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Role of microRNA in inner ear stem cells  
and related research progress
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Abstract: Deafness is one of the major global health problems that seriously affects the quality of human life. At 
present, there are no successful treatments for deafness caused by cochlear hair cell (HC) damage. The irrevers-
ibility of mammalian hearing impairment is that the inner ear’s sensory epithelium cannot repair lost hair cells 
and neurons through spontaneous regeneration. The goal of stem cell therapy for sensorineural hearing loss is to 
reconstruct the damaged inner ear structure and achieve functional repair. microRNA (miRNA), as a class of highly 
conserved endogenous non-coding small RNAs, plays an important role in the development of cochlea and HCs. 
miRNA also participates in the regulation of stem cell proliferation and differentiation, and plays an important role 
in the process of regeneration of inner ear HCs, miRNA has a broad application prospect of clinical treatment of 
hearing loss, which is conducive to solving the medical problem of inner ear HC regeneration.
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Introduction

According to WHO analysis data in 2018, 5% of 
the world’s population suffers from hearing 
loss, of which 432 million are adults and 34 
million are children. In addition, it is estimated 
that more than 900 million people will experi-
ence disabling hearing loss in 2050 (www.who.
int). Therefore, how to intervene or treat hear-
ing loss has become a global issue. The mam-
malian inner ear is a highly differentiated and 
complex structured organ. The mature inner 
ear hair cells (HCs) lack the ability to regener-
ate. Therefore, with the accumulation of hair 
cell damage, hearing loss will occur [1]. With 
the advancement of diagnosis and treatment 
technology, there have been many new devel-
opments in the treatment and intervention 
methods for deafness. Including cochlear im- 
plant therapy, gene therapy, drug-induced stem 
cell differentiation, molecular therapy, etc [2, 
3]. In addition, with the deepening of research 
on inner ear stem cells in recent years, it has 
been discovered that by regulating signaling 
pathways such as Wnt, Notch, Atoh1, and 

β-catenin, the potential of supporter cells to dif-
ferentiate into HCs can be activated in the inner 
ear of newborn mice [4-7]. Therefore, finding 
the most effective way to induce inner ear stem 
cells to differentiate into HCs will provide a very 
valuable reference for the intervention of hear-
ing loss due to hair cell damage. 

microRNAs (miRNAs) are a class of evolution-
arily conserved single-stranded small molecule 
RNA sequences that contain approximately 
19-23 nucleotide sequences [8]. miRNA is a 
non-protein-encoding RNA and usually plays a 
role in post-transcriptional regulation of gene 
expression in the body [9]. With the increase of 
research on miRNA, it has been found that it 
has a wide range of biological functions, such 
as regulating cell differentiation, proliferation, 
development, apoptosis and immune response 
[10-12]. Previous studies have reported that 
miRNAs are involved in the regulation of neural 
stem cell differentiation. In addition, miRNAs 
also play an important role in the regulation of 
bone marrow mesenchymal stem cell differen-
tiation [13]. With the increase of research on 
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the regulation mechanism of miRNA and its 
relationship with stem cells, it becomes possi-
ble to use miRNA to regulate the proliferation 
and differentiation of inner ear stem cells to 
protect or restore hearing. 

miRNA formation and regulation

miRNA is a type of non-coding small RNA that  
is endogenously expressed in cells consisting 
of 19 to 25 nucleotides. miRNA is widely found 
in vertebrates, drosophila, nematodes, plants, 
and even viruses. miRNA can form an RNA-
induced silencing complex (RISC) by binding 
with Argonaute (AGO) protein, completely or 
incompletely complementary pairing with the 
target mRNA, leading to mRNA degradation 
(complete pairing) or inhibiting its translation 
(incomplete pairing) to achieve post-transcrip-
tional levels regulation of gene expression [8]. 
In the nucleus, miRNAs are encoded by nucleo-
tides located in the intergenic region and tran-
scribed by RNA polymerase II to form a longer 
primitive miRNA (Pri-miRNA) with a stem-loop 
structure. Then the pri-miRNA is processed into 
a precursor miRNA (pre-miRNA) with a hairpin 
structure with a length of 70~100 nt in the 
nucleus under the action of a complex com-
posed of the RNase III family Drosha enzyme 
and the double-stranded RNA-specific binding 
protein DGCR8. Pre-miRNA is then transported 
to the cytoplasm by a nuclear transporter 
(Exportin-5), and is cleaved into shorter double-
stranded strands miRNA by the RNase III-Dicer 
and transactivating response RNA-binding pro-
tein (TRBP) complex. After the double-stranded 
miRNA is melted, one of the strands will be 
degraded, and the other strand forms a single-
stranded miRNA, which is the mature miRNA 
(mature miRNA) [14, 15]. In animals, mature 
miRNAs can be combined with specific ribonu-
cleoprotein AGO protein to form a silencing 
complex (RNA-induced silencing complex, RI- 
SC). RISC can recognize target genes and me- 
diate mRNA degradation or inhibit translation 
through complementary binding with mRNA 
3’UTR or Open Reading Frame (ORF) regions, 
thereby achieving the goal of regulating target 
gene expression [16, 17]. The way in which the 
target mRNA is treated by the RSC depends on 
the characteristics of the mRNA. If mRNA and 
miRNA are highly complementary, miRNA will 
guide the target mRNA to break at specific sites 
and activate endonucleases to degrade mRNA. 
If they are partially complementary, miRNA will 

specifically bind to the target mRNA through 
3’UTR, which will inhibit translation after tran-
scription of mRNA, but will not affect the stabil-
ity of mRNA. Therefore, the correct recognition 
of the binding region between miRNA and tar-
get mRNA will directly affect the regulatory 
function of miRNA. In addition, some studies 
have found that some miRNAs can accelerate 
mRNA deadenylation, reduce the effective ab- 
undance of mRNA in the cell, and thus down-
regulate gene expression [18, 19]. In some 
plants, miRNAs can mediate methylation of 
their loci or target genes, thereby regulating 
gene expression at the epigenetic level [20]. 
One miRNA can regulate multiple target ge- 
nes, and multiple miRNAs can also regulate 
one gene expression at the same time, so the 
miRNA regulatory network is both complex and 
sophisticated.

The role of miRNA in other organs and tissues

It has been found that miRNA expression in ani-
mals, plants, and fungi is significantly tissue-
specific and plays a variety of regulatory roles 
in cell growth and development. At present, 
there are more than 2,000 miRNAs found in  
the human body and regulating 30% of gene 
expression [21], not only participating in the 
regulation of normal physiological processes in 
the body, such as cell proliferation, differentia-
tion, development, apoptosis, etc. It is also 
closely related to the occurrence and develop-
ment of tumors [22], heart disease [23], and 
neurological diseases [24]. miRNAs play an 
important role in tumorigenesis and develop-
ment, and abnormalities in the mutual regula-
tion between miRNAs and genes can lead to 
tumorigenesis. The biological function of miR-
NAs in tumors mainly depends on the diversity 
of their regulation of target genes. Tumors relat-
ed miRNAs can be generally divided into onco 
miRNA and suppressor miRNA. Suppressive 
miRNA negatively regulates tumorigenesis, and 
its down-regulation or inactivation will directly 
lead to the occurrence and development of 
tumors, such as Let-7, miR-9, miR-34, and miR-
145, miR-451, etc [25-29]. Onco-miRNAs are 
positively correlated with tumorigenesis and 
can form a complex regulatory network with tar-
get genes and upstream transcription factors 
to regulate tumorigenesis, such as miR-130b, 
miR-182, miR-222, miR-137, miR-708, miR-96, 
miRNA-21, etc [30-33]. In addition, miRNAs al- 
so play important roles in cognition and me- 
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mory. Alzheimer’s disease-related research fo- 
und that miR-188-5p expression dysregulation 
may be the pathophysiological cause of synap-
tic dysfunction and cognitive-related diseases 
[34]. miR-148a has been shown to play an 
important regulatory role in T cell and B cell 
mediated chronic inflammatory diseases and 
autoimmune diseases, and its abnormal expre- 
ssion may be one of the pathogenesis of auto-
immune diseases [35-37]. miR-155 can regu-
late the recruitment and retention of inflamma-
tory cells in the synovium of rheumatoid arthritis 
patients by affecting the production of chemo-
kines and the expression of pro-inflammatory 
chemokine receptors [38, 39]. miR-23b can 
inhibit the activation of NF-κB induced by pro-
inflammatory cytokines and the expression of 
inflammatory cytokines by targeting TAB2, TAB3 
and IKK-α, thereby inhibiting autoimmune in- 
flammation [40]. Cardiovascular related rese- 
arch has found that miR-1 is directly involved  
in the regulation of the pathological process of 
myocardial infarction, including myocardial cell 
apoptosis, inflammation, angiogenesis, fibro-
sis, and affecting the survival and proliferation 
activity of myocardial cells [41, 42]. In aging-
related research, it was found that miRNA-335 
and miRNA-34a can inhibit the production of 
two antioxidant enzymes, such as Superoxide 
Dismutase 2 (SOD2) and Thioredoxin 2 (TRX2), 
in the mitochondria, thereby increasing the  
production of intracellular ROS and promoting 
cell aging [43]. Therefore, micRNA plays a very 
important role in the pathological process of 
many diseases. However, due to the diversity 
and complexity of miRNA regulation, it is diffi-
cult to locate a specific disease in a particular 
miRNA. Future research on miRNA should not 
only be limited to miRNA itself, but also focus 
on the identification and functional analysis of 
miRNA target genes in order to explore the 
related molecular mechanisms more thorou- 
ghly.

The role of miRNA in auditory system related 
diseases

Auditory system consists of peripheral auditory 
system and central auditory system. The per- 
ipheral auditory system includes the outer ear, 
the middle ear, and the inner ear. The inner ear 
has mechanosensory HCs that convert acous-
tic energy into neural signalling [44]. Mammal 
inner ear HCs cannot be regenerated, so once 
damaged, they can cause permanent hearing 

loss. The loss of cochlear HCs will also cause 
the spiral ganglion degeneration, which will 
affect the effect of cochlear implantation. 
Hearing loss can usually be divided into two 
types: conductive hearing loss and sensorineu-
ral hearing loss [45]. Conductive hearing loss is 
caused by structural abnormalities in the outer 
and middle ears. Sensorineural hearing loss is 
caused by damage or dysfunction of inner ear 
HCs, auditory neurons synapses, or stria vascu-
laris. Currently known causes of these tissue or 
cell damage include aging, genetic mutations, 
noise trauma, ototoxic drugs and other meta-
bolic diseases [2, 44].

miRNA plays an important role in the forma- 
tion of the inner ear during embryonic develop-
ment and the maintenance of inner ear func-
tion after birth. Over 100 miRNAs have been 
detected in various types of cochlear cells, 
such as miR-183, miR-96, miR-182, miR-124, 
miR-34a, miR-376, and miR-135b [46, 47]. 
miR-183, miR-96, and miR-182 in the cochlea 
affect the maturation of cochlear function 
through the temporal and spatial specificity of 
their expression [48]. Researchers have re- 
ported that abnormal expression of miRNAs 
can directly lead to loss of inner ear structure 
and hearing dysfunction. miRNA-124 regulates 
inner ear structure development and cell type 
differentiation [49]. miR-96 is closely related to 
the maturation of the ciliated bundles of inner 
ear hair cells and the development of cochlear 
nerves, and its mutation will cause non-syn-
dromic progressive hearing loss [50, 51]. miR-
NA-34a can affect hair cell apoptosis through 
SIRT1/p53 signaling pathway [52]. miR-183 is 
not only important for the development and 
function of animal sensory organs, but also 
plays an important role in the occurrence and 
development of noise-induced hearing loss 
[53, 54]. With the development of experimen- 
tal technology and the deepening of scientific 
understanding, the important role of miRNAs in 
hearing development and deafness is being 
continuously discovered.

The role of stem cells in the inner ear

In many mammalian organs, stem cells can 
sustain continued tissue formation by generat-
ing tissue progeny while renewing themselves 
through division. Renewal and replenishment 
of cells in blood, bones, epithelium and many 
other tissues. In the past few decades, stem 
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cell treatment has made great progress in clini-
cal application [55]. For example, bone marrow 
transplantation is used to treat lymphoma, leu-
kemia and various autoimmune diseases [56]. 
Pluripotent stem cells derived from retinal pig-
ment epithelium is used to treat blindness (US 
National Library of Medicine. ClinicalTrials.gov). 
Gene-edited stem cells are used to treat bul-
lous epidermolysis due to genetic defects [57]. 

In many non-mammalian animals, researchers 
have observed HC regeneration, such as fish 
and birds [58, 59]. In addition, some studies 
have reported that after induction of inner ear 
HCs death in newborn mice (P3-P4), some sup-
port cells in the cochlea can be observed to dif-
ferentiate into hair cells. These indicate that 
the cochlea support cells of newborn mice have 
the potential to differentiate into HCs [60]. We 
believe that these supporter cells that differen-
tiate into HCs are due to their stem cell proper-
ties during this period. There are also reports 
that the capacity to generate HCs was limited 
to a subset of supporting cells: inner pillar cells 
and third-row Deiters cells [61]. Notch and Wnt 
signaling pathways have important regulatory 
effects on stem cell self-renewal and differen-
tiation in various tissues [62-64]. Therefore, 
some researchers have used specific inhibitor 
to inhibit the Notch pathway in the in-vitro cul-
tured neonatal mouse basilar membrane. After 
72 hours, it was observed that new HCs ap- 
peared in abnormal areas, and the new cells 
could express myosin VIIa and phalloidin which 
are HC specific marker. Notch inhibitor treat-
ment not only causes an increase in the num-
ber of HCs but also reduces hearing loss 
caused by noise [65, 66]. In addition, studies 
have reported that activation of the Wnt/β-
catenin pathway in the cochlea of newborn 
mice can also induce supporter cells to differ-
entiate into HCs [4, 6]. For example, Atoh1, a 
downstream factor of Wnt/β-catenin pathway 
overexpresses in the cochlea of embryos and 
newborn mice, can promote the transformation 
of support cells into HCs [67]. Recent studies 
have found that in adult mouse cochlea, there 
are two main stages in inducing support cells to 
differentiate into HCs. The activation of Myc/
NICD induces support cells into reprogramming 
and proliferation stage, and then inactivates 
Myc/NICD and overexpresses Atoh1, thereby 
inducing reprogrammed support cells to differ-
entiate into HC-like cells. These newly generat-
ed HC-like cells can form connections with neu-

rons [68]. With the deepening of research on 
inner ear stem cells, new discoveries provide 
more ideas and methods for the treatment of 
hearing loss due to HC loss.

The role of miRNAs in inner ear stem cells

In recent years, many researchers have found 
that miRNAs can affect the differentiation and 
proliferation of stem cells by participating in  
the post-transcriptional regulation of stem ce- 
lls, and the regulation of specific miRNA expres-
sion levels can induce stem cells to differenti-
ate into specific tissue cells [69, 70]. Therefore, 
miRNA is closely related to the fate decision of 
stem cells, which provides new ideas with im- 
portant value for the treatment of diseases. In 
the embryonic stem cell related research, it 
was found that miRNA-1 and miRNA-133 can 
promote the mesoderm formation of embryonic 
stem cells. Among them, miRNA-1 can promote 
the differentiation of mouse and human embry-
onic stem cells into heart cells, while miRNA-
133 can prevents differentiation of sarcoplas-
mic progenitor cells [71]. In mesenchymal stem 
cells (MSCs) related researches, it was found 
that miR-145, miR-495, miR-29a directly regu-
late the differentiation of MSCs into chondro-
cytes [72-74]. miR128 negatively regulates the 
expression of Wnt3a, and inhibition of miR128 
can induce the differentiation of MSCs into 
neuron-like cells [75]. miR-124 can regulates 
MSCs differentiation into cardiomyocytes by 
inhibiting STAT3 gene expression [76, 77]. 
miR-9 promotes stem cell differentiation into 
neural cells by regulating Notch pathway and 
zinc finger protein 521 expression [78, 79]. 
Therefore, miRNAs play an important role in  
the differentiation of pancreas, heart muscle, 
nerves, osteoblasts, and chondroblasts. In ad- 
dition, miRNAs also have the ability to regulate 
cell reprogramming, such as the mir-200c, mir-
302 family and mir-369 family can directly 
induce somatic cell reprogramming [80, 81], 
and the miR-34 family has an inhibitory effect 
on somatic cell reprogramming [82]. 

In inner ear HC regeneration related research, 
overexpression of miR-96 and miR-182 leads 
to abnormal inner ear HC generation [83]. Due 
to vestibular HCs have a certain degree of 
regenerative ability, researchers have com-
pared the expression differences of miRNA 
between cochlea and vestibule of newborn 
mice, and found that let-7a, let-7b, miR-24, miR-
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220, miR-423, miR-190, miR-204, miR-195 
and miR-125b have significant differences [84]. 
Previous research reported that miR-182 can 
affect the differentiation of cochlear stem cells 
to HCs by regulating Sox2 and Tbx1 expression 
[85]. The low expression of miR-182 in cochlear 
support cells can inhibit trans-differentiation of 
the support cells into HCs, and its overexpres-
sion promotes the differentiation of cochlear 
stem cells into hair cells, resulting in an in- 
crease in the number of cochlear hair cells [85]. 
The miR-183 family can regulate the Wnt/β-
catenin signaling pathway by inhibiting the ex- 
pression of LRP6 [86], and Wnt signaling can 
promote cochlear sensory precursors prolifera-
tion [4], so we believe that miR-183 is closely 
related to the proliferation and differentiation 
of inner ear stem cells. In addition, miR-183 
can also inhibits the Notch signaling pathway 
by inhibiting the expression of NICD3 and 
NICD4, thereby affecting HC differentiation and 
regeneration [87]. These findings corresponds 
to previous research that inhibiting the Notch 
signaling pathway and activating the Wnt sig-
naling pathway can effectively promote the pro-
liferation and differentiation of Lgr5+ cochlear 
precursor cells into hair cells [88]. In addition, 
previous research have reported that miR-384-
5p can negatively regulate Notch1 expression 
[89]. These findings indicate that miRNAs can 
affect the development of the inner ear th- 
rough its epigenetic function, especially the 
regulation of inner ear stem cell proliferation 
and differentiation. Therefore, miRNA provides 
a potential tool for gene editing to achieve the 
regulation of the cell fate and differentiation of 
inner ear stem cells.

Conclusions

It is known that the loss of HCs in mammals is 
non-renewable, and stem cells play an impor-
tant role in the development and regeneration 
of many other tissues due to their stem mainte-
nance and differentiation capabilities. There- 
fore, the use of stem cell-related technologies 
to make auditory system damage repair, espe-
cially the regeneration and repair of damaged 
HCs, has become a hot spot in deafness re- 
search. Researches have shown that inner ear 
stem cells can self-renew and have multiple dif-
ferentiation potential that can differentiate into 
HCs under appropriate induction conditions. 
However, there are still many problems in the 
application of inner ear stem cells. For exam-

ple, the distribution and duration of inner ear 
stem cells in the inner ear are still limited and 
the molecular mechanism of in vitro differen- 
tiation of inner ear stem cells into hair cells is 
not clear. Although newborn HCs can express 
HC-related marker proteins, they still do not 
meet the standard of typical HC mature struc-
ture and functions. Therefore, new methods 
and technologies are needed to intervene in 
the process of HC regeneration. Since hun-
dreds of transcripts are simultaneously regu-
lated by miRNAs, miRNAs can be considered 
potential therapeutic tools for the manipulation 
of the processes of cell differentiation and the 
fate of hearing cells and the repair or the regen-
eration of HCs.
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