoptosis in neural stem cells 
that had been treated with  
different chemicals, such as 
sevoflurane, hydrogen perox-
ide, and genistein [72-75]. An- 
other method for assessing 
apoptosis is western blotting, 
which involves detecting the 
expression of apoptotic mark-
ers like caspases and Bcl-2 
family proteins. Researchers 
have employed this method to 
investigate the mechanisms of 
apoptosis in neural stem cells 
treated with various inducers, 
such as cyclosporine A and 
tanshinone I [76, 77]. Fluore- 
scence microscopy is a power-
ful technique for visualizing 
apoptotic cells using fluores-
cent dyes or antibodies that 
bind to apoptotic markers. 
Scientists have used this me- 
thod to investigate how neural 
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Oxidative stress is one of the main causes of 
death in pseudo-neuronal cells. Reactive oxy-
gen species (ROS) can be produced during nor-
mal cellular metabolism or in response to envi-
ronmental stresses, leading to cellular damage 
and death. Researchers have found that oxida-
tive stress can kill pseudo-neuronal cells. They 
have found that this is caused by the activation 
of the caspase cascade and the upregulation of 
pro-apoptotic genes, such as Bax and Bad [80, 
81]. 

Another important way to kill pseudo-neuronal 
cells is to activate death receptors such as Fas, 
TNF-R1, and TRAIL-R1/2. These receptors initi-
ate caspase cascades, leading to the death of 
cells. A study of what sets off death receptors 
in pseudo-neuronal cells shows that cytokines, 
radiation, and chemotherapeutic agents are 
just a few of the things that can do this [82, 83]. 
Apoptosis in pseudo-neuronal cells is a compli-

cated process under the effect of several ele-
ments. Among these are endoplasmic reticu-
lum (ER) stress, DNA damage, and mitochon- 
drial dispersion. These stressors can thereby 
set off the intrinsic mitochondrial mechanism 
of death, the DNA damage response, and the 
unfolded protein response [84-86]. Further- 
more, well studied is the purpose death serves 
in neurological disorders including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and 
Huntington’s disease (HD). Under these condi-
tions, oxidative stress, β-amyloid and tau in AD, 
α-synuclein in PD, and mutant huntingtin in HD 
all play a crucial role in killing off pseudo-neuro-
nal cells, hence slowing down the course of  
the disease [87, 88]. One feasible therapeutic 
strategy now is to target death in neurological 
illnesses. Among the numerous approaches 
looked at are tiny molecules meant for apop-
totic pathways, anti-apoptotic proteins, and 

Figure 3. A multifaceted approach combining 
flow cytometry, Western blotting, and fluores-
cence microscopy techniques sheds light on 
the complex molecular mechanisms underlying 
apoptosis in differentiated pseudo-neuronal 
cells derived from neural stem cells.
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caspase inhibitors. New studies, for instance, 
have revealed that inhibiting the action of a pro-
tein termed mixed lineage kinase domain-like 
(MLKL) can prevent pseudo-neuronal cells from 
dying [89].

The impact of various inducers on apoptosis 
levels in pseudo-neuronal cells

Apoptosis is an essential process in the devel-
opment of the nervous system that affects 
what happens to differentiated pseudo-neuro-
nal cells that come from neural stem cells. 
Various factors, such as MAPKs, cytokines,  
and neurotransmitters, modulate this process 
[90-92]. For instance, retinoic acid, a known 
inducer, reduces apoptosis by increasing the 
expression of the anti-apoptotic protein Bcl-2 
and decreasing the pro-apoptotic protein Bax. 
On the other hand, valproic acid, another induc-
er, promotes apoptosis by increasing the 
expression of Bax and the activation of cas-
pase-3 [93-95]. Neuroprotective agents like 
BDNF and EPO also reduce apoptosis, high-
lighting their therapeutic potential [96]. Viral 
products from HIV-1-infected cells contribute to 
neuronal apoptosis, emphasizing the need to 
explore their role in neurodegeneration [97]. 
Sphingolipid metabolism is crucial in neuronal 
survival during stress, providing another thera-
peutic target. The impact of chemicals on cell 
proliferation and apoptosis underscores the 
importance of understanding cell-specific toxic 
responses [98, 99]. Neuronal apoptosis is 
affected by levodopa, beta-amyloid inducers, 
and retinoic acid. This shows the importance of 
understanding apoptotic pathways for targeted 
therapies [100, 101]. Proinflammatory cyto-
kines, oxidative stress, and compounds that 
move calcium ions around also affect apopto-
sis, meaning there are more therapeutic tar-
gets [102]. Various apoptosis-inducing agents 
contribute to neuronal cell death in neurode-
generative diseases. Of particular interest is 
IL-1β, which primes neurons for apoptosis by 
regulating p75NTR expression [103]. Chang- 
ing the expression of proteins in sphingolipid 
metabolism affects the survival of neurons, 
and DNA damage causes apoptosis, which 
shows how important it is to keep the mito-
chondrial membrane potential stable [104, 
105]. Protective compounds like NAC (N-acetyl 
cysteine) promise to mitigate these effects 
[106].

Human neural progenitor cells (NT2, hNP1) and 
neuroblasts (SH-SY5Y) show different apoptot-
ic responses to GSNO and STS, with NT2 and 
hNP1 cells experiencing mitochondrial hyper-
polarization followed by depolarization under 
short-term STS treatment [107]. CDK and cys-
teine aspartase inhibitors activate distinct ap- 
optotic pathways, offering varied neuronal pro-
tection [108]. Silica nanoparticles induce apop-
tosis through reactive oxygen species-activated 
endoplasmic reticulum stress pathway [109]. 
Additionally, a combination of N2 supplement, 
retinoic acid, and nerve growth factor enhanc-
es neuronal characteristics and reduces apop-
tosis in HT22 cells, providing an optimized 
model for gene expression studies [110].

Prostaglandin D2 synthase induces apoptosis 
in PC12 neuronal cells through caspase-3 acti-
vation [111, 112]. In contrast, induced neural 
stem cells (iNSCs) protect against apoptosis in 
cortical neurons by activating the Akt and ERK 
pathways [113]. The gravity of the situation is 
underscored by the fact that high-LET radiation 
more effectively induces apoptosis in human 
neuronal progenitor cells than low-LET radia-
tion [114, 115], while neuro progenitor cells are 
more sensitive to chemical-induced apoptosis 
than differentiated neurons [116].

Lastly, inducers like EGF and bFGF promote 
neural differentiation but may have time-de- 
pendent effects on apoptosis and neural cell 
markers. Protein phosphorylation and calcium 
homeostasis modulators also influence apop-
tosis by affecting Bcl proteins and caspase pro-
cessing [117, 118].

Revealing novel understanding of powerful 
inducers in apoptosis of pseudo-neuronal cells 
and their mechanism of action 

The degree of death in neural stem cells can be 
changed by inducing their differentiation into 
pseudo-neuronal cells. Among the several in- 
ducers under investigation are selegiline, reti-
noic acid, epidermal growth factor (EGF), basic 
fibroblast growth factor (bFGF), sonic hedge-
hog, bone morphogenetic proteins (BMPs), neu-
rotrophins, cytokines, and small compounds. 
We have grouped the conversation according to 
inducer type, giving a clear, orderly approach, 
and including examples of current studies look-
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ing at death in reaction to each inducer in Table 
1.

Selegiline

Through a thorough knowledge of its mecha-
nisms, selegiline - a complicated but interesting 
topic in neuropharmacology - affects death in 
differentiated pseudo-neuronal cells. Crucially 
for the survival of neurons, it selectively inhibits 
monoamine oxidase B (MAO-B), therefore low-
ering dopamine breakdown and stopping the 
accumulation of hazardous metabolites [119, 
120]. Selegiline also prevents the absorption  
of dopamine and increases its release, there-
fore preserving higher dopamine levels that 
support cell survival and fight mortality [121]. 
Furthermore, selegiline’s antioxidant qualities 
should help to greatly lower oxidative stress, a 
main factor causing death in neural cells [122]. 
Its capacity to stabilize mitochondria and raise 
the expression of neurotrophic factors, such as 
Brain-Derived Neurotrophic Factor (BDNF) and 
Nerve Growth Factor (NGF) [123] could inspire 
next research and development in the field of 
neuroprotection, so igniting interest and moti-
vation among researchers. Finally, selegiline 
stimulates the expression of thioredoxin (Trx) 
[124], thus increasing the levels of the antioxi-
dant MnSOD and the anti-apoptotic protein Bcl-
2, thus improving the cell’s capacity to fight oxi-
dative damage and stop death. Using these 
combined activities, selegiline is quite impor-
tant in preventing death in neuronal-like cells, 
thereby offering hope and confidence in its pos-
sible therapeutic value for neurodegenerative 
illnesses [125, 126].

Retinoic acid

Retinoic acid (RA) modulates death in differen-
tiated pseudo-neuronal cells via multiple path-
ways. It stops the AP-1 transcription factor from 
working, which lowers the expression of genes 
that stop cells from dying. This causes death 
even when serum levels are low or nerve growth 
factor (NGF) is present [127]. In SH-SY5Y neu-
roblastoma cells, RA plays an intriguing role by 
encouraging differentiation into neuron-like 
cells, lowering P2X7 receptor expression, and 
preventing receptor-mediated death. The key 
actor in this process is the p38 MAPK path- 
way, which inhibits caspase-3 activation [128]. 
While BCL-2 overexpression in undifferentiated 
cells can prevent death, RA also downregulates 

the anti-apoptotic protein BCL-2 in differentiat-
ed NT2/D1 cells, thereby increasing cell death 
[129]. Fascinatingly, RA can show anti-apoptot-
ic effects in retinal progenitor cells by upregu-
lating particular protein kinase C (PKC) isoforms 
and protein kinase A (PKA), thereby simulating 
its protective action when PKA is active [130]. 
An intriguing field of study that keeps the audi-
ence interested and captivated is the part RA 
plays in stopping death. RA is concentration-
dependent; hence, when mixed with bone mor-
phogenetic proteins (BMPs), it can synergisti-
cally cause death [131]. Retinal pigment epi- 
thelium (RPE) lessens the specific death that 
RA causes in rod photoreceptors during retinal 
development [132]. RA also increases death by 
PKC activation, which works in concert with RA 
to further drive mortality [133]. Furthermore, 
RA is necessary for neural development and 
encourages stem cell differentiation into neu-
rons, although its processes in embryos are yet 
mostly unknown [134].

EGF, bFGF 

Our studies on EGF and bFGF have revealed 
fresh pathways of cell survival. Using tyrosine 
kinase-dependent pathways unique to the well-
known protein kinase A (PKA) or protein kinase 
C (PKC), eGF and bFGF reduce death in dif- 
ferentiated pseudo-neuronal cells [135]. One 
interesting observation is that EGF increases 
the β1-integrin location on the surface of neuro-
epithelial cells (NECs), fostering cell survival. To 
cause β1-integrin expression and increase cell 
proliferation, both EGF and bFGF depend on the 
mitogen-activated protein kinase (MAPK) path-
way [136, 137]. Moreover, a fresh understand-
ing of cell survival mechanisms comes from 
bFGF’s activation of the PI3K/Akt pathway, pro-
ducing phosphorylation of the pro-apoptotic 
protein Bad and inhibition of caspase-3 [138]. 
Whereas EGF reduces oxygen-induced death in 
cultured rat cerebral cortical neurons in a dose-
dependent manner, bFGF reduces death in 
PC12 cells via the Ras/MAPK and PKC delta 
pathways. Together, these growth factors show 
complementary and sequential activities that 
support cell survival and proliferation [139].

Sonic hedgehog (Shh)

As an inducement in neural-like cells, sonic 
hedgehog (Shh) signaling is absolutely impor-
tant. It accomplishes this by controlling death 
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Table 1. Types of inducers and their effect on apoptosis

Inducer Anti-apoptotic 
protein Pro-apoptotic protein Signaling pathway Result Ref.

Selegiline Increase of Bcl-2 Decrease of Bax Wnt/β-catenin Reduced apoptosis [187]
Retinoic acid Increase of Bcl-2 Decline of Bax - Reduced apoptosis [93]
Valproic acid Decline of Bcl-2 Increase of Bax and caspase-3 - Increased apoptosis [188]
Epidermal growth factor (EGF) Increase of Bcl-2 Decrease of Bax - Reduced apoptosis [189]
Basic fibroblast growth factor (bFGF) Increase of Bcl-2 Decrease of Bax PI3K/Akt Reduced apoptosis [190]
Sonic hedgehog Increase of Bcl-2 Decrease of Bax - Reduced apoptosis [191]
Bone morphogenetic proteins (BMPs) BMP-2 Decline of Bcl-2 Increase of Bax and caspase-3 - Increased apoptosis [192, 193]

BMP-4 Increase of Bcl-2 Decrease of Bax - Reduced apoptosis
Neurotrophins Increase of Bcl-2 Decrease of Bax - Reduced apoptosis [194]
Cytokines Decline of Bcl-2 Increase of Bax - Increased apoptosis [195]
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and proliferation via a multifarious process 
[140]. The pathway starts when Shh interacts 
with Patched (Ptc), which, without Shh, reduces 
the activity of Smoothened (Smo) [141]. Once 
Shh hooks to Ptc, Smo turns active and starts a 
signaling cascade that affects Gli transcription 
factors, including Gli1 [142]. This activation 
both suppresses pro-apoptotic elements like 
p53 [143] and increases the expression of 
genes in charge of cell survival and prolifera-
tion. Mostly by helping the transition from the 
G1 to the S phase, which is essential for prolif-
eration, Shh signaling is key in guaranteeing 
the survival of neural-like cells by avoiding 
death and facilitating cell cycle advancement 
[144]. Shh generates a gradient in brain devel-
opment to control the differentiation and prolif-
eration of neural progenitor cells, therefore 
guaranteeing appropriate tissue patterning. 
Shh’s effects are context-dependent, though; 
even if it encourages the development of brain 
progenitor cells, it can also cause cell cycle 
arrest and death in differentiated cells [145]. 
Shh thus balances survival, proliferation, and 
differentiation in a finely controlled way, so act-
ing as a crucial regulator of neural-like cell fate.

BMPs

Bone morphogenetic proteins (BMPs), particu-
larly BMP2 and BMP4, govern death in diffe- 
rentiated pseudo-neuronal cells when coupled 
with retinoic acid (RA), in a manner that outper-
forms either one alone. BMPs alone have little 
influence on death. When combined with RA, 
however, they cause notable death (up to 40% 
of cells), therefore limiting the generation of 
fully developed neurons and glial cells and rath-
er fostering smooth muscle cell differentiation 
[146]. By means of DNA fragmentation and cell 
shrinkage, BMP2 and BMP4 induce death; cas-
pase and endonuclease inhibitors prevent this 
process. These BMPs demonstrate an apop-
totic impact varying with dosage and render 
brain cells dependent on survival elements 
such as FGF and NGF [147]. Particularly BMPR-
IA and BMPR-IB, BMP receptors regulate the 
two-stage fate of neural progenitor cells. Key 
actor BMPR-IA promotes early precursor prolif-
eration while BMPR-IB induces death or termi-
nal differentiation, hence regulating the gener-
ation of dorsal neural precursors [148]. In the 
neuroectoderm, BMP co-expression stunts 
development and promotes death. Simultane- 
ously, BMP signaling dynamically affects neural 

fate by first encouraging neuronal differentia-
tion, then switching toward astrocyte differen-
tiation, and so preventing future neural devel-
opment [149]. Moreover, BMPs such as BMP-6 
and BMP-7 are quite crucial for preventing 
death of neurons. This demonstrates how spe-
cifically BMPs regulate neuronal survival, devel-
opment, and death [150].

Neurotrophins

Two main processes underlie neurotrophin con-
trol of death in differentiated pseudo-neuronal 
cells. First, mature neurotrophins like BDNF 
and neurotrophin-3 bind to Trk receptors. This 
sets off important signaling pathways like  
PI3K-Akt and MAPK/ERK. These pathways 
either raise or lower levels of the anti-apoptotic 
protein Bcl-2 [151-154], which either helps cells 
stay alive or stops them from dying. Second, 
pro-neurotrophins cause death even in cases 
of Trk receptor activation by binding to the 
p75NTR receptor. Pro-neurotrophins induce cell 
death, while mature neurotrophins sustain sur-
vival utilizing a mechanism including proteolytic 
cleavage [155]. For example, pro-neurotrophins 
produced from astrocytes can induce death in 
p75NTR-positive neurons under situations such 
as convulsions [156]. By inhibiting Trk recep-
tors, endogenous NT-3, which is produced by 
p75NTR, can also cause death in axotomized 
corticospinal neurons [157]. Therefore, depend-
ing on the particular receptor and cellular envi-
ronment, neurotrophins have opposite effects 
in either enhancing survival or causing death 
[158]. The work with differentiated SH-SY5Y 
cells showed that neurotrophins improve the 
health of neurons and their ability to respond  
to mechanical stimuli. This has immediate rel-
evance for diseases like Alzheimer’s [159].

Cytokines

Cytokines influence death in differentiated 
pseudo-neuronal cells via several survival and 
death-regulating processes. By activating the 
NF-κB and JNK signaling pathways, pro-inflam-
matory cytokines such as TNF-α and IL-1β 
boost the expression of pro-apoptotic proteins 
such as Bax and lower levels of anti-apoptotic 
proteins such as Bcl-2, therefore enhancing  
cell death [160]. By JNK1 and JNK2 activation, 
TNF-α causes death in differentiated PC12 
cells (dPC12), hence downregulating anti-apop-
totic signals [161]. On the other hand, anti-
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inflammatory cytokines like TGF-β and IL-10 
boost survival through the PI3K-Akt pathway, 
hence suppressing lethal signals [162]. More- 
over, essential for triggering NF-κB, which en- 
sures neuron survival in the presence of cyto-
kines, are cytokines such as CNTF, LIF, CT-1, 
and IL-6. This highlights in immunology and 
neurology how important their goals are. It is 
not merely a need; we have to understand it as 
a basic one [163].

Small molecules

Small molecules, with their potential to influ-
ence apoptosis in differentiated pseudo-neuro-
nal cells through several key signaling path-
ways, offer a reassuring prospect. They mo- 
dulate NF-κB signaling, which promotes anti-
apoptotic factor expression in neurons, en- 
hancing survival. However, prolonged NF-κB 
activation can lead to neurodegeneration and 
apoptosis, while in glial cells, NF-κB contributes 
to neuroinflammation, exacerbating neuronal 
death [164]. In the context of diabetic retinopa-
thy, small molecules targeting the VEGF/BDNF/
NF-κB pathway have shown promise; anti-VEGF 
treatment or VEGF siRNA increases BDNF lev-
els in Müller glial cells exposed to high glucose, 
which reduces pro-inflammatory cytokines (IL-
1β, TNF-α) by inhibiting NF-κB [165]. Activation 
of TrkA/NTRK1 in neuroblastoma cells impairs 
the G2/M checkpoint in response to ionizing 
radiation, increasing apoptosis susceptibility 
through suppression of the ATM-Chk2 and ATR-
Chk1 pathways. Small-molecule inhibitors, with 
their potential to prevent neuronal loss by tar-
geting apoptotic pathways such as caspases, 
JNK, p38 MAPK, cell cycle proteins, and GSK3, 
emerge as promising therapeutic agents ag- 
ainst neurodegenerative disorders [166]. In 
addition, they can generate small-molecule 
neural precursor cells (NPCs), a significant 
progress that, absent expensive growth inputs, 
can develop into neuronal lineages relevant to 
neurodegenerative diseases [167]. By means 
of research on their mechanisms and viable 
treatments, this practical application advances 
our knowledge and approach to diseases. Re- 
tinoic acid, for example, increases pro-apoptot-
ic protein expression [168], which causes death 
in neural stem cells; valproic acid, on the other 
hand, enhances anti-apoptotic protein expres-
sion [169], therefore promoting survival. Th- 
rough GSK3β suppression [170], lithium reduc-
es death; curcumin increases survival by alter-

ing death pathways [171]; P7C3 boosts neural 
stem cell survival [172], Isx-9 accelerates neu-
ronal differentiation [173], and KHS101 im- 
proves cell survival [174].

Conclusion

Recently, researchers have thoroughly investi-
gated the effect of several inducers on the 
death of pseudo-neuronal cells produced from 
neural stem cells. These studies reveal a com-
plex interplay in which inducers can exhibit 
both pro- and anti-apoptotic effects, contingent 
on the specific biochemical pathways they influ-
ence. For instance, studies have demonstrated 
that drugs such as selegiline, retinoic acid, and 
resveratrol can lower death rates by altering 
the expression of vital proteins like Bcl-2  
and Bax [175-177]. The scientific community’s 
cooperation has led to the discovery that sele-
giline protects human neural stem cells from 
oxidative stress-induced death by stimulating 
the Wnt/β-catenin signaling pathway [178]. On 
the other hand, inducers such as BMP-2 and 
IL-6 cause death through Bax and caspase-3 
[179], highlighting the need for continued col-
laboration in understanding these processes. 
Collective research also yields growth factors 
such as EGF, bFGF, and BDNF, which can con-
trol death in brain stem cells. BDNF helps neu-
ral stem cells live longer and grow by activating 
the PI3K/Akt and MAPK/ERK signaling path-
ways. EGF and bFGF, on the other hand, stop 
cell death by turning on the PI3K/Akt pathway 
and controlling Bcl-2 family proteins [180, 181]. 
Resveratrol is a natural substance that lowers 
the death rate of neural stem cells by control-
ling the expression of Bcl-2 and Bax. This helps 
the cells differentiate through AKT and p38  
signaling. Moreover, the intricate relationship 
between mortality and neurodegenerative ill-
nesses is widely known, which emphasizes the 
significance of our common knowledge to guide 
therapeutic innovations [182, 183]. The ability 
of neurotrophic factors to regulate mortality 
emphasizes even more their possible therapeu-
tic target status in neurodegenerative diseases 
[184, 185]. These findings highlight the compli-
cated balance of death control in brain stem 
cells and the possible evolution of targeted 
therapies for neurodegenerative diseases. Mo- 
dulating death in pseudo-neuronal cells, a 
potential path for therapeutic innovation could 
help stop or slow down the development of 
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such disorders. Advancement of this discipline 
depends on an awareness of the several ways 
in which various inducers influence death 
[186]. More research is critically required to 
completely understand these pathways and 
identify fresh intervention targets, as death is a 
main regulator of brain stem cell survival and 
development. Fresh techniques to tackle neu-
rodegenerative illnesses revealed by this con-
tinuous study should improve patient out- 
comes.
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