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Review Article
The Oct4 protein: more than a magic stemness marker 
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Abstract: The Oct4 protein, encoded by the Pou5f1 gene was the very first master gene, discovered 25 years ago, 
to be absolutely required for the stemness properties of murine and primate embryonic stem cells. This transcrip-
tion factor, which has also been shown to be essential for somatic cell reprogrammation, displays various functions 
depending upon its level of expression and has been quoted as a “rheostat” gene. Oct4 protein is in complexes 
with many different partners and its activity depends upon fine post-translational modifications. This review aims at 
revisiting some properties of this protein, which has not yet delivered all its potentialities. 
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Oct-4: a member of the POU family

Oct-4, a transcription factor also known as Oct-
3, Oct-3/4, Otf3 or NF-A3, is encoded by the 
Pou5f1 gene (located on chromosome 6 in 
human and 17 in mouse) and belongs to the 
POU (Pit, Oct, Unc) family of DNA binding-pro-
teins. These proteins regulate the expression of 
target genes by binding to the octamer motif 
ATGCAAAT within their promoter or enhancer 
regions [1, 2]. Oct4, whose expression is asso-
ciated with pluripotent properties of stem cells, 
is an essential factor controlling early stages of 
mammalian embryogenesis [3-5]. 

Oct4 expression in early embryos

Maternal murine Oct-4 mRNA and protein (352 
AA), deposited in the oocyte, are inherited by 
the zygote and are necessary for development 
until the 4-cell stage. Proteins are present at 
low levels at these early stages of murine 
embryogenesis. Transcription of zygotic Pou5f1 
gene is activated at the 4- to 8-cell stage. 
Consequently, high level of nuclear Oct-4 pro-
tein is detected in all blastomeres until morula 
stage. Upon blastocyst formation, Oct4 expres-
sion remains high in the inner cell mass (ICM) 
and is not expressed in the trophectoderm (TE). 
After implantation of the mouse embryo, tran-
sient upregulation of Oct4 in a group of cells of 

the ICM triggers their differentiation into primi-
tive endoderm (hypoblast) cells. Subse- 
quently, Oct4 expression is down- regulated in 
these cells [6-8]. During gastrulation, Oct4 is 
down- regulated and, after day 8 of gestation, it 
is confined to primordial germ cells [7, 9, 10]. In 
vitro, Oct4 is highly expressed in undifferentiat-
ed embryonic stem (ES) cells, embryonic carci-
noma (EC) cells and embryonic germ cells. Upon 
differentiation of these cells induced by 
Leukemia Inhibitory Factor (LIF) withdrawal or 
in the presence of retinoic acid, Oct4 expres-
sion is down-regulated with different kinetic 
[11-13].

In humans, Oct-3/4, unlike in mice, encodes 2 
isoforms that are generated by alternative splic-
ing of Pou5f1 mRNA [14, 15]. These isoforms,  
Oct4-IA and Oct4-IB (360 and 265 amino acids, 
respectively), of which the 225 amino acids at 
the C-termini are identical, differ in sequence at 
their N termini [15]. Critical amounts of human 
Oct4-IA are required to sustain stem cell self-
renewal and it has been shown that Oct4-IB is 
not related to stemness. In humans, Oct4 
mRNA is present throughout all stages from the 
unfertilized oocyte to the uncompacted morula 
[16-18]. These stages display a variable expres-
sion pattern of Oct4 mRNA, between individual 
blastomeres of the same cell stage with only 
cytoplasmic localization of Oct4 proteins. No 
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Oct4 proteins are found in the nucleus during 
these stages [11]. During compaction, the 
expression of Oct4 protein becomes ubiquitous 
and abundant in the nuclei of all blastomeres of 
the morula. In blastocysts, Oct4 transcripts and 
proteins are present in the ICM [18]. As in 
murine model, Oct4 is present in human embry-
onic stem (hES) cells [19], human embryonic 
carcinoma cells [20] as well as in human embry-
onic germ cells [21].

Oct4 is a gatekeeper for ES cell pluripotency

Pluripotent embryonic stem cell identity is gov-
erned by a core of transcription factors involv-
ing Oct4 that acts as a key regulator of pluripo-
tent cells across mammalian species. Oct-4 

occupy the promoters of genes that have key 
roles in differentiation and development and 
promote their inactivation [30]. 

The intersection between the transcriptional 
core (Oct4, Sox2 and Nanog) and LIF signaling 

In addition to Oct4, Sox2 and Nanog, the LIF/ 
STAT3 signaling pathway is also known to be 
critical for the maintenance of pluripotency in 
murine ES (mES) cells while it seems dispens-
able in hES cells, despite the expression and 
the functional activation of the LIF/ STAT3 in 
these cells [31]. Since these first observations, 
it has been demonstrated that hES cells are 
closer to murine Epiblast stem cells (primed 
cells) than to naïve mES cells [32, 33]. In addi-

-/- embryos developed to blastocysts 
only composed of trophoblast cells and 
they are dead at the time of implanta-
tion [4, 22]. In mouse ES cells, Oct4 
knockdown results in an up-regulation 
of genes associated with endoderm dif-
ferentiation such as Gata6 and a-feto-
protein and those associated with tro-
phoblast differentiation such as Cdx2 
[23, 24]. 

Recent investigation by elegant disrup-
tion of maternal or zygotic Oct4 show 
also the crucial role of this gene for lin-
eage priming in vivo [25]. In addition, 
Oct-4 is required to maintain the pluri-
potency in hES cells where it acts as a 
repressor of the gene encoding for hCG 
(human chorionic gonadotropin), a pla-
cental marker in hES cells. Down- regu-
lation of Oct4 in hES cells, was coinci-
dent with a significant increase in 
transcription of genes associated with 
trophoblast and endoderm lineages 
[26, 27]. Furthermore, Oct4, Sox2 and 
Nanog cooperate to maintain the self- 
renewal and pluripotency of mouse and 
human ES cells. These three transcrip-
tion factors, together bound to the pro-
moters of their own genes [28, 29], 
allow their activation. In addition, they 
activate the transcription of genes 
involved in maintaining ES cell self-
renewal. Dppa4, Tdgf1, Oct4, Nanog, 
and Lefty2 are positively regulated by 
Oct4, Sox2 and Nanog and preferential-
ly expressed in ES cells [28]. On the 
other hand Oct4, Sox2 and Nanog co-

Figure 1. LIF signaling and post-translational modifications of 
some stemness transcription factors. The maintenance of self-
renewal and pluripotency in mESC is controlled by extrinsic signal-
ing pathway (LIF) and intrinsic self-renewal factors (eg: Oct4, Sox2 
and Nanog). LIF binds to its heterodimeric receptor which leads to 
the activation of receptor associated Janus kinases (JAKs)  which 
phosphorylate receptor docking sites and Stat3 on tyrosine 705 
(Tyr705). Then, dimers of Phospho-Stat3 translocate to the nucleus 
and activate the transcription of target genes that are essential 
for ES cell self-renewal (eg: Klf4, Klf5 which induces expression of 
Mras GTPase). The activated Stat3 leads also to expression of its 
own repressor like Socs3, which serves as a negative feedback sig-
nal. Phosphorylation, Ubiquitination, SUMOylation and Acetylation 
of Oct4, Sox2 and Nanog control protein activity, expression, and 
stability, which result in modulation of ESC self-renewal activity. S 
stands for “stabilization” of the protein. Arrow indicates “activation” 
while the line indicates “repression”.
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Figure 2. Protein sequence alignment of mammalian OCT4 proteins. Protein sequences of the different mammalian proteins, retrieved from GenBank, have been 
aligned with the MultiAlign software [81]. The conserved ERK, PKA and SUMOylation sites are indicated. 
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tion, recent studies have demonstrated a key 
role of LIF to induce the reversion of primed to 
naïve states in the human model [12, 34, 35]. 
An important challenge of this research field is 
to characterize the molecular mechanisms of 
ES cell plasticity. 

In mES cells, LIF (Leukemia inhibitory factor), 
via activation of JAK1/ STAT3 pathway, is an 
essential cytokine that prevents differentiation. 
Stat3 activates the expression of a significant 
number of pluripotency-related genes in ES 
cells [12, 36-39]. Furthermore, some of the 
Stat3 target genes are also regulated by Oct4. 
For example, Oct4 and Stat3 directly bind to the 
promoter region of Eed gene (Embryonic ecto-
derm development) which encodes for a core 
component of Polycomb repressive complex 2 
[40, 41]. In addition, Klf4 (Krüppel-like tran-
scription factor 4), a direct downstream target 
of Oct4 and Stat3, is required for ES cell self- 
renewal and maintenance of pluripotency [42-
44]. These data revealed that the cooperation 
between the intrinsic Oct4 network and extrin-
sic LIF pathway is crucial to regulate ES cell 
self-renewal and pluripotency. However Oct4 
and LIF’s targets are regulated in different ways 
upon cell differentiation triggered by LIF with-
drawal: indeed, Oct4 mRNA and protein remains 
at high level for few days upon LIF withdrawal. 
This is in contrast with many of the LIF ‘s tar-
gets (named Pluri genes like Mras, Ceacam1 
and 2, Irak3, Esrrb) whose mRNA expression 
decreased on the first day of LIF withdrawal 
concomitantly with cell differentiation [12, 13, 
39]. It has also recently been shown that dis-
regulated Mras expression, a small GTPase of 
ras family, lead to an alteration in Oct4 expres-
sion, indicating a potential link between this 
small GTPase and Oct4 regulation [45], see 
Figure 1. More generally, how the Pluri gene 
cluster, which encodes various types of protein 
regulators, modulates Master gene activity 
remains to be resolved. 

Oct4 and its dosage effect on the cell fate

Oct4 dosage is important in the determination 
of the mES cell fate. Depending upon Oct4 
expression level, mES cells maintain their pluri-
potency or differentiate towards trophoblast 
(low or no Oct4 expression) or primitive endo-
dermal and mesodermal (high Oct4) lineages 
[23, 46, 47]. This rheostat behavior of gene, 
which has also been shown for Sox2 [48], 
revealed that these genes exerts a dose-

dependent action. In addition, it has been well 
documented that neuronal differentiation of ES 
cells, under the serum-free culture condition, is 
enhanced because of the sustained overex-
pression of Oct4 in ES cells [49]. Moreover, the 
involvement of Oct4 in the mesendoderm dif-
ferentiation and cardiac commitment of ES 
cells was also proved. Indeed, transient 
increase in Oct4 expression upon TGFβ induc-
tion, in undifferentiated ES cells and in the epi-
blast of mouse embryos leads to establishment 
of cardiogenic lineages [46]. Also, by different 
approaches it was shown that, depending upon 
its expression level, Oct4 could form different 
protein complexes with members of the SOX 
family: the Sox2/ Oct4 complex, which binds to 
a canonical binding site, induces expression of 
genes involved in the maintenance of pluripo-
tency. In contrast, an increase in Oct4 or Sox17 
expression level leads to a switch of partners, 
Sox2 being replaced by Sox17. This complex 
then binds to a different compressed DNA 
motif at promoter of genes involved in primitive 
endoderm and mesendoderm differentiation 
[46, 47, 50, 51]. Whether the Oct4 protein, 
along with Sox2 or Sox17, displays various func-
tions as a complex, depending upon their post-
translational modification, remains unknown. 

Regulation of Oct4 stability at the post-trans-
lational level

The mechanisms through which Oct4 protein 
activity is regulated are largely unclear. 
Potential phosphorylated or sumoylated con-
served residues, present among the mammali-
an Oct4 proteins, are shown in Figure 2. Oct4 
can be phosphorylated by protein kinase A 
and/or ERK MAPK at a highly conserved resi-
due, Ser 229 (murine) or Ser 236 (human) with-
in the POU DNA-binding homeodomain, (see 
Figure 2) [52]. Phosphorylation at this Ser resi-
due sterically hinders both DNA binding and 
homodimer assembly [53, 54]. Furthermore, 
ubiquitination of Oct4 (shown for both murine 
and human proteins) is also a post-translation-
al modification that dramatically reduces its 
transcriptional activity. During ubiquitination 
process, the E3 ligase interacts directly with 
target proteins and promotes the Ubiquitin 
transfer. WWP2, an E3 ubiquitin ligase that 
specifically interacts with Oct4 through its 
Tryptophan-based WW domains, has been 
identified in murine and human embryonic 
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stem cells. WWP2 promotes the ubiquitination 
of Oct4 and its degradation both in vivo and in 
vitro [55-59]. Additionally, MEK/ERK signaling, 
activated upon ES cell differentiation, is 
involved in the negative regulation of human 
Oct4-IA protein, through its phosphorylation at 
Ser111 which alters stability and its subcellular 
localization [60]. Oct4 is also a target for small 
ubiquitin-related modifier (SUMO) -1 that occurs 
at a highly conserved K among the mammalian 
proteins (K118 in mice and K123 in primates), 
see Figure 2. This conserved lysine is located 
at the end of the amino- terminal transactiva-
tion domain and next to the DNA -binding 
domain. Sumoylation of Oct4, which does not 
alter its subnuclear localization, enhances its 
stability, DNA binding and transactivation func-
tions [61, 62]. Whether sumoylation of Oct4 is 
involved in its increased level, coupled with its 
function in primitive endoderm differentiation, 
remains to be established. Interestingly, it has 
also been shown that SUMOylation of Oct4 and 
Sox2 regulated Nanog in an opposing manner: 
SUMOylation of Oct4 enhanced Nanog expres-
sion, while SUMOylated Sox2 inhibited its 
expression. Moreover, SUMOylation of Oct4 by 
Pias2 or Sox2 by Pias3 impaired the interaction 
between Oct4 and Sox2 [63]. All these findings 
reveal that the post-translational modifications 
of Oct4, act as a regulatory signal to control its 
activity and stability in a wide variety of cellular 
processes. This also applies to other stem cells 
factors, such as Sox-2 and Nanog (Figure 1). 

Oct-4 and tumorigenicity

It is well documented that overexpression of 
Oct4, Sox2 and Nanog, together or separately, 
led to tumorigenicity, tumor metastasis, and 
even distant recurrence after chemoradiother-
apy in different types of cancer [64-66]. High 
expression of Oct4 was detected in Prostate 
[67] and Breast cancer stem cells [68] and in 
the tumor initiating cells in a p53-/- tumor mice 
model [69]. Oct4 has a critical role in the sur-
vival of these tumor cells. Generally, these tran-
scription factors are more frequently overex-
pressed in poorly differentiated tumors 
(compared to well differentiated tumors) and 
expression level of these stemness-involved 
factors decreases with the differentiation of 
cells [70-73]. There are probably conserved 
molecular mechanisms which could explain 
dedifferentiation of somatic cells, as observed 

in cancers, and somatic cell reprogrammation 
[74-76]. So far, reprogrammation has not yet 
been demonstrated to occur, normally, in par-
ticular situation in the adult body. However, we 
could hypothesize that this potential normal 
processus, if it exists, should be constantly 
under strict control in adult body [for exemple, 
co-expression of Oct4, Nanog, Sox2 and myc, 
one of the in vitro reprogrammation cocktails, 
[75, 77-79] should never occur in normal differ-
entiated adult cells]. We could then hypothesize 
that cancer formation is the result of uncon-
trolled reprogrammation, both involving Oct4 
and many other stemness genes [80]. 

Conclusion

Oct4, first discovered and characterized 25 
years ago [1, 5], is not only a key stemness 
marker but it is also involved in lineages speci-
fication and it is a cell ressetor involved in 
somatic cell reprogrammation in vitro [33, 74]. 
Oct4 is also reexpressed in different types of 
cancer stem cells, which are tumor cell clusters 
at the origin of chemotherapy tumor resistance 
and recidive of cancers. Though, the precise 
understanding of the molecular mechanisms of 
Oct4 regulation and particularly of its switch ON 
and OFF in tissues, depending upon microenvi-
ronment, is a challenge in fundamental and 
applied research fields, for regenerative medi-
cine and cancer therapy.
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