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Abstract: Hearing loss is a prevalent organ-specific disorder affecting individuals throughout their lifespan, with 
over 466 million cases reported globally. The conditions can be classified into two broad categories: hereditary and 
nonhereditary. HHL, caused by genetic mutations or chromosomal abnormalities, can be divided into nonsyndromic 
(NSHL) and syndromic (SHL) subtypes. NSHL presents as isolated auditory impairment without systemic manifesta-
tions, whereas SHL involves concurrent dysfunction in other organ systems. Nonhereditary hearing loss typically 
results from infections, ototoxic drugs, noise exposure, trauma, or age-related degeneration. Current clinical inter-
ventions focus on symptom management through hearing aids and cochlear implants, as no curative treatment 
exists for genetic forms. Recent studies have shown the therapeutic potential of gene therapy in animal models of 
genetic deafness, although clinical translation faces challenges, including viral vector safety, transfection efficiency, 
and target specificity. This systematic review synthesizes current progress in gene therapy for HHL and evaluates 
barriers to clinical implementation, offering insights for future translational studies.
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Introduction

Hearing loss is one of the most prevalent sen-
sory disorders in humans, affecting approxi-
mately 1 in 500 newborns, with an estimated 
466 million cases worldwide. The prevalence of 
this condition continues to rise, particularly 
among the elderly population, where the occur-
rence rate increases significantly with age. It is 
projected that by 2050, nearly 900 million peo-
ple (approximately 10% of the global popula-
tion) will suffer from disabling hearing loss. 
HHL, caused by gene mutations or chromosom-
al abnormalities, represents one of the most 
significant etiological factors in auditory impair-
ment. This condition accounts for a substantial 
proportion of congenital hearing loss cases 
and may also manifest as late-onset hearing 
impairment. More than half of pediatric hearing 
loss cases are attributed to genetic compo-
nents. Hearing loss is an extremely heteroge-

neous disorder with up to approximately 1000 
different causal genes. To date, more than 200 
genes have been identified (https://hereditary-
hearingloss.org/), causing impairments of vari-
ous degrees of severity and progressivity. Addi- 
tionally, numerous forms of syndromic hearing 
loss (SHL) exist, each characterized by distinct 
genetic bases and corresponding clinical fea-
tures. Nonsyndromic hereditary hearing loss 
(NSHL) is defined as isolated auditory dysfunc-
tion without abnormalities in other organ sys-
tems. This type of hearing loss may follow auto-
somal dominant, autosomal recessive, X-linked, 
or mitochondrial inheritance patterns. In con-
trast, syndromic hereditary hearing loss (SHL) is 
accompanied by dysfunction in other organs or 
systems. Examples include Pendred syndrome, 
which is associated with thyroid abnormalities, 
and Usher syndrome, which involves synthesis 
with retinitis pigmentosa, leading to vision loss. 
Elucidating the genetic basis of HHL is highly 
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important for early diagnosis, genetic counsel-
ing, and the development of targeted therapies. 
Advances in genetic testing have significantly 
enhanced the identification of deafness-caus-
ing mutations, enabling more precise diagno-
ses and personalized treatment plans. Early 
intervention - whether through hearing aids, 
cochlear implants, or other assistive devices 
can substantially improve outcomes for pa- 
tients with genetic hearing loss, enhancing 
their quality of life and communication ability. 
However, current clinical medical or surgical 
treatments for treating HHL are limited.

The mammalian inner ear is in charge of the 
sensory organ for hearing (the cochlea) and the 
organ responsible for balance. There are three 
major types of functional cells in the inner ear 
that take part in hearing production and per-
ception: hair cells (HCs), supporting cells (SCs), 
and spiral ganglion neurons (SGN). The mam-
malian cochlea contains two types of sensory 
HCs that play different roles in hearing. Outer 
hair cells (OHCs) are responsible for amplifying 
sound and enhancing sensitivity to sound and 
sharp tuning. Inner hair cells (IHCs) transmit 
signals to cochlear neurons and communicate 
sound information to the brain. OHCs mechani-
cally amplify sound-induced vibrations, ena- 
bling enhanced sensitivity to sound and sharp 
tuning [1]. The damage to and death of HCs are 
the main causes of deafness [2]. Currently, hair 
cell regeneration is an important therapeutic 
target for treating deafness.

The concept of gene therapy arose initially dur-
ing the 1960s and early 1970s. The advantage 
of this technique is that the continuing expres-
sion of genes allows for a cure following a single 
treatment rather than continuing administra-
tion of a drug with a relatively short half-life. To 
date, there have been over 1800 clinical trials 
and over $4 billion in capital investment. In the 
inner ear, the first gene delivery case was 
reported in 1996, and subsequent studies 
shed light on the treatment of congenital or 
later-onset hearing loss and restoring hearing 
in monogenic disorders in patients [3, 4]. Re- 
cently, recombinant adeno-associated viruses 
(rAAVs) have been shown to be excellent vehi-
cles for the in vivo delivery of gene therapies. In 
the past few decades, adeno-associated virus 
(AAV) vectors have been successfully used in 
numerous clinical trials addressing rare genetic 

diseases diseases (Figure 1). In 2012, the first 
commercial AAV gene therapy product, Glybera, 
was approved by the European Commission for 
the treatment of hereditary lipoprotein lipase 
deficiency (LPLD) [5]. Recently, an increasing 
number of AAVs have been used to treat heredi-
tary deafness. A typical case of AAV-mediated 
gene replacement therapy for deafness is the 
glutamate transporter-3 knockout model. It has 
been demonstrated that AAV-mediated replace-
ment of Vglut3 can significantly improve the 
hearing of Vglut3 knockout mice [6]. Similarly, 
Askew and colleagues reported that delivering 
AAVs expressing Tmc1 and TMC2 to neonatal 
Tmc1 mutant mice significantly increased hair 
cell survival and restored hearing and vestibu-
lar function [7]. In addition to targeting sensory 
hair cells, researchers have also conducted 
AAV-based gene replacement studies in other 
structures of the inner ear. For example, the 
KCNQ1 gene in the inner ear stria vascularis 
(SV) [8]. In recent years, a good example of AAV 
treatment for hereditary deafness has been 
the treatment of OTOF, which encodes the 
otoferlin protein, which plays an important role 
in auditory signal transduction. Researchers 
have achieved very satisfactory results when 
AAV was used to treat OTOF deficiency in mice 
[3, 9], macaques [10], and humans [11, 12], 
with no serious adverse safety events. Re- 
cently, breakthroughs in exciting AAV-based 
gene therapy for GJB2 have been reported [13], 
which found that co-injection of AAV1 and AAV-
ie carrying exogenous Gjb2 effectively restored 
hearing function in Gjb2-deficient mice. Thus it 
can be seenadeno-associated viruses (AAVs) 
have shown great potential in the treatment of 
hereditary deafness. Here, we summarize and 
discuss recent advances in inner ear gene ther-
apeutic strategies aimed at restoring or pro-
tecting against hereditary deafness and focus 
on the challenges associated with in vivo gene 
therapy targeting the human inner ear for the 
treatment of human hereditary deafness.

The anatomy and function of the inner ear

The ears of mammals are composed of the 
outer, middle and inner ears, which perform dif-
ferent functions in the transmission of sound. 
For example, the outer ear consists of the ear-
lobe and the external auditory canal. The ear-
lobe is responsible for acoustic wave collection, 
and the external auditory canal is in charge of 
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Figure 1. Schematic illustration of the clinical applications of adeno-associated virus (AAV) in human genetic dis-
eases. Clinical applications of AAV across a spectrum of human genetic diseases, including ocular, auditory, neuro-
logical, metabolic, hematological, neuromuscular and cardiovascular diseases.

transmitting sound waves to the eardrum. The 
middle ear, which contains three ear ossicles 
(malleus, incus, and stapes) within the tympan-
ic cavity of the middle ear, extends from the 
tympanic membrane to the lateral surface of 
the skull [14]. The inner ear is also called the 
labyrinth and lies between the tympanum and 
the bottom of the inner ear canal, which con-
sists of the labyrinth of bone and the labyrinth 
of the membrane [15]. The bony labyrinth, sur-
rounded by dense bone, is a tortuous and irreg-
ular bony tunnel located in the temporal bone 
rock. The membranous labyrinth is a closed 
membranous sac enclosed within the labyrinth 
of bone. The lymphatic fluid fills the membra-
nous labyrinth and the space between the 
osseous labyrinth and the membranous laby-
rinth. The lymphatic fluid is divided into peri-
lymph and endolymph on the basis of its loca-
tion. The spaces surrounding the membranous 
labyrinth within the bony labyrinth are filled with 
perilymph [16]. The cochlear duct and membra-
nous vestibular apparatus are filled with endo-
lymph (Figure 2). Owing to their different loca-
tions, the compositions of the perilymph and 
the endolymph are also quite different. The 

composition of the perilymph is rich in sodium 
but poor in potassium, whereas the endolymph 
is rich in potassium ions but poor in sodium 
ions, with a pH similar to that of blood plasma. 
The bony labyrinth is arranged along the long 
axis of the temporal bone rock, which is divided 
into the vestibular system and the cochlea, 
from the posterior to the anterior, medial and 
inferior parts [17].

Mechanisms of genetic deafness

Deafness is one of the most common birth 
defects and has a complex etiology in which 
genetic components play a dominant role. To 
date, over 150 deafness-associated genes 
have been identified. However, the strong geno-
type-phenotype heterogeneity, inconsistencies 
across cross-species models, and fragmented 
nature of massive genetic data hinder the elu- 
cidation of pathogenic mechanisms and the 
improvement of clinical diagnostic efficiency. 
Understanding the pathological mechanisms of 
HHL is crucial before the implementation of 
effective AAV-mediated therapies. HHL may fol-
low autosomal dominant, autosomal recessive, 
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Figure 2. Schematic illustration of the cochlear structure.

X-linked Mendelian, or mitochondrial inheri-
tance patterns [18]. The inheritance patterns 
are mainly divided into nonsyndromic and syn-
dromic types. Nonsyndromic hereditary hearing 
loss is caused primarily by mutations in hear-
ing-related genes. For example, mutations in 
the GJB2 gene, which encodes connexin pro-
teins that connect cochlear hair cells and sup-
porting cells, disrupt potassium ion circulation 
in the inner ear, impair hair cell function, and 
lead to hearing loss [19]. Mutations in the 
SLC26A4 gene are associated with maldevel-
opment of the inner ear membranous labyrinth, 
resulting in enlarged vestibular aqueduct syn-
drome, where changes in endolymphatic pres-

sure within the inner ear can cause hearing 
loss [20]. Syndromic hereditary hearing loss 
includes hearing loss as well as abnormalities 
in other systems or organs. For example, in 
Waardenburg syndrome, mutations in the PAX3 
or MITF gene lead to melanocyte developmen-
tal disorders, which not only cause hearing loss 
but also result in symptoms such as iris hetero-
chromia and white forelock [21]. Genetic fac-
tors account for more than 50% of congenital 
hearing impairment cases in developed coun-
tries, of which approximately 70% are nonsyn-
dromic and predominantly monogenic. Owing to 
its genetic nature, this type of hearing loss is 
particularly amenable to gene therapy.
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Intervention strategies for hereditary deafness

HHL not only affects patients’ hearing but also 
may profoundly impact their language develop-
ment, social interactions, and quality of life. 
Consequently, intervention strategies for HHL 
are critical for mitigating the effects of hearing 
impairment and enhancing patients’ overall life 
experience. Current clinical interventions for 
HHL primarily involve cochlear implants or hear-
ing aids, which partially restore auditory func-
tion in affected individuals [22]. Hearing aids 
effectively compensate for mild to moderate 
hearing impairment by amplifying environmen-
tal sounds. Patients with GJB2-related mild or 
moderate deafness often experience substan-
tial hearing improvement and enhanced speech 
perception with hearing aid use. Cochlear 
implants represent the preferred intervention 
for severe to profound sensorineural hearing 
loss, bypassing damaged hair cells through 
direct electrical stimulation of the auditory ner- 
ve. Individuals with enlarged vestibular aque-
duct syndrome typically achieve functional he- 
aring restoration following cochlear implanta-
tion, facilitating social reintegration. Neither of 
these approaches fully restore damaged inner 
ear cells or hearing function to their native 
state. Gene therapy targeting genes associated 
with deafness may provide a more fundamen-
tal solution for hearing restoration [23]. Current 
strategies include gene replacement, genome 
editing, and gene suppression. Gene replace-
ment delivers functional copies of defective 
genes to cochlear cells; for instance, AAV-
mediated VGlut3 gene delivery restored audi-
tory function in knockout mice. Clinical trials 
targeting OTOF mutations have also demon-
strated improved speech perception and sound 
localization in patients. Genome editing directly 
modifies cellular DNA via precision tools such 
as CRISPR-Cas13 to correct mutations or intro-
duce functional sequences. This approach has 
successfully repaired Tmc1 mutations in mice, 
partially restoring hearing. Alternative meth-
ods, such as RNA base editors, have shown 
efficacy in OTOF mutant mice with premature 
termination codons [24]. Gene suppression 
alleviates dominant mutations by blocking their 
expression, which is particularly valuable for 
disorders where mutant alleles exert toxic 
effects. Antisense oligonucleotides have yield-
ed therapeutic benefits in mouse models of 
Usher syndrome [23]. Collectively, these gene 

therapy strategies present viable pathways for 
addressing hereditary deafness.

The biology and vectorology of AAV

AAV is a small (25-nm) virus that belongs to the 
genus Dependoparvovirus within the family 
Parvoviridae and was discovered more than 50 
years ago [25]. It is composed of an icosaedri-
cal capsid 20-25 nm in diameter and a genome 
of 4.7 kb flanked by two inverted terminal re- 
peats (ITRs) [26]. AAV is a single-stranded DNA 
parvovirus that harbors the rep and cap genes, 
which encode elements that facilitate AAV 
genome replication and virion assembly [27]. 
The rep gene encodes four replication-related 
proteins named Rep78, Rep68, Rep52 and 
Rep40 [28-30]. The cap gene encodes three 
capsid proteins, namely, Viral Protein 1, 2 and 3 
(VP1, VP2 and VP3), which have overlapping 
reading frames (Figure 3). The ratio of VP1, 
VP2, and VP3 in the virion is approximately 
1:1:10 [31], and these proteins include assem-
bly activating protein (AAP) and a membrane-
associated accessory protein (MAAP) [31, 32]. 
AAVs cannot replicate independently without 
the presence of helper viruses (such as adeno-
virus, herpes simplex virus, and vaccinia virus) 
[33, 34]. AAV has been found in multiple verte-
brate species but has not been clearly associ-
ated with any clinical pathology or disease at 
present [35]. Twelve naturally occurring sero-
types of human AAV have been identified to 
date. The cell surface receptors for the reco- 
gnition and binding of different AAV serotypes 
vary, which is due to their different capsid pro-
tein spatial structures, sequences and tissue 
specificities. These serotypes have different 
affinities and transfection efficiencies in differ-
ent tissues, such as muscle, liver, lung, brain, 
and visual tissues [36].

The journey of AAV from the cell surface to the 
nucleus

Once the AAV reaches the surface of cells, the 
interaction of the AAV with its receptors initi-
ates a cascade resulting in the cellular entry of 
the AAV and the expression of its transgene. 
The general process involves the following six 
steps: AAV attachment to target cells, endocy-
tosis, intracellular trafficking, crossing of the 
endomembrane membrane, nuclear import 
and genome release. First, when an AAV reach-
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Figure 3. Schematic illustration of the AAV structure. AAVs have an ~4.7 kb single-stranded DNA genome within an 
~25 nm capsid. The genome includes three open reading frames bordered by T-shaped inverted terminal repeats 
(ITRs). It encodes three capsid proteins, four replication proteins, and an assembly activating protein (AAP) that aids 
in capsid assembly in certain serotypes.

es a cell, it attaches to its receptors/corecep-
tors and then enters the cell via endocytosis. 
After entry into cells, the virion is transported  
to the trans-Golgi network via endocytic vesi-
cles (TGNs). Undergoing a series of trafficking 
events, the virion escapes into the cytosol, but 
the exact process of its translocation into the 
cytosol remains to be elucidated. Following 
endosomal escape, the virion is imported into 
the nucleus through the nuclear pore complex 
(NPC), where the single-stranded genome is 
released from the capsid. In the nucleus, 
uncoating of the viral capsid enables genome 
release. Once released, single-stranded DNA is 
converted to double-stranded DNA, resulting in 
the expression of the recombinant transgene 
[37-39].

Immunological barriers to rAAV gene delivery

Gene therapy with AAV has demonstrated safe-
ty and long-term efficacy in many trials in differ-
ent organs, such as the eye, liver, skeletal mus-
cle, and central nervous system. However, the 

immune response of the body to AAVs, which is 
one of the major problems in the application of 
AAVs, cannot be ignored. The AAV protein cap-
sid, its DNA genome and the protein product of 
the transgene have complex effects on the 
host immune response, which includes innate 
immune and adaptive immune responses.

Innate immune response to rAAV: Host immu-
nity can be divided into innate and adaptive 
immune responses. The innate immune res- 
ponse is the first line of defense against fo- 
reign pathogens and is crucial for transmitting 
signals to the adaptive immune system. The 
innate immune response depends on the rec-
ognition of pathogen-associated molecular pat-
terns (PAMPs) by pattern recognition receptors 
(PRRs), which are expressed mainly in immune 
cells such as macrophages, monocytes, granu-
locytes, natural killer (NK) cells and dendritic 
cells (DCs) [40]. The molecular recognition of 
viral nucleic acids, membrane glycoproteins, or 
even chemical messengers by PRRs activates 
downstream signaling pathways, such as the 
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nuclear translocation of nuclear factor kB (NF-
kB) and interferon-regulatory factor (IRF), which 
are transcription factors with central roles in 
the expression of proinflammatory cytokines 
and type I interferons (IFNs), respectively [41, 
42].

Toll-like receptors (TLRs) are a family of innate 
immune sensors that are conserved across 
mammalian species and are found on endo-
somal or plasma membranes of immune cells. 
The rAAV capsid and vector genome are sensed 
after delivery by the innate immune system 
through Toll-like receptor 2 (TLR2) and TLR9, 
respectively [43, 44]. TLR9 commonly senses 
AAV vector genomes, which contain unmethyl-
ated cytosine-phosphate-guanine (CpG) motifs. 
When its CpG group binds to TLR9, it promotes 
its dimerization and activates TLR9 signaling 
via the signaling adaptor MyD88, leading to the 
induction of IFNs and proinflammatory cyto-
kines [45]. Recently, Ying et al. reported that 
the use of a TLR9-inhibitory approach in the 
AAV vector genome inhibits immunogenicity 
and enhances transgene expression in multiple 
animal models [46]. Furthermore, the vector 
DNA genome and dsRNA also contribute to the 
induction of innate immunity to AAV. Research 
from clinical trials for hemophilia B using AAV 
vectors has shown decreased transgenic coag-
ulation factor IX (hFIX) expression after the 
administration of a high vector dose. Mechani- 
stic analysis indicated that dsRNA may lead to 
the production of type I IFN-β by stimulating the 
MDA5 sensor in human hepatocytes trans-
duced with AAV [47]. In contrast, TLR2 report-
edly senses the AAV capsid to activate innate 
immunity in primary human liver cells [48]. 
Both the rAAV capsid and the vector genome 
can activate the innate immune response, 
which is important for the subsequent adaptive 
immune response.

Adaptive immune response to AAV: The adap-
tive immune response is considered the sec-
ond barrier of organs, and it occurs following 
the innate immune response. In general, adap-
tive immune responses are antigen-specific 
and generate long-lived immunological memory 
[49]. Several preclinical and clinical studies 
have shown that adaptive immune responses 
pose a significant obstacle to the clinical appli-
cation of AAV vectors.

Humoral adaptive immune responses: Humo- 
ral immunity is mediated by antibodies pro-

duced by B lymphocytes. Wild-type AAV (wtAAV) 
infection is a common phenomenon, and anti-
capsid antibodies (NAbs) are generated from 
natural exposure to WT AAV in a large portion of 
the human population (ranging from 30-60%) 
[50, 51]. NAbs can effectively bind and neutral-
ize rAAV to block gene delivery and persistent 
gene expression. AAV1 and AAV2 have higher 
seroprevalence rates than other AAV serotypes 
in populations [52]. Typically, subjects receiving 
gene transfer from an AAV vector develop anti-
AAV antibodies from all four IgG subclasses, 
with IgG1 being the predominant subclass [53, 
54]. In the treatment of certain diseases, the 
re-administration of AAVs can be used to cir-
cumvent the reduction in therapeutic trans-
gene expression and maximize the clinical ben-
efit. An additional question of concern is the 
secondary injection of AAV: does AAV induce 
powerful NAbs that limit the clinical utility of 
gene therapy? To overcome the obstacle of 
NAbs, several approaches have been devel-
oped, such as plasmapheresis [55], capsid 
decoys [56], and rAAV capsid engineering [57]. 
Recently, IgG-cleaving endopeptidases or strat-
egies for the removal of anti-AAV antibodies 
have also been developed [58].

Cellular adaptive immune responses: In addi-
tion to a humoral immune response, the T-cell-
mediated immune response also plays an im- 
portant role in terms of both the safety and effi-
cacy of AAV gene transfer in humans. Effector 
CD4+ T cells induce inflammation and immune 
activation through cytokine production. How- 
ever, cytotoxic CD8+ T cells mediate targeted 
killing of infected cells by secreting granzy- 
me, perforin, and inflammatory cytokines [59]. 
Furthermore, Tregs prevent hyperimmune acti-
vation and return the immune response to 
homeostasis by directly interacting with im- 
mune cells or producing immunosuppression 
[60]. Some early clinical trials of gene transfer 
with rAAV have indicated that T-cell-mediated 
immunity hinders the efficiency of gene trans-
fer. The first examples of a cytotoxic T-cell re- 
sponse to AAV gene therapy were observed in  
a clinical study of AAV2-mediated liver gene 
transfer of human coagulation factor IX in 
hemophilia B patients. The transgene expres-
sion reached levels approximately 10% of those 
of healthy controls after an initial intravenous 
infusion of AAV2 carrying a functional copy of 
the factor IX (FIX) gene. While the FIX levels 
decreased to baseline levels after 4 weeks, an 
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anti-AAV2 capsid T-cell response was observed 
[61].

Limited transport capacity

One of the major challenges of AAV-mediated 
gene delivery is the limited capacity to deliver 
large genes over 4.7 kb. In fact, more than  
6% of human protein coding sequences(CDS) 
exceed 4 kb, which makes it impossible to fit 
expression cassettes for these cDNAs into a 
single AAV vector [62]. To overcome the pack-
aging limit of AAV genomes, dual AAV and triple 
vector approaches and mini-gene strategies  
for the delivery of larger transgenes have been 
developed. The dual AAV and triple vector app- 
roaches require two or three AAV vectors. In 
dual AAV vectors, one AAV vector carries the 
promoter element and upstream portion of a 
given coding sequence flanked by ITRs. The 
other AAV vector carries the 3’ downstream 
portion of a given CDS and poly A, which is also 
flanked by ITRs. The two transgenes are pack-
aged separately. The dual AAV vector strategy 
has been applied in several mouse models  
[3, 9, 63]. Furthermore, split-AAV strategies can 
be divided into overlapping, trans-splicing and 
hybrid dual vectors to separate AAV vectors to 
deliver the target gene [9, 64, 65]. When dual 
AVV vectors cannot be used to transduce larger 
genes, such as cadherin-23 (CDS, 10.1 kb) [66] 
and ALMS1 (CDS, 12.5 kb) [67], a triple-AAV 
approach was developed. Mini-gene strategies 
also contribute to the delivery of large genes. 
For example, a truncated cystic fibrosis trans-
membrane conductance regulator (CFTR) cDNA 
allows the incorporation of an effective promot-
er with the CFTR gene into AAV vectors to res-
cue Cl conductance in airway epithelia [68, 69].

AAV vectors used for inner ear gene delivery

More than 100 AAV serotypes have been iden-
tified to date, but effective AAVs that can be 
distributed to specific inner ear cell types are 
still lacking. Different serotypes of AAV are 
more favorable to different cell types in the 
inner ear. For example, AAVs 1-4, 7, and 8 have 
been shown to transduce the spiral ligament, 
spiral limbus, and spiral ganglion cells. AAV5 
was identified to be more suitable for transduc-
ing Claudius cells, sulcus cells, and spiral gan-
glion neurons. In addition, AAV1 is the most 
effective transducer of OHCs and supporting 
cells. Recently, AAV serotype 1 carrying a 

human OTOF transgene (AAV1-hOTOF) has 
been used to treat children with autosomal 
recessive deafness 9 [11]. In addition to these 
natural AAV serotypes, an increasing number of 
variants have been isolated from different ani-
mal species for application in the inner ear. 
Several new serotypes are described in Table 
1.

Anc80L65

Anc80L65 is a novel synthetic AAV that was 
generated via in silico reconstruction of ances-
tral AAVs [70]. It was shown to be a potent gene 
transfer agent in the liver, retina, and muscle  
in previous studies. Anc80L65 was found to 
transduce both cochlear and vestibular senso-
ry organs via injection through a round window 
membrane. Lukas D. Landegger et al. reported 
that Anc80L65 transduces outer hair cells with 
high efficiency to restore auditory function [71]. 
Anc80L65 has been applied in animal models 
of deafness, and preliminary results have been 
obtained. Anc80L65 has also shown promise 
for the treatment of genetic deafness, including 
that induced by Usch1c or Tmc1 mutations, in 
the postnatal stage. Usher syndrome is a rare 
genetic condition, a devastating genetic disor-
der that causes blindness, balance disorders 
and profound deafness. Ush1c c.216G>A is a 
mouse model for human Usher I syndrome that 
reproduces both auditory and retinal deficits 
[72, 73]. Early postnatal round window mem-
brane injection of Anc80L65 encoding harmo-
nin successfully transduced larger numbers of 
IHCs and OHCs and effectively restored audito-
ry and vestibular function to near wild-type lev-
els in otherwise deaf and dizzy c.216AA mice 
[4]. TMC1 is a pore-forming component of 
mechanosensory transduction channels in 
auditory and vestibular hair cells, and muta-
tions in Tmc1/Tmc1 can lead to both dominant 
and recessive forms of deafness in mice and 
humans [74, 75]. A synthetic AAV2/Anc80L65 
encoding Tmc1 led to the restoration of func-
tion in inner and outer hair cells, enhanced hair 
cell survival, restoration of cochlear and ves-
tibular function, restoration of neural respons-
es in the auditory cortex and recovery of behav-
ioral responses to auditory and vestibular 
stimulation by round window membrane injec-
tions [76]. Recent research has indicated that 
AAV2/Anc80L65 is highly expressed in the in- 
ner ears of neonatal mice [77]. The transduc-
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Table 1. A summary of the AAV vectors recently reported in the literature in the last 10 years for in vivo gene delivery
AAV vector and trans-
genes Animal model Injection time Injection route Targeted cells Reference

AAV1 Vglut3KO mice P1-3; P10-12; 5w, 8w, and 20w RWM (Round window 
membrane)

IHCs [6, 132]

Cx26KO mice P0, P42 RWM SCs, SLFs [133]
Kcnq1KO mice P0-P2 SM (Scala media) SV marginal cells [8]
Otof-/- mice/Macaca fascicularis P0-P2 and P30 mice; 5-7 years 

old Macaca fascicularis
RWM IHCs [10]

Lhfpl5-/- mice P0-P1 RWM, Cochleostomy IHCs, OHCs [134]
Children with autosomal recessive 
deafness 9

1-18 years RWM - [11]

AAV2 Otof-/- mice P10, P17, and P30 RWM IHCs [9]
AAV2/1 cCx26 mice P0-P1 SM IHCs, OHCs, Spindle-shaped 

cells and Marginal cells
[91]

Tmc1 mutant mice P0-P2 RWM IHCs, OHCs [7]
MsrB3-/- E12.5 Otocysts IHCs, OHCs [135]
TMC-/- mice P0-P2 RWM IHCs, OHCs [7]

Dual AAV2/6 half-vector Otof-/- mice P6-P7 RWM IHCs [3]
AAV2.7m8 CBA/J mice P0-P5 PSCC (Posterior 

semicircular canal)
IHCs, OHCs; Pillar cells; 
Phalangeal cells

[82]

AAV2/8 Mouse (FVB/N) 5-6 Weeks PSCC, RWM IHCs [125]
Pjvk-/- mice P3 RWM IHCs, OHCs [136]
Clrn1ex4-/- and Clrn1ex4fl/fl 
Myo15-Cre+/- mice

P1-P3 RWM IHCs, OHCs [137]

AAV2/9 Tmc1Bth/+ P0-P2 RWM IHCs, OHCs [138]
AAV3 Mouse (C57BL/6J and ICR) 4 Weeks/2 months RWM IHCs [139]
AAV5 Gjb2cKO mice Cx26fl/flP0-Cre P0 and P42 RWM IHCs, OHCs, and SCs [133]

CD1, CBA/CaJ mice P1-P2 SM IHCs, SCs [140]
AAV6 CD1, CBA/CaJ mice P1-P2; 6 Weeks SM SCs [140]
AAV7 CD1, CBA/CaJ mice P1-P2 SM SCs [140]
AAV8 Vglut3KO mice 5 weeks; 8 weeks; and 20 weeks PSCC IHCs [6]

CBA/J mice P0-P5 PSCC IHCs, OHCs [77]
AAV9 ICR mice P1 RWM IHCs, OHCs, SCs [141]
Bovine adeno-associated 
virus (BAAV)

Guinea pigs - ST (Scala Tympani) 
and SM

SCs, Interdental, inner sul-
cus and Hensen cells

[142]
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AAV9-PHP.B Tmc1-KO mice P1, P7, P28-30 Utricle IHCs, OHCs [65]
Wild-type mice P1, P7, P16. RWM, Utricle IHCs, OHCs, VGN [85]
Crln1-/- mice P1 RWM IHCs, OHCs [87]
Syne4-/- mice P0-P1.5 PSCC IHCs, OHCs [88]
StrcΔ/Δ mice P0-P1 Utricle IHCs, OHCs [143]

AAV-PHP.eB Myo6C442Y/+ mice P0-P2 SM IHCs, OHCs [144]
DFNB9 mouse (OTOF) P0-P2 RWM IHCs [145]
Myo6WT/C442Y P0-P2 SM IHCs, OHCs [146]
Tmc1Bth/+ mice P1-P2 RWM IHCs, OHCs [147]
ICR neomycin-induced mice P1 SM IHCs, OHCs [148]
Tmc1Δ/Δ mice P1-P2 Utricle IHCs, OHCs [149]
Pcdh15R245X/R245X mice P0-P1 RWM IHCs, OHCs [150]

Anc80L65 Ush1c c.216G>A mice P10-P12 RWM IHCs, OHCs [4]
Noise-induced CBA/CaJ mice 6 weeks or 9 weeks PSCC IHCs [151]
Tprn-/- mice P0-P2 RWM OHCs [152]
ICR mice P1 SM IHCs, OHCs [153]

AAVAnc80 iCKO mice  
(Sox10iCreERT2-mediated GJB2)

P28 RWM IHCs, OHCs, SCs [154]

AAV-S TgAC1+/Clrn1KO mice Mice: P1, P21, P60, P150, P90; 
NHPs: 1-3 years

RWM, PSC IHCs, OHCs, SCs, VGN [93]

AAV-i.e., C57BL/6 mice P0, P3 RWM IHCs, OHCs, SCs [92]
Cisplatin-induced C57BL/6J mice P16 RWM IHCs, OHCs [155]
C57/B6 mice P2-P3; 4 weeks RWM IHCs, OHCs [156]
FVB mice P2 RWM SCs [157]

AAV-DJ Tmprss3tm1/tm1 mice P1 PSCC IHCs, OHCs, SCs [158]
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skeleton and cytoskeleton (LINC), and its vari-
ants can lead to DFNB76-induced human deaf-
ness. In the latest research, Syne4-/- mice 
were used as a model of DFNB76-induced 
recessive deafness to explore whether AAV9-
PHP. B is suitable for genetic therapy as a vec-
tor. After delivery of the coding sequence of 
Syne4 by AAV9-PHP. B In the inner ears of neo-
natal Syne4-/- mice, the rescue of hair cell mor-
phology and survival, nearly complete recovery 
of auditory function, and restoration of audito-
ry-associated behaviors were observed [88]. In 
addition, Jason Wu et al demonstrated that 
AAV9-PHP. B gene therapy can promote hair 
cell survival and successfully rescue hearing in 
three distinct dominant and recessive hearing 
loss models caused by Tmc1 [65]. These results 
revealed that Tmc1-targeted gene therapy via 
single or dual AAV9-PHP. B vectors offer potent 
and versatile approaches for treating dominant 
and recessive deafness. In addition to studies 
in mouse models, researchers have identified 
the transduction potential of AAV9-PHP. In pri-
mates, cynomolgus monkeys were taken to 
receive the ssAAV9-PHP. B-CBA-GFP through 
the round window membrane (RWM) via a 
transmastoid surgical approach. The results 
revealed that AAV9-PHP. B efficiently transduc-
es the IHCs and OHCs of cynomolgus monkeys 
in a dose-dependent manner [89]. The studies 
above revealed that AAV9-PHP. The B capsid is 
a promising clinical delivery vehicle for treating 
hereditary deafness.

AAV-ie

The majority of cases of SNHL are due to ge- 
netic mutations in HCs and SCs [90]. At pres-
ent, all newly discovered AAV serotypes target 
hair cells and spiral ganglion neurons. Once, 
the AAV1 serotype was used to deliver wild- 
type GJB2 into the cochlear SCs of GJB2-
knockout mice, but it could not restore hearing 
function because of its low transduction effi-
ciency in SCs [91]. Three different cell-penetrat-
ing peptides (CPPs) and one CPP-like peptide 
(DGTLAVPFK) were inserted into the VP1 capsid 
of AAV-DJ to obtain the novel serotype AAV-ie. 
AAV-ie is able to highly transduce not only HCs 
but also SCs and SGNs in both animal models 
and human utricle samples and has no nega-
tive effect on auditory function. To assess the 
potential of the AAV-ie vector for HC regenera-
tion, AAV-ie,-Atoh1-NLS-mNeonGreen (AAV-ie, 

tion efficiency of AAV2/Anc80L65-eGFP was 
high in the hair cells of the vestibules and semi-
circular canals and in spiral ganglion neurons 
after microinjection into otocysts in utero [78]. 
Recently, Anc80L65 was shown to allow effi-
cient cochlear gene transfer in nonhuman pri-
mates [79].

AAV2.7m8

The AAV2.7m8 vector is a synthetic capsid with 
a 10-amino acid insertion in the AAV surface 
variable region VIII (VR-VIII) to change an anti-
genic region of AAV2 [80]. AAV2.7m8 was first 
applied in the transduction of retina cells and 
efficiently transduced retina cells after intravit-
real administration [81]. The IHCs and OHCs 
were infected with high efficiency throughout 
the entire cochlea, through which AAV2.7m8-
GFP was injected into the neonatal mouse 
inner ear via the posterior semicircular canal 
approach [82]. Unlike conventional AAVs, 
AAV2.7m8-GFP showed superior cochlear hair 
cell transduction efficiency, particularly with 
respect to OHCs. Interestingly, AAV2.7m8 also 
preferentially targeted cochlear hair cells rath-
er than vestibular hair cells [83]. Research from 
Kevin Isgrig shows that AAV2.7m8 is an excel-
lent viral vector for inner ear gene therapy, and 
it will likely greatly expand the potential applica-
tions for inner ear gene therapy.

AAV9-PHP. B

AAV9-PHP. B is an AAV9 capsid variant that  
was originally selected for the transduction of 
mouse neurons within the central nervous sys-
tem [84]. Recently, AAV9-PHP. B exhibits the 
highest transduction efficiency in both inner 
and outer hair cells and robust transduction in 
spiral and vestibular ganglion neurons com-
pared with Anc80L65 and AAV2.7m8 in mice 
and nonhuman primates [85]. AAV9-PHP. B has 
also been applied for the treatment of reces-
sive deafness and blindness disorders, such as 
Usher syndrome type 3A (Usher 3A; caused by 
mutations in CLRN1), DFNB76 recessive deaf-
ness and mutations in Tmc1, which cause dom-
inant DFNA36, recessive DFNB7/11, and deaf-
ness [86]. Bence György et al. used AAV9-PHP. 
B to deliver a normal copy of the Clrn1 coding 
sequence to cochleas in a mouse model of 
Usher 3A and found significant rescue of hear-
ing [87]. SYNE4 is a gene encoding the protein 
nesprin-4, a member of the linker of the nucleo-
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-Atoh1) was used to deliver mouse Atoh1 into 
the cochlea. The immunofluorescence and 
SEM results also indicated that new hair-like 
cells were generated in the AAV-ie-Atoh1 group. 
In conclusion, AAV-ie can be used not only for 
correcting genetic hearing impairment but also 
for HC regeneration under environmental dam-
age [92].

AAV-S

AAV-S, a novel AAV9 variant isolated from a ran-
dom AAV9 capsid library, is capable of trans-
ducing nearly all cell types of the cochlea with 
high efficiency in the inner ears of mice and 
cynomolgus monkeys after RWM injection [93]. 
To identify potential treatments for a deafness 
model, AAV-S was used to deliver an optimized 
Clrn1 construct to TgAC1-Clrn1-KO mice, a 
model of CLRN1-related Usher syndrome type 
3A. The results revealed robust rescue of hear-
ing at low and middle frequencies and preser-
vation of hair bundle morphology across all fre-
quencies up to at least 5 months postinjection, 
whereas it did not rescue hearing at the hig- 
hest frequencies. To further investigate wheth-
er AAV-S can transduce the cochleae of NHPs, 
cynomolgus monkeys, which are a much more 
relevant model for transgene delivery to the 
human inner ear, received AAV-S-EGFP via 
RMW injection. The results showed that AAV-S-
EGFP had very high transduction efficiency in 
all cell types of the cochlea at high doses but 
greatly reduced transduction efficiency in SGNs 
[93]. In conclusion, AAV-S is capable of trans-
ducing the majority of cells in the cochlea in 
mice and NHPs; thus, it should serve as a prom-
ising vector for inner ear gene therapy.

The target cells of AAV gene delivery

HHL is caused by gene mutations in various 
types of cells in the inner ear and leads to audi-
tory dysfunction. According to the cellular types 
affected by mutations in the cochlea, muta-
tions in genes may occur in hair cells (HCs), 
supporting cells, spiral ganglion neurons (SGNs) 
and the stria vascularis. Therefore, identifying 
the functions of different cell types in the inner 
ear and gene mutations in different cell types is 
highly important for understanding the patho-
genesis of hereditary deafness and treatment 
strategies. Clarifying the precise spatial and 
temporal patterns of expression of a wild-type 

gene can help us select the appropriate time 
for intervention, and studying cell types with 
gene mutations can help us select the appro-
priate AAV vector types for intervention treat-
ment. Thus, here, we discuss the major inner 
ear cell types and their application to be tar-
geted by gene therapy approaches.

Hair cells

Hair cells constitute the sensory epithelium  
of the mammalian inner ear and include two 
types of mechanosensory cells, OHCs and 
IHCs, which are capable of transducing the 
mechanical force generated by sound waves 
into electrical signals. More than 50% of the 
gene mutations that cause hereditary deaf-
ness are expressed in hair cells [76, 94-97]. 
The death of hair cells caused by gene muta-
tions always leads to permanent hearing loss 
and vestibular dysfunction because of their lim-
ited regenerative capacity, and hair cells are 
particularly susceptible to damage and death 
owing to the fragile cytoarchitecture of hair 
bundles. In contrast, lower vertebrates such as 
birds, zebrafish and reptiles are able to sponta-
neously regenerate lost hair cells from existing 
supporting cells, leading to full functional recov-
ery [98-100]. Recently, studies have shown 
that supporting cells have the potential to 
transform and regenerate into hair cells under 
certain conditions [101-103]. Overall, main- 
taining the number and function of hair cells is 
important for auditory function. In addition, hair 
cells in the cochlear sensory epithelial region 
are the most frequently transduced cell type by 
AAV serotypes. Therefore, recent progress has 
led to the development of a number of novel 
AAV vectors, such as AAV9-PHP, to improve 
infection efficiency in both inner and outer hair 
cells. B, AAV2.7m8 and AAV-ie.

Supporting cells

Supporting cells constitute one of the sen- 
sory epithelia of the inner ear; are distributed 
throughout the entire depth of the epithelium, 
from the basal lamina to the lumen; and are 
involved in development, survival, phagocyto-
sis, death and regeneration in the inner ear. In 
addition to their multiple functions, supporting 
cells present various morphological and molec-
ular features in mature sensory epithelia. There 
are five different cell types: Hensen’s cells, 
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Deiters’ cells, pillar cells, inner phalangeal cells 
and border cells, which are organized in rows 
along the organ of Corti. To date, more than 
150 nonsyndromic hearing loss genes have 
been identified. Some of these genes, such as 
Cx26, Cx30, Sox2 [104], Lgr5 [105], and Atoh1, 
are expressed in supporting cells. In transgenic 
mouse models, knockout of Cldn9, Cldn14 or 
vezatin causes hair cell death and hearing loss 
[106-108]. Furthermore, mutations in Cx26 are 
the most common cause of hereditary deaf-
ness (DFNB1/DFNA3). Recently, great progress 
has been made in AAV-mediated gene thera-
pies for hearing loss in animal models; howev-
er, most studies have focused on HCs and 
SGNs. Notably, SCs are significant targets for 
gene therapy. An increasing number of studies 
have focused on SCs. AAV1 was once used to 
deliver wild-type GJB2 into the cochlear SCs of 
GJB2-knockout mice, but it could not rescue 
hearing loss because of its low transduction 
efficiency in SCs [91]. Compared with conven-
tional AAV serotypes, Fangzhi Tan et al. identi-
fied an AAV variant, the AAV-inner ear (AAV- 
ie), which transduces cochlear supporting cells 
(SCs) with high efficiency [92].

Spiral ganglion neurons

SGNs act as a bridge for auditory information 
between hair cells and the central nervous sys-
tem, and the loss of SGNs causes irreversible 
hearing impairment because they cannot re- 
generate. SGNs act as a bridge for auditory 
information between hair cells and the central 
nervous system, and the loss of SGNs causes 
irreversible hearing impairment because they 
cannot regenerate. The loss of the SGN includes 
the following aspects. On the one hand, the 
loss of SG neurons may underlie the debilitat-
ing decline in hearing-in-noise ability with aging 
or noise trauma. On the other hand, the gene 
mutation that occurs in SG neurons also causes 
the loss of SG neurons. For example, the muta-
tion of the MAP1B gene, which is expressed in 
spiral ganglion neurons and encodes a highly 
conserved microtubule-associated protein, is 
related to nonsyndromic SNHL [109]. Currently, 
cochlear implantation (CI) is a therapeutic strat-
egy for profound hearing loss. Moreover, the 
success of contemporary CIs depends partly 
upon the survival and condition of cochlear spi-
ral ganglion (SG) neurons. Recently, AAV-based 
gene therapy for the survival of SGNs has 

become a promising approach to ameliorate 
hearing loss. AAV2 and AAV5 were transduced 
into SG neurons after injection through the 
round window. Furthermore, AAV-neurotrophin 
gene therapy can elicit the expression of physi-
ological concentrations of neurotrophins in the 
cochlea, supporting improved SG neuronal and 
radial nerve fiber survival [110]. Overall, SGNs 
are vital target cells for gene therapy.

Stria vascularis

The stria vascularis (SV) is a highly vascularized 
epithelium located on the lateral wall of the 
cochlear duct. It consists of three distinct cell 
types: marginal cells (MCs), intermediate cells 
(ICs), and basal cells (BCs) [111]. The stria vas-
cularis is capable of producing endolymph, and 
the endocochlear potential and high potassium 
content of the endolymph of the cochlear duct 
are necessary for normal hair cell function 
[112]. K+ circulates between the endolymph 
and phlymph via the stria vasularis to provide 
endocochlear potential. Some K+ channels and 
transporters, such as Na+, K+-ATPase [113], 
Na+, K+, 2Cl - cotransporter (NKCC) [114], the 
inwardly rectifying channel Kir4.1 [115] and 
KCNQ1/KCNE1 [116], are expressed in the 
stria vasularis and are involved in EP formation. 
Research has shown that genetic defects in 
genes that mediate K+ recycling in the inner ear 
cause inherited deafness. For example, muta-
tions in the gene encoding the basolateral 
Na-K-Cl cotransporter Slc12a2 (Nkcc1, mBSC2) 
cause the deafness observed in Shaker-with-
syndactylism (sy) and sy (ns) mice [117]. An- 
other study revealed that autosomal recessive 
Jervell and Lange-Nielsen (JLN) syndrome may 
be caused by mutations in the KCNQ1 and 
KCNE1 genes, which are expressed in marginal 
cells of the SV [118]. Gene therapies to target 
and correct mutations in SVs are still a major 
challenge since efficient AAV vectors that can 
transduce SVs are lacking. The Kcnq1-expre- 
ssing AAV1 viral construct was injected into the 
endolymph of Kcnq1-/- postnatal mice (P0-P2), 
which resulted in Kcnq1 expression in most 
cochlear marginal cells, and auditory brainstem 
responses also showed significant hearing 
preservation in the injected ears. This is the 
first time that a gene therapy approach has 
been applied in a mouse model of JLN syn-
drome to successfully treat gene defects that 
specifically affect the functions of the SV [8].
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The routes of AAV gene delivery

The routes of administration are generally divid-
ed into systemic and local routes. These two 
delivery methods are suitable for the treatment 
of different diseases. Systemic administration 
is a simple and traumatic route to deliver genet-
ic material to cochlear cells, but the issue of 
increased probabilities of off-target delivery, 
toxicity, or BLB-restricted transportation needs 
to be addressed. Compared with systemic ad- 
ministration, local delivery methods are more 
commonly used in gene therapy for deafness. 
Local delivery methods are supposed to cause 
fewer side effects than systemic methods. In 
addition, local administration in the inner ear is 
more precise.

Systemic route of administration

Intravenous administration is the main app- 
roach used to systemically deliver virus vectors 
to the cochlea. Although systemic administra-
tion is quick, convenient and noninvasive, the 
systemic delivery of viral vectors still faces 
numerous challenges. The key factor is the 
appropriate AAV serotype, which is able to 
cross the blood-brain barrier to reach target 
cells. Recently, the AAV9 and Anc80L65 cap-
sids were identified as serotypes that can cross 
the blood-brain barrier and reach the cochlea 
after intravenous injection [119]. In addition, 
the greatest adverse effects of systemic AAV 
administration are off-target effects. Systemic 
delivery requires a high titer and a high vo- 
lume of virus, and the ability to quantify the 
viral dose that simultaneously reaches the tar-
get cell needs to be considered.

Local routes of administration

Round window: A round window membrane 
(RWM), a three-layered membranous opening 
leading to the perilymphatic space of the scala 
tympani, is the most common and successful 
way to deliver agents to the inner ear to date 
(Figure 4). Round window injection is generally 
divided into the following steps: first, the bulla 
is opened via a postauricular incision; second, 
the virus vectors are injected through the  
round window membrane, which directly  
access the perilymph of the scala tympani via 
microinjection; finally, the viral vectors are in 
contact with the basilar membrane and then 

reach the targeted cells via the endolymphatic 
space. This process can cause some injuries, 
while research from Li, X et al. indicated that 
RWM injection results in only a small risk of 
residual hearing damage in mice [120]. 
Furthermore, the RWM approach in nonhuman 
primates has also shown highly efficient trans-
gene transfer into the cochlea [87]. Currently, 
RWM appears to be a promising means of gene 
delivery for treating deafness in humans. 
However, this approach still has significant 
adverse effects, such as perilymphatic fluid 
leakage, virus transportation to the cerebel-
lum, and cross-transfer to the contralateral 
inner ear through the cochlear aqueduct, he- 
matogenous, or systematic spread via the tem-
poral bone marrow. In addition to these safety 
factors, the major disadvantage is that the viral 
vector injected through the window into the 
scala tympani is not uniformly distributed 
throughout the cochlear duct.

Oval window: The oval window is an oval hole 
on the inner wall of the tympanum of the middle 
ear. Unlike the round window, the oval window 
is covered by a footplate of the stapes instead 
of a membrane. The delivery approach requires 
a transcanal or transmastoid microsurgical pro-
cedure for access in humans, and oval window 
injection is more complicated and riskier than 
round window injection from a technical point 
of view.

Canalostomy: Canalostomy is a useful approa- 
ch to deliver drugs into the inner ear via injec-
tion through semicircular canals (canalostomy). 
Since 2001, canalostomy has been used to 
deliver various reagents, such as viral vectors, 
siRNAs, stem cells, and aminoglycoside, into 
the murine inner ear [121-124]. Recently, AAV 
has also been delivered into the inner ear to 
infect target cells such as HCs and SGN cells 
via canalostomy [122]. When various reagents, 
including fast green dye and AAV serotype 8 
(AAV8), together with the green fluorescent pro-
tein (GFP) gene (AAV8-GFP) and streptomycin, 
were injected into adult and neonatal mouse 
inner ears, the results revealed a broad distri-
bution of reagents in the cochlea and vestibule 
with minimal disturbance of hearing and ves-
tibular function [125]. Xuewen Wu et al. con-
ducted gene therapy by injecting viral vectors 
via the canalostomy approach in Kcne1-/- mice 
to treat both hearing and vestibular symptoms, 
and their results revealed that early treatment 
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prevented collapse of the Reissner’s mem-
brane and vestibular wall, retained the normal 
size of the semicircular canals, and prevented 
the degeneration of inner ear cells [126]. In 
conclusion, canalostomy is an effective and 
safe approach for drug delivery into the inner 
ears of adult and neonatal mice and may be 
one of the more feasible delivery methods for 
human inner ear gene therapy in the future.

Cochleostomy: In 1993, Lenhardt proposed a 
new soft surgery, cochleostomy, which per-
forms a minimal cochleostomy anteriorly and 
inferiorly to the round window to apply for 
cochlear implants [127]. Research from Wade 
W. Chien revealed that the cochleostomy app- 
roach caused more severe cochlear damage 
than did the round window approach via a com-
parison of the patterns of cochlear infection 
and effects on hearing between these two  
surgical approaches using AAV serotype 2/8 
(AAV8) as the gene delivery vehicle [128]. 

However, the two surgical approaches resulted 
in comparable viral infection efficiencies. In 
conclusion, cochleostomy is riskier than round 
window injection is and is not the optimal 
choice for drug delivery.

Endolymphatic sac: The endolymphatic sac is a 
nonsensory organ of the inner ear that is con-
nected to the endolymphatic compartment. 
The main functions of the endolymphatic sac 
are the regulation of the volume and pressure 
of the endolymph and the protection of the 
inner ear from pathogen invasion [129]. The 
endolymphatic sac is thought to contribute  
to the pathophysiology of Ménière’s disease. 
Endolymphatic sac surgery is considered an 
effective method for treating Ménière’s disease 
[130]. The endolymphatic sac communicates 
directly with the endolymphatic fluid, so the 
virus can enter the endolymphatic fluid throu- 
gh the opening of the endolymphatic sac to 
reach its target cells. Research from Tatsuya 

Figure 4. Schematic illustration of methods for delivering therapeutics to the human ear. Viruses introduced into 
the inner ear are indicated in red and encompass both indirect and direct methodologies. The indirect methodol-
ogy involves administration through the tympanic membrane (either transtympanic or intratympanic), facilitating 
the deposition of the therapeutic agent in the middle ear, from which it diffuses into the inner ear via the oval and 
round windows. Direct methodologies entail delivery into the cochlea through application over or through the round 
window membrane, via a surgically created cochleostomy adjacent to the round window, through a fenestration in 
the bony oval window, or through a semicircular canal.
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Figure 5. A timeline of AAV-based gene therapy approvals to date on the market. The first AAV-based gene therapy 
drug, Glybera, was approved by the European Medicines Agency (EMA) in 2012, with Luxturna becoming the first 
AAV gene therapy product to receive US Food and Drug Administration (FDA) approval 5 years later. With the ad-
vancement of gene therapy, the time it takes for AAV-vectored drugs to hit the market has significantly decreased. 
Currently, 9 AAV-vectored drugs have entered the market.

Yamasoba et al. indicated that the injection  
of an application-deficient adenoviral vector, 
Ad.RSVntlacZ, into the guinea pig endolymphat-
ic sac resulted in many blue (LacZ-positive) 
cells in the endolymphatic sac and duct, vesti-
bule, and ampulla [131]. However, the surgical 
approach is accompanied by greater surgical 
risk than the other routes are. Therefore, fur-
ther consideration is needed in practical app- 
lications.

Clinical trials of AAVs in inner ear gene 
therapy

Since the development of gene therapy in the 
1970s, several virus-based vector gene thera-
py drugs have been approved on the market 
(Figure 5). Previously, only two AAV-mediated 
gene therapies for hearing loss were evaluated 
in clinical trials. The first trial is CGF166 aimed 
at unilateral severe to profound hearing loss or 
bilateral severe to profound hearing loss, which 
was sponsored by Novartis and is currently in 
clinical phase I and phase II. CGF166 is a 
recombinant adenovirus 5 (Ad5) vector con- 
taining cDNA encoding the human atrial tran-
scription factor Hath1. (clinicaltrials.gov/ct2/
show/NCT02132130). The second trial is on- 

going at the Institute Pasteur and aims to stu- 
dy in vitro viral transduction of AAV in human 
inner ear cells. (clinicaltrials.gov/ct2/show/
study/NCT03996824). A preclinical research 
study is ongoing by Decibel Therapeutics called 
DB-OTO. DB-OTO is an AAV-based dual-vector 
gene therapy product designed to selectively 
express functional OTOF in the inner hair cells 
of individuals with OTOF deficiency with the 
goal of enabling the ear to transmit sound to 
the brain and facilitate hearing. In 2023, the 
first clinical trial of two-vector gene compensa-
tion therapy based on an AAV for DFNB9 was 
conducted in the clinic [11].

Prospects and challenges for inner ear gene 
therapy

To date, nine AAV-based gene therapy drugs - 
namely, Kebilidi, Beqvez, Roctavian, Elevidys, 
Hemgenix, Upstaza, Zolgensma, Luxturna, and 
Glybera - have received approval from the 
European Medicines Agency and the United 
States Food and Drug Administration for the 
treatment of various genetic disorders. These 
disorders include hereditary LPLD, inherited 
retinal disease (IRD), aromatic L-amino acid 
decarboxylase (AADC) deficiency, hemophilia  
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A, hemophilia B, and spinal muscular atrophy 
(SMA). Owing to its superior safety profile with a 
relatively low risk of genotoxicity from the inser-
tion of transgenes into the genome, AAV has 
been regarded as the leading gene delivery 
platform for gene therapy, and AAV-based gene 
therapy also shows great promise in the treat-
ment of hereditary diseases. Despite these 
notable therapeutic advancements, many chal-
lenges and considerations still warrant atten-
tion. Adenoviral-associated virus (AAV) vectors 
may provoke immune responses in the host, 
including the generation of neutralizing anti-
bodies, which have the potential to neutralize 
the viral vector and diminish therapeutic effi-
cacy. For example, neutralizing antibodies 
against AAV are commonly present in the major-
ity of the human population, thereby limiting 
the systemic application of AAV. The genomic 
size limitation of AAV vectors, approximately 
4.7 kilobases (kb), implies that the size of the 
therapeutic genes they can carry is constrain- 
ed, possibly precluding the accommodation of 
larger genes, which may limit the treatment of 
certain genetic disorders. Although AAV vectors 
can target specific tissues and cell types, varia-
tions in infection efficiency and specificity 
among different AAV serotypes for cells within 
the cochlea exist, restricting their broadness 
and effectiveness in clinical applications. Effe- 
ctive gene delivery to a target is crucial for the 
success of gene therapy. While AAV gene thera-
py has been well tolerated in a range of diseas-
es thus far, the regulation of expression remains 
a significant safety consideration for target and 
disease selection. Furthermore, the durability 
of gene therapy has yet to be determined, 
necessitating lifelong follow-up for assess- 
ment.

Conclusion

The adeno-associated virus (AAV) offers dis-
tinct advantages as a gene therapy vector 
because of its low immunogenicity, sustained 
gene expression, and broad cellular tropism. 
These characteristics make it particularly  
promising for treating HHL. Functional gene 
delivery via AAV vectors could address the 
genetic defects responsible for hearing impair-
ment and the recovery of auditory function. 
However, clinical implementation faces several 
obstacles. Neutralizing antibodies against AAV 
vectors may diminish transduction efficiency 
and therapeutic outcomes. The ~4.7 kb pack-

aging constraint further limits the incorporation 
of larger therapeutic genes. Additionally, trans-
duction efficiency and cell-type specificity re- 
main suboptimal, as existing AAV serotypes 
show inconsistent tropism for inner ear cell 
populations. Future efforts should prioritize 
engineered AAV variants with improved func-
tionality, refined therapeutic strategies, and 
combination therapies. Parallel innovations in 
gene editing, synthetic biology, and nanotech-
nology are expected to advance the field. 
Although challenges remain, next-generation 
AAV vectors, optimized delivery methods, and 
multimodal approaches - supported by techno-
logical advances and clinical validation - could 
provide safer, longer-lasting treatments for 
HHL. Successful translation would significantly 
benefit patients while addressing broader clini-
cal and societal needs. Closing the gap be- 
tween research and clinical practice will be 
essential for realizing the therapeutic potential 
of AAV-based interventions in auditory me- 
dicine.
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