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Abstract: Gastric cancer is a disease of gene-environment interactions, as suggested by the varying geographic 
patterns of its incidence. Even in areas with high rates of Helicobacter pylori infection, only a small proportion of 
infected individuals develop gastric cancer. Genetic susceptibility to gastric cancer can be investigated by 
common genetic variants, such as single nucleotide polymorphisms (SNPs), in various genes that regulate 
multiple biological pathways. The susceptibility to gastric carcinogenesis has a substantial influence on the 
population attributable risk by modulating the effects of environmental risk factors. Despite recent progress in the 
field of the molecular epidemiology of cancer, a re-evaluation of gastric cancer susceptibility and potentially 
functional SNPs in candidate genes is necessary, given the inconsistency of previous reported studies. This review 
focuses on genetic variants that contribute to the etiology of gastric cancer, particularly those SNPs involved in 
inflammatory response, metabolism of chemical carcinogens, DNA repair, and tumor suppression. In the future, 
well-designed large multicenter population-based studies will be needed to validate current findings and provide 
the rationale for identifying at-risk subpopulations for primary prevention of gastric cancer. 
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INTRODUCTION 
 
Gastric cancer is a global health problem with 
a high rate of tumor incidence and mortality. It 
is the second most common cause of death 
from cancer, with an estimated 700,000 
deaths each year worldwide [1]. Although 
surgery remains the major therapeutic 
approach in the management of early-stage 
gastric cancer, chemotherapy and radiation 
therapy have a limited effect on survival in the 
late stage of this malignancy. Therefore, 
primary prevention is still considered the best 
option for controlling this life-threatening 
disease. 
 
The etiology of gastric cancer has a significant 
environmental component characteristic of the 
geographically varied incidence in the disease 
distribution, with high-risk areas in East Asia, 
East Europe, and parts of Central and South 

America [1]. Migrant populations have been 
found to have significantly lower cancer risks 
after they move from high-risk regions to low-
risk regions [2-4]. Several environmental 
factors, including Helicobacter pylori infection, 
consumption of salted and nitrated foods, and 
cigarette smoking, have been found to be 
associated with the risk of developing gastric 
cancer, whereas fresh fruits and vegetables or 
the micronutrients contained in fruits and 
vegetables have been found to be protective 
against gastric cancer [5].  
 
In addition to these environmental factors, 
genetic factors also play an important role in 
gastric cancer etiology, as demonstrated by 
the fact that only a small proportion of 
individuals exposed to the known 
environmental risk factors develop gastric 
cancer. In recent years, multiple gene 
deregulations have been found in gastric 
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cancer, which provide potential targets for 
therapeutic intervention [6]. Meanwhile, 
molecular epidemiological studies have 
described some relatively common genetic 
variants, such as single nucleotide 
polymorphisms (SNPs), as biomarkers for 
genetic susceptibility to gastric cancer 
development. These genetic variants may 
modulate the effects of environmental factors 
by regulating multiple biological pathways in 
response to the exposure during gastric 
carcinogenesis, thus exerting an effect on 
population attributable risks. Although the 
absolute risk associated with each of these 
variants is low, combined analysis of multiple 
genetic variants may help to identify 
individuals at high risk. 
 
In this review, we summarize a number of 
published association studies discussing 
several well-characterized genetic variants or 
SNPs involved in the etiology of gastric cancer, 
with particular emphasis on their functional 
relevance. We also incorporate meta-analyses 
published in recent years to reflect most 
updated opinions on the associations between 
SNPs and gastric cancer risks. For some genes 
for which meta-analyses are not available, we 
searched MEDLINE by the names of the genes 
and gastric cancer in publications in English to 
select relevant reports and included some 
additional articles by a manual search of 
original studies on related topics. Analyses 
were performed with the Statistical Analysis 
System software (v.9.1.3; SAS Institute, Cary, 
NC) and the Review Manager (v.4.2; The 
Cochrane Collaboration, Oxford, England) as 
described elsewhere [7]. 
 
MOLECULAR EPIDEMIOLOGICAL STUDIES 
 
1. H. pylori infection 
      
H. pylori infection is associated with the 
pathogenesis of diverse gastric diseases, 
ranging from simple asymptomatic gastritis to 
the most serious gastric neoplasia. When H. 
pylori infection challenges gastric mucosa, it 
induces a vigorous inflammatory response by 
stimulating gastric mucosal production of 
several inflammatory cytokines, such as 
interleukin-1 beta (IL-1β) and tumor necrosis 
factor alpha (TNF-α), which may contribute to 
mucosal resistance to injury [8]. Mounting 
evidence also suggests that concomitant 
inhibition of acid secretion may extend the 
area of H. pylori colonization, resulting in 

damage-induced inflammation of the corpus 
mucosa, leading to an early onset of gastric 
atrophy and subsequent malignant 
transformation [8]. Therefore, genetic 
polymorphisms in genes that code for crucial 
inflammatory molecules may alter the 
inflammatory response to H. pylori infection 
and contribute to malignant transformation of 
gastric mucosa. 
 
IL-1B and IL-1RN. The genes of the IL-1 family, 
IL-1B and IL-1 receptor antagonist (IL-1RN), 
are clustered on the human chromosome 2q, 
encoding IL-1β and IL-1 receptor antagonist 
(IL-1ra), respectively. IL-1β is a potent pro-
inflammatory cytokine that not only has 
multiple important biologic effects but also 
regulates inflammatory reaction and immune 
response through its effect on the expression 
of various genes and surface receptors [9, 10]. 
IL-1ra is an anti-inflammatory cytokine that is 
inducible in most cells. It shares 26% amino 
acid homology with IL-1β and competes for IL-
1 receptor binding without agonist activities, 
thereby modulating the pro-inflammatory 
effects of IL- 1β [10, 11]. IL-1B-511 and IL-1B-
31 are two diallelic polymorphisms, 
representing a C-T base transition at positions 
−511 and −31 base pairs (bp) of the genes 
from the transcriptional start site, which may 
influence gene expression by regulating the 
binding of transcription factors [12]. Likewise, 
the IL-1RN gene contains a variable number of 
86-bp tandem repeats in the second intron, 
resulting in a short allele (IL-1RN*2, with two 
repeats) or long allele (IL-1RN*L, with three to 
six repeats), which may also affect its protein 
expression [13, 14]. Early investigation by El-
Omar et al. showed an association of gastric 
cancer risk with the genotypes carrying IL-1B-
511T, IL-1B-31T, and IL-1RN*2/*2, with odds 
ratios (OR) of 2.5 (95% CI = 1.6-3.8), 2.6 (95% 
CI = 1.7-3.9), and 3.7 (95% CI = 2.4-5.7) for 
the homozygotes, respectively [15]. However, 
subsequent epidemiological studies did not 
generate consistent results for the association 
between these genetic polymorphisms and 
gastric cancer risk. For example, the carriers of 
the IL-1B-31C allele in a Mexican population 
had an increased risk of distal gastric cancer 
(OR = 7.63, 95% CI = 1.7-46.9) [16], whereas 
other studies did not find any association 
between IL-1B and IL-1RN polymorphisms and 
gastric cancer risk in an Asian population [17, 
18]. Furthermore, the IL-1B-511C/C genotype 
may be an independent risk factor for gastric 
cancer in the Thai population [19]. These 
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inconsistent results may result from the 
variation in allele frequencies in different 
ethnic groups, tumor types, and study 
methodologies among these studies. Three 
recently published meta-analyses provided 
enhanced statistical power for assessing the 
association of IL-1 polymorphisms with gastric 
cancer. Two of these meta-analyses found an 
association of IL1B-511T and IL1RN*2 with 
gastric cancer risk in Caucasians but not in 
Asians [20, 21], whereas the third found a null 
association in both Caucasian and Asian 
populations [22]. A possible explanation for 
this discrepancy is that the authors may have 
grouped studies with different ethnic groups in 
their analyses. 
 
TNF-. Tumor necrosis factor alpha (TNF-), 
encoded by the TNFA gene, is another potent 
pro-inflammatory cytokine and acid inhibitor 
with increased expression in H. pylori infection 
[23-25]. Although the TNFA gene has multiple 
polymorphisms within the promoter region, 
most published studies have focused on TNFA-
308 (G>A), TNFA-238 (G>A), and TNFA-857 
(C>T) because the other SNPs are functionally 
silent. Previous reports demonstrated that the 
TNFA-308A and TNFA-857T alleles were 
associated with increased TNF- production, 
as a result of increased promoter activity [26, 
27]. El-Omar et al. found that pro-inflammatory 
genotypes of TNFA were associated with 
elevated gastric cancer risks [28], a finding 
supported by other studies [29-31]. However, 
other researchers could not reproduce these 
results and have suggested that 
polymorphisms of TNFA may not be 
significantly associated with gastric cancer risk 
[32-34]. Currently, this controversial problem 
is partly resolved by two meta-analyses that 
support an association of TNFA-308A and 
TNFA-857T alleles with increased risk of 
gastric cancer , especially in Caucasian 
populations [35, 36]. However, the association 
with the TNFA-238A allele has not been 
confirmed. 
  
2. Metabolism of carcinogens 
 
The bioactivation and detoxification of 
chemical carcinogens and tissue 
transformation by chemical carcinogens are 
important in human carcinogenesis. In 
humans, a large number of metabolic enzymes 
can be grouped into two categories: phase I 
and phase II enzymes. Phase I enzymes, such 

as the cytochrome P450 superfamily (CYP), 
usually activate chemicals and convert 
lipophilic chemical compounds into more 
readily excretable polar products through 
introducing electrophilic groups to the 
molecules. Phase II enzymes, such as the 
glutathione S-transferase (GST) superfamily, 
usually conjugate water-soluble moieties to 
lipophilic compounds, most often making 
chemicals very hydrophilic and thus 
eliminating biological activities, although they 
may also activate some chemical carcinogens 
[37-40]. Epidemiological studies have 
identified several chemicals in the etiology of 
gastric cancer , such as N-nitrosamines and 
alkylnitrosamides [41]. These chemicals, after 
entering the human body, may undergo 
enzymatic metabolism and change their 
bioactivities. Some enzymes, such as P450, 
are known to be inducible, and enzymatic 
differences can explain the variable 
susceptibility of individuals to carcinogens. 
Therefore, the overall balance between 
activation and detoxification may determine 
the ultimate carcinogenicity of many toxicants 
in humans. 
 
CYP2E1. CYP2E1 belongs to the CYP2E 
subfamily and catalyzes the activation of 
various nitrosamines and other low-molecular-
weight carcinogens produced either 
exogenously or endogenously [42, 43]. It is 
one of the major cytochrome P450 
isoenzymes that constitute approximately 7% 
of all CYP isoforms, with the highest 
constitutive expression in human liver and low 
expression in extrahepatic tissues [44, 45]. 
There are no sex-related differences in its 
distribution and activation [45], but genetic 
polymorphisms have been associated with 
inter-individual differences in enzymatic 
activities, which contribute to individual 
capacity of metabolizing carcinogens [46]. Kim 
et al. found that CYP2E1 had a significantly 
lower level of catalytic activity and protein 
expression in Japanese populations compared 
with Caucasian populations [47], suggesting 
an underlying difference in ethnic and/or 
geographical origins. There are at least 13 
genetic polymorphisms that have been 
described for the human CYP2E1 gene, 
according to the Human Cytochrome P450 
Allele Nomenclature Committee 
(http://www.imm.ki.se/CYPalleles). The most 
frequently studied genetic polymorphism in 
gastric cancer is the CYP2E1*2 (C2) allele, 
recognized by the RsaI digestion in the 5'-
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flanking region of the gene (CYP2E1*5B -
1053C>T). A previous study demonstrated that 
this genetic variant might affect the binding of 
trans-acting factors and alter the gene 
expression through transcriptional regulation 
[48]. Therefore, CYP2E1 is presumed to confer 
susceptibility to gastric cancer by interaction 
with carcinogens. Using a meta-analysis, 
Boccia et al. found that the C2 allele seemed 
to be associated with gastric cancer risk in 
Asians (OR = 1.44, 95% CI = 0.85-2.42) but 
not in Caucasians (OR = 0.42, 95% CI = 0.05-
3.85) [49]. They pointed out that the lack of 
significance for the association in Caucasian 
populations might be a result of the lower 
prevalence of CYP2E1 C2 carriers (only 5–10% 
compared with 25–50% for Asians) [49]. 
 
GSTM1. GSTM1 is a main component of the 
GST family that facilitates the binding of 
glutathione (GSH), a nucleophilic tripeptide, to 
carcinogens, leading to detoxification of 
several known chemical compounds. The 
absence of GSTM1 expression, due to an 
inherited homozygous deletion of the GSTM1 
gene in the general population, may confer an 
increased cancer risk because the deletion 
carriers have a low ability to detoxify several 
xenobiotics, causing a decreased defense 
against cellular damage [50, 51]. Because in 
vitro studies have shown that H. pylori causes 
oxidative damage in gastric epithelial cells 
[52], the GSTM1-null genotype probably 
facilitates H. pylori-caused oxidative damage 
and therefore may be considered a risk factor 
for gastric cancer. Through a search of the 
GSTM1-related articles, we found 25 studies 
[53-77] that have investigated the role of the 
GSTM1-null genotype in the gastric cancer 
etiology, but no meta-analysis had been 
reported. We performed a meta-analysis using 
this pool of 25 studies and found that the 
GSTM1-null genotype elevated the gastric 
cancer risk by 1.33-fold (Table 1). However, 
there was substantial heterogeneity among 
these 25 studies (P = 0.003). When we 
evaluated the source of heterogeneity by 
ethnicity (Chinese population: 11 studies of 
1,107 cases and 2,206 controls; other Asians: 
7 cases of 1,306 cases and 1,999 controls; 
Caucasians: 7 studies of 926 cases and 2,068 
controls), we found no between-study 
heterogeneity in each subgroup of ethnicity 
(data not shown). The increased risk 
associated with the GSTM1-null genotype was 
significant in both Chinese (OR = 1.58, 95% CI 
= 1.35-1.85) and other Asian populations (OR 

= 1.17, 95% CI = 1.01-1.36) but not in 
Caucasians (OR= 1.03, 95% CI = 0.88-1.21). 
 
3. Deoxynucleotide synthesis and DNA repair 
          
Previous studies have found that high 
consumption levels of vegetables and fruits 
were associated with a reduced risk of gastric 
cancer [78, 79]. The protective effect of 
vegetables and fruits against gastric cancer is 
in part due to their levels of folate, which acts 
as the methyl group donor and plays an 
important role in the de novo DNA synthesis. 
Chronic folate deficiency has been associated 
with abnormal DNA methylation [80], DNA 
strand breaks, and chromosomal instability 
[81, 82]. Furthermore, folate depletion may 
impair DNA excision repair, as shown in rat 
colonic mucosa, whereas such a depletion 
does not affect mismatch repair [83]. 
Therefore, it is possible that diminished 
enzyme activities involved in folate 
metabolism and DNA strand break repair due 
to functional polymorphisms of the genes 
involved in the metabolism of folate may be 
associated with gastric cancer risk. 
 
MTHFR. 5,10-Methylenetetrahydrofolate 
reductase (MTHFR) is coded by the MTHFR 
gene on chromosome 1p36.3 in humans [84]. 
It is a central regulatory enzyme in the folate 
metabolism pathway, which irreversibly 
reduces 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate, the predominant 
circulatory form of folate and carbon donor for 
the re-methylation of homocysteine to 
methionine. In MTHFR, there are up to 281 
polymorphisms; among these, the 677C>T and 
1298A>C nonsynonymous SNPs have been 
extensively studied. The 677C>T nucleotide 
change at codon 222 of MTHFR results in an 
alanine to valine substitution, leading to the 
thermolabile variant of MTHFR with a 
decreased enzymatic activity, and 
subsequently increased plasma homocysteine 
levels [85]. The 1298A>C polymorphism, 
corresponding to nucleotide 1286 of the open 
reading frame, results in a Glu-to-Ala 
substitution and does not appear to cause 
hyperhomocysteinemia in either the 
heterozygous or homozygous state [86]. The 
roles of the MTHFR 677C>T and 1298A>C 
SNPs in gastric cancer susceptibility have 
recently been summarized by Zintzaras et al. 
[87]. They found that MTHFR 677C>T was 
associated with gastric cancer risks in East 
Asians but not Caucasians, whereas the 
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1298A>C variant was associated with gastric 
adenocarcinoma only in East Asians. 
 
XRCC1. X-ray repair cross complementing 
group 1 (XRCC1) is one of the proteins 
involved in the base excision repair (BER) 
pathway, which functions in the repair of 
single-strand breaks caused by exposure to 
ionizing radiation, alkylating agents, and 
metabolic toxins. Considerable evidence 
indicates that XRCC1 participates in BER 
through an interaction with a complex of DNA 
repair proteins, including poly(ADP-ribose) 
polymerase (PARP), DNA ligase3, and DNA 
polymerase-beta [88, 89]. Several common 
nonsynonymous SNPs in XRCC1 have been 
reported, including Arg399Gln in exon 10 and 
Arg194Trp in exon 6. Arg399Gln is located in 
the BRCT-I interaction domain of XRCC1 with 
poly(ADP-ribose) polymerase, whereas the 

Arg194Trp variant sits in the PCNA binding 
region. Although these two SNPs have been 
extensively studied in regards to their 
biological functions and association with 
cancer risk in varied human malignancies, only 
five studies have investigated these SNPs in 
association with gastric cancer risks, with 
conflicting results [90-94], underscoring the 
need for additional studies with a more 
rigorous design and large sample sizes. 
 
4. Selected tumor-suppressor genes  
 
TP53. The tumor protein 53 gene (p53) is one 
of the most frequently mutated tumor-
suppressor genes in human carcinogenesis 
and plays a pivotal role in the cellular 
response to stress by inducing cell growth 
arrest or apoptosis. It is conceivable that 
functional variants in TP53, which differ in 

Table 1 Summary of meta-analyses of gastric cancer risks (random effects) 
Genes and 

variants 
Studies 
included 

Sample size 
(cases/controls) 

Model OR (95% CI) References 
Asians Caucasians 

IL-1B-31 
(T>C) 

39 6,863/8,434 Dominant 0.92 
(0.71-1.18) 

1.10 
(0.81-1.50) 

[20, 21] 

 14 2,616/4,230 Dominant 0.91 
(0.71-1.17) 

1.11 
(0.74-1.67) 

[20, 21] 

 35 5,503/7,865 Homozygotes 0.82 
(0.63-1.06) 

1.21 
(0.88-1.65) 

[22] 

IL-1B-511 
(C>T) 

39 2,616/4,230 Dominant 1.16 
(0.92-1.46) 

1.42 
(0.97-2.06) 

[20, 21] 

 14 2,953/3,350 Dominant 0.96 
(0.90-1.15) 

1.49 
(1.20-1.85) 

[20, 21] 

 35 5,503/7,865 Homozygotes 1.03 
(0.87-1.21) 

1.32 
(0.86-2.02) 

[22] 

IL1RN*2 39 6,863/8,434 Dominant 1.09 
(0.78-1.52) 

1.30 
(1.09-1.54 

[20, 21] 

 23 3,901/6,449 Dominant 1.11 
(0.77-1.61) 

1.21 
(0.99-1.47) 

[20, 21] 

 35 5,503/7,865 Homozygotes 0.84 
(0.29-2.44) 

1.37 
(0.84-2.23) 

[22] 

TNFA-308 
(G>A) 

19 3,335/5,286 Recessive 1.77 
(0.68-4.67) 

1,55 
(1.10-2.36) 

[35, 36] 

 24 4,399/6,855 Homozygotes 1.14 
(0.70-1.84) 

1.74 
(1.21-2.51) 

[35, 36] 

CYP2E1*2 
(C2) 

13 2,066/2,754 Homozygotes 1.44 
(0.85-2.42) 

0.42 
(0.05-3.85) 

[49] 

GSTM1 
null 

25 3,339/6,273 Null vs. non-
null 

1.58 
(1.35-1.85) 

1.03 
(0.88-1.21) 

(our meta-
analysis) 

MTHFR 
(677C>T) 

8 1,584/2,785 Homozygotes 1.66 
(1.30-2.11) 

1.24 
(0.16-9.64) 

[87] 

P53 R72P 12 1,665/2,358 Homozygotes 1.20 
(0.88-1.63) 

1.21 
(0.92-1.58) 

[104] 

CDH1-160 
(C>A) 

10 1,962/2892 Dominant 0.82 
(0.66-1.02) 

1.40 
(0.95-2.04) 

[111] 
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their biological functions, may influence the 
initiation and progression of normal tissues to 
malignancies. The G>C change at codon 72 of 
the p53 gene results in an Arg>Pro amino acid 
substitution (p53R72P), of which the 72R 
isoform seems to induce faster apoptosis, 
while the 72P isoform has been suggested to 
induce G1 arrest more effectively [95, 96]. 
Recently, Siddique and Sabapathy reported 
that p53 72P cells had a significantly higher 
DNA-repair capacity than did p53 72R cells, 
possibly because p53 72P was more efficient 
than p53 72R in activating several p53-
dependent DNA-repair target genes [97]. 
Pietsch et al. also suggested that the 72R 
variant, when found in a mutant p53, may 
have enhanced tumor development (e.g., 
through increased inactivation of p73). In 
contrast, when found in the wild-type p53, the 
72R variant may inhibit tumor development 
(e.g., through increased apoptotic ability) [98]. 
These results reflect the functional differences 
between the p53 variants and suggest that 
their expression status may influence cancer 
risk. Previous studies of the association 
between p53 codon 72 polymorphisms and 
gastric cancer risk have reported conflicting 
results [99-103]. A meta-analysis performed 
by Zhou et al. also failed to find any significant 
difference in the genotype distribution 
between gastric cancer patients and cancer-
free controls (Arg/Arg OR = 0.96, 95% CI = 
0.79-1.16; Pro/Pro OR = 1.21, 95% CI = 0.92–
1.58; Pro/Arg OR = 0.95, 95% CI = 0.79-1.14) 
[104]. However, further stratified analysis 
revealed that patients with gastric cancer had 
a significantly lower frequency of Arg/Arg (OR = 
0.84, 95% CI = 0.72-0.99) than non-cancer 
controls among Asians and that the genotype 
distribution differed by the location, stage, and 
histological differentiation of gastric cancer 
[104]. 
 
CDH1. The E-cadherin gene (CDH1) maps to 
chromosome 16q22.1 and encodes a calcium-
dependent trans-membrane cellular adhesion 
protein, which interacts with cytoskeleton actin 
filaments through catenins in regulating 
intracellular signaling and which promotes 
tumor growth through the Wnt-signaling 
pathway [105]. Several studies have provided 
strong evidence of an extremely high incidence 
of CDH1 germline mutations in an inherited 
familial cancer syndrome dominated by diffuse 
gastric cancer [106, 107]. However, CDH1 
mutations, including in-frame deletions and 
point mutations, were also identified in 50% of 

patients with sporadic diffuse gastric cancer 
[108]. Furthermore, an inhibition of CDH1 
through loss of expression has been reported 
to be associated with risk of cancers in the 
esophagus, breast, and stomach [109]. These 
results suggest that CDH1 may act as a tumor 
suppressor in diffuse gastric cancer and that 
its loss of function may predispose to gastric 
cancer. Several polymorphisms have been 
identified in the coding regions of the CDH1 
gene, and the 160C>A SNP located 160 bp 
upstream of the transcriptional start point has 
been shown to cause a 70% reduction in the 
transcriptional activity [110]. Therefore, it is 
likely that the CDH1-160C>A variant is 
associated with increased gastric cancer risks. 
In a meta-analysis, CDH1-160C>A was found 
to be associated with an increased gastric 
cancer risk among Caucasians (OR = 1.40; 
95% CI = 0.95-2.04) but with a decreased risk 
among Asians (OR = 0.76; 95% CI = 0.55-
1.05) [111]. 
 
CONCLUSIONS AND PERSPECTIVES  
 
Gastric cancer is a disease of gene-
environment interactions, as suggested by the 
varying geographic patterns of gastric cancer 
incidence. Genetic susceptibility can be 
investigated by common genetic variants, such 
as SNPs in the genes involved in the regulation 
of multiple biological pathways that play a role 
in gastric carcinogenesis. Such genetic 
susceptibility may substantially influence the 
population attributable risk by modulating the 
effects of environmental risk factors. Despite 
recent progress in the field of molecular 
cancer epidemiology, a re-evaluation of gastric 
cancer susceptibility and potentially functional 
polymorphisms in candidate genes is 
necessary, given the inconsistency of previous 
reports. It is not surprising that the same 
genetic polymorphisms have different effects 
on gastric cancer risk among different ethnic 
groups, which is likely due to diverse genetic 
background, lifestyles, and disease 
prevalence, among other factors. However, it 
also reminds us to be very cautious when we 
generalize findings from one population to 
another. In addition, detailed information 
about environmental exposure should be 
collected in future studies, because the low-
penetrant genetic effects of common SNPs 
may largely depend on interaction with a 
particular environmental exposure in multiple 
stages of gastric carcinogenesis. 
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It should be admitted that our current 
knowledge of the genetic basis of gastric 
cancer etiology is still very limited.  Most of the 
genetic polymorphisms described here have a 
relatively weak association with gastric cancer 
risk. Heterogeneity among published studies is 
frequently observed. However, combined 
analysis of multiple polymorphisms may be 
more discriminating than the use of a single 
locus genotype in identifying individuals with a 
higher gastric cancer risk. Well-organized, 
multicenter prospective studies with large 
sample sizes based on different ethnicities are 
of great value in identifying valuable genetic 
polymorphisms for the prediction of gastric 
cancer and provide the rationale for primary 
prevention of this malignancy. In the near 
future, genome-wide association approaches 
will provide us the opportunity to gain a 
comprehensive genetic view of the disease 
and allow us to identify novel disease-specific 
genotypes that have not been investigated to 
date, further increasing our knowledge of the 
functional relevance of SNPs in the etiology of 
gastric cancer. 
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