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Abstract: Integrins are cell surface receptors for extracellular matrix proteins and play a key role in cell survival, 
proliferation, migration and gene expression. Integrin signaling has been shown to be deregulated in several types 
of cancer, including prostate cancer. This review is focused on integrin signaling pathways known to be deregu-
lated in prostate cancer and known to promote prostate cancer progression. 
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Introduction 

 
Prostate cancer is a significant burden in 
western countries and has been predicted to 
account for more than 28,660 deaths and 
186,320 new cases in 2008 [1]. Prostate can-
cer development proceeds through a series of 
defined states. These include prostatic intra-
epithelial neoplasia (PIN); high-grade PIN le-
sions, which usually develop prior to invasive 
cancer; androgen-sensitive invasive cancer 
and an androgen-independent castration-
resistant state [2, 3].  The current therapies for 
prostate cancer involve surgery, androgen ab-
lation, or the blockade of the androgen recep-
tor; however, a significantly high percentage of 
treated prostate cancers eventually grows, 
despite either castration levels of androgen or 
the presence of anti-androgens.  For these 
patients, radiation therapy is the only treat-
ment available.  Still, a large number of pa-
tients relapse.  
 
Integrins are cell surface receptors for extra-
cellular matrix proteins and play a key role in 
cell survival, proliferation, migration and gene 
expression. Integrin signaling has been shown 
to be deregulated in several types of cancer, 
including prostate cancer. In prostate cancer, 
tumor cells have a different surrounding matrix 
than normal cells; thus changes in the integrin 

profile may be functionally relevant and contri-
bute to aberrant intracellular signaling [4-8]. 
Several studies have associated deregulation 
of integrin expression with the progression of 
prostate cancer to an advanced stage (Table 
1) [4, 8-11]. This article reviews the literature 
on the major signaling pathways activated by 
integrins and their deregulation in prostate 
cancer.  
 
Integrin deregulation in prostate cancer  
 
Integrins are heterodimers consisting of α and 
β subunits. At this time, 24 heterodimers of 
the integrin family, consisting of 18 α and 8 β 
subunits, have been described [12, 13], and 
their ability to activate specific signaling path-
ways has been investigated [13]. Integrin sig-
naling plays a key role in the alteration of cellu-
lar growth and tumor progression through the 
regulation of gene expression, apoptosis, cell 
adhesion, proliferation, migration and angi-
ogenesis [14, 15], as well as proteinase ex-
pression [16]. Most α and β subunits have 
been shown to be downregulated in prostate 
cancer, whereas only α6, β1, β3 and β6 are 
upregulated [6]. Among the α subunits, several 
reports show that α3, α4, α5 and α7 are 
downregulated [17, 18]; α2 and α6 are aber-
rantly expressed, whereas there are no reports 
on the remaining subunits [6]. A unique 
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expression pattern has been shown for α2, 
which is downregulated in prostate cancer, but 
upregulated in lymph node metastases as 
compared to primary lesions [18, 19].  An ex-
tensive analysis of α6 expression in prostate 
cancer shows that α6 expression is either 
maintained or overexpressed in prostate can-
cer, and increases in lymph node metastases 
[11, 19-21].  
 
Among the β subunits, β1, β3, and β6 are 
upregulated, while β1C and β4 are downregu-
lated in human prostate cancer [6, 20, 22-24]. 
No reports are available for β5, β7, and β8. 

Five β1 variant subunits, β1A, β1B, β1C, β1C-
2, and β1D, generated by alternative splicing, 
have been described. Two variants, β1C and 
β1A, are shown to be expressed in benign 
prostatic epithelium. β1C is expressed at both 
protein and mRNA levels in benign prostatic 
epithelial cells, but is markedly downregulated 
in adenocarcinoma [25-28]. Fornaro et al. 
show that the expression of β1C integrin in-
creases p27kip1 levels, a cell cycle inhibitor, as 
well as p27kip1 association with cyclin A [26]. In 
contrast, the findings that the expression of 
the β1A integrin variant is upregulated and is 
necessary for the cell’s ability to grow in an 

Table 1. Deregulated expression of integrin subunits in human prostate cancer and metastasis 

 
Up-Regulated 

Subunit Adenocarcinoma Metastasis References 

6 unknown  
Knox et al., 1994 [11]; Bonkhoff et al., 1993 [19]; 
Nagle et al., 1995 [20] 

IIb (trun-
cated)  unknown Trikha et al, 1998 [33] 

1  unknown Murant et al., 1997 [10]; Knox et al., 1994 [11]; Goel 
et al., 2007 [22] 

3   Zheng et al., 1999 [30] 

6   Li and Languino, 2007 [31] 

 
Down-Regulated 

3, 4 5 
 
 

unknown Nagle et al., 1994 [18] 

7 
 
 

unknown Ren et al., 2007 [17] 

1C 
 
 

unknown Fornaro et al., 1996, 1998, 1999 [25-27]; Perli-
no et al., 2000 [28] 

4 
 
 

unknown Nagle et al., 1995 [20];  Davis et al., 2001 [23]; 
Allen et al., 1998 [24] 

 
Other 

2 
 
 

 
 

Nagle et al., 1994 [18]; Bonkhoff et al., 1993 
[19] 

This table shows the expression of integrin subunits found to be deregulated in human primary and metastatic 
prostate cancer. 
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anchorage-independent manner [29], point to 
the important role that the β1A integrin may 
have during prostate cancer progression and 
will be helpful in formulating new therapeutic 
strategies.  
 
Upregulation of αvβ3, αvβ6 and the truncated 
αIIb integrin variant has been described [6].  
Zheng et al., using human prostate cancer 
cells isolated from 16 surgical specimens, 
show that these cells express αvβ3, whereas 
normal prostate epithelial cells do not [30]. 
Similarly, αvβ6 [31, 32] and the truncated αIIb 
integrin variant [33] are found to be expressed 
in adenocarcinoma.  
 
The β1 and β3 integrin subunits are known to 
localize in focal contacts and to mediate 
spreading and cytoskeletal rearrangement in 
normal cells [12, 13]. However, when we ei-
ther downregulated or upregulated these sub-
units by siRNA or ectopic expression analysis, 
we show that cancer cell spreading is not af-

fected [29, 34]. These results demonstrate 
that the ability of the β1 and β3 subunits to 
promote cancer progression is independent of 
cell spreading.  
 
Overall, these findings indicate that the ex-
pression of selective integrin subunits is dere-
gulated during prostate cancer progression, 
and that these subunits are potential diagnos-
tic markers in prostate cancer. 
 
Activation of unique signaling pathways by 
integrins 
 
The expression of the β1 and β3 subunits acti-
vates specific signaling pathways and supports 
distinct cancer cell functions [34, 35]. Analysis 
of the mechanism by which β1 may promote 
tumor growth in vivo, shows that β1 is uniquely 
required in cancer cells for the localization, 
expression and function of insulin-like growth 
factor type 1 receptor (IGF-IR), which is known 
to support cancer cell proliferation and surviv-

Figure 1.  Integrin-dependent signaling pathways.  Schematic drawing showing the signal transduction path-
ways regulated by integrins that control prostate cancer cell survival, proliferation, adhesion, migration, and 
cytoskeletal organization. For a detailed description of integrin downstream effectors like Rac, cdc42, Src, 
Cas, Rho and Crk, or cytoskeletal proteins like AFAP-110, talin and paxillin, readers should refer to previous 
articles [38, 86]. 
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al [29, 35]. The mechanism proposed for β1 
integrins’ control of IGF-IR activity involves β1 
recruiting specific adaptors to the plasma 
membrane, thus increasing the concentration 
of specific adaptors proximal to the growth 
factor receptor [35]. This study provides evi-
dence that the β1 cytodomain plays an impor-
tant role in mediating β1 integrin association 
with either insulin receptor substrate-1 (IRS-1) 
or Grb2-associated binder1 (Gab1)/SH2-
containing protein-tyrosine phosphate 2 
(Shp2), downstream effectors of IGF-IR. Specif-
ically, β1A associates with IRS-1 and β1C with 
Gab1/Shp2 [29, 35, 36].  
 
In parallel studies, we have discovered that β3 
is uniquely required in cancer cells for increas-
ing cdc2 levels, as well as cdc2 kinase activity. 
While β1 integrin expression does not increase 
cancer cell motility or cdc2 levels, and appears 
to predominantly modulate cell proliferation 
and survival, these effects are specific for β3.  
Higher levels of cdc2 result in increased cell 
migration mediated by the specific association 
of cdc2 with cyclin B2 and the phosphorylation 
of caldesmon, a substrate of cdc2. These re-
sults show that cdc2 acts as a downstream 
mediator of the αvβ3 integrin and promotes 
cancer cell migration [34].  In conclusion, the 
β1 and β3 integrins promote activation of se-
lective signaling pathways that support pros-
tate cancer progression.   
 
Integrin downstream effectors 
 
Since integrins lack catalytic activity, they de-
pend on intracellular effector proteins to 
transduce signals [37, 38]. In this section, we 
discuss the major signaling effectors that are 
likely to contribute to prostate cancer progres-
sion (Figure 1 and Table 2).  
 
Focal adhesion kinase (FAK) 
 
FAK is a non-receptor tyrosine kinase, which 
becomes activated upon integrin-extracellular 
matrix (ECM) interactions and integrin cluster-
ing [39, 40]. Upon phosphorylation, FAK inte-
racts with several signaling proteins, including 
Src kinases, Cas, paxillin and Phosphoinositide 
3-Kinase (PI 3-Kinase) [39, 40]. FAK signaling 
is altered in prostate cancer. In normal pros-
tate, FAK expression is absent or weak in se-
cretory epithelium and is expressed predomi-
nantly in the basal layers. Prostate carcinoma 
shows a greater expression of FAK compared 

to the secretory layer of normal prostate. FAK 
expression is further increased in invasive 
prostate cancer [41, 42]. 
 
A well established role for FAK is its ability to 
regulate cancer cell motility [43]. The expres-
sion of dominant negative FAK inhibits the 
migration of prostate carcinoma cells [44]. In 
our previous study, we show that the β3 inte-
grin induces cell migration on vitronectin, 
which is mediated by FAK [30]. Recently, the 
role of FAK in cell migration has been con-
firmed by using an inhibitor of FAK phosphory-
lation, PF-573,228. This inhibitor fails to inhi-
bit cell growth or to induce apoptosis. In con-
trast, treatment with PF-573,228 inhibits both 
chemotactic and haptotactic migration con-
comitant with the inhibition of focal adhesion 
turnover [45]. In addition, Dasatinib, an inhibi-
tor of Src family kinases/Abl, blocks FAK and 
Cas signaling in human prostate cancer cells, 
resulting in the suppression of invasion, migra-
tion and adhesion of prostate cancer cells 
[46].  
 
Bombesin is shown to stimulate PC-3 cell mi-
gration and tyrosine phosphorylation of FAK.  
In addition, bombesin also increases the asso-
ciation between FAK and the β1, β3 and β5 
integrins [47]. Bombesin induces relocaliza-
tion of FAK in focal contacts, followed by its 
tyrosine phosphorylation and the formation of 
actin lamellipodia. FAK inhibitors cause re-
duced cell motility upon bombesin treatment 
[48].  FAK is also required for bombesin stimu-
lated activation of RhoA, a GTPase required for 
cell migration [49]. Another example of the 
role that FAK plays in cell migration is provided 
by Sumitomo et al., who use Neutral endopep-
tidase 24.11 (NEP) [50]. NEP is an enzyme 
which cleaves neuropeptides such as bombe-
sin and endothelin-1. NEP treatment blocks 
bombesin and endothelin-stimulated cell mi-
gration and FAK phosphorylation. This study 
suggests that NEP expression results in the 
formation of a complex containing NEP, Lyn 
and PI 3-Kinase and this complex competitive-
ly blocks FAK/PI 3-Kinase interactions [50]. 
The FAK/PI 3-Kinase interactions are also 
shown to promote prostate cancer cell inva-
sion: α5β1 interacts with the PHSRN sequence 
of fibronectin (FN), which induces FAK phos-
phorylation and FAK association with PI 3-
Kinase, resulting in prostate cancer cell inva-
sion [51]. FAK siRNA, or specific PI 3-Kinase 
inhibitors, block PHSRN-mediated invasion 
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[51]. Overall, these studies highlight a crucial 
role for the FAK in prostate cancer cell inva-
sion mediated by integrins.  
 
Ras/Raf/MAP kinase 
 
Mitogen-activated protein (MAP) kinases, the 
principal effectors of Ras and known down-
stream effectors of integrins, are major regula-
tors of cell proliferation and cell differentiation 
[52]. Although Ras and Raf mutations are not 
common in prostate cancer, it is known that 
the activation of the Ras/MAP kinase pathway 
might be sufficient for progression towards the 
androgen-independent state [53, 54]. A high 
ERK/p38 activity ratio favors prostate tumor 
growth and activation of α5β1 integrin is pro-
posed as a determinant of the in vivo growth 
promoting activity of a high ERK/p38 ratio 
[55]. Furthermore, inhibition of MAP kinase, 
using U0126, decreases α6 integrin mRNA 
levels in androgen-independent prostate can-
cer cells [56]. Thus, blocking MAP kinase acti-
vation provides an important tool to regulate 
integrin signaling during prostate cancer pro-
gression. 
 
PTEN 
 
PTEN, a dual specificity phosphatase, has the 
ability to dephosphorylate inositol phospholi-
pids such as phosphatidylinositol-3,4,5-
triphosphate (PIP3) and, as a consequence, 
negatively regulates AKT activation. By virtue 
of its ability to inhibit the AKT pathway, PTEN 

acts as a tumor suppressor [57]. The Pten 
gene is frequently deleted or mutated in hu-
man cancers and is shown to be involved in 
the regulation of cell migration on integrin 
substrates [58]. In 1997, PTEN was cloned 
from the 10q23 region, a region frequently 
targeted by loss of heterozygosity in advanced 
cancer [59, 60]. PTEN alterations are common 
in prostate cancer. Recently, Schmitz et al. 
have shown that 23% of patients with first 
time diagnoses lost PTEN expression, and 59% 
of patients with lymph node metastasis no 
longer express PTEN. These findings suggest 
that loss of PTEN expression is a possible early 
prognostic marker for prostate cancer metas-
tasis [61].  
 
Overexpression of PTEN inhibits cell migration, 
whereas antisense to PTEN enhances cell mi-
gration. These effects are suggested to be 
mediated by FAK regulation, since overexpres-
sion of FAK partially antagonizes the effects of 
PTEN. Thus, PTEN phosphatase may function 
as a tumor suppressor by negatively regulating 
cell interactions with the ECM, mediated by 
integrins [58]. PTEN is shown to regulate the 
adhesion and proliferation of LNCaP-C4-2 
prostate cancer cells stimulated by vascular 
endothelial growth factor [62]. PTEN expres-
sion inhibits LNCaP-C4-2 cell migration toward 
calvaria-conditioned medium, but has no ef-
fect on migration toward lung-conditioned me-
dium, and this inhibitory effect is dependent 
on PTEN lipid phosphatase activity [63]. All 
these studies suggest that PTEN downregula-

Table 2. Aberrant Integrin-Dependent Pathways in Prostate Cancer 
Downstream 

Effectors  
Expression/Activity Prostate cancer stage References 

FAK  upregulated expression invasive cancer and me-
tastasis 

Rovin et al, 2002 [41]; 
Tremblay et al, 1996 [42] 

MAP kinase increased kinase activity androgen-independent 
state 

Bakin et al, 2003 [53] 

PTEN downregulated expression cancer and metastasis Schmitz et al, 2007 [61] 
AKT increased kinase activity cancer with high Gleason 

score 
Sun et al, 2001 [67]; Malik 
et al, 2002 [68] 

Survivin upregulated expression PIN, primary tumors and 
metastasis 

Shariat et al, 2004 [71]; 
Krajewska et al, 2003 [72]; 
Kishi et al, 2004 [73] 

Bcl-2 upregulated expression PIN, primary tumors and 
metastasis from recurrent 
cancer 

Colombel et al, 1993 [76]; 
Zellweger et al, 2005 [77]; 
Krajewska et al, 1996 [78]  

Signaling proteins and inhibitors of apoptosis known to be regulated by integrins and to affect prostate can-
cer progression are shown.  FAK, Focal adhesion kinase; PTEN, phosphatase and tensin homolog; MAP ki-
nase, mitogen-activated protein kinase. 
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tion contributes to integrin activation of signal-
ing pathways that mediate cancer progression, 
although the mechanisms underlying this 
cross-talk remain to be investigated.  
 
PI 3-Kinase/AKT pathway 
 
PI 3-Kinase is a major downstream component 
of the integrin and growth factor signaling 
pathways [64, 65]. PI 3-Kinase catalyzes the 
production of the lipid secondary messenger 
PIP3 at the cell membrane. PIP3, in turn, con-
tributes to the recruitment and activation of a 
wide range of downstream targets, including 
the serine-threonine protein kinase AKT [64]. 
Several studies show that integrin-mediated 
activation of PI 3-Kinase plays a crucial role in 
cancer cell survival, preventing anoikis and 
promoting cell migration (for review, [37, 66]). 
AKT1 kinase activity is significantly increased 
in primary carcinomas of the prostate [67]. 
AKT activation, assessed by immunohisto-
chemical staining of human prostate cancer 
biopsies, shows greater intensity in high Glea-
son grade compared to PIN and all other 
grades of prostate cancer [68]. Similarly, using 
protein microarrays, it is shown that prostate 
cancer progression is associated with in-
creased phosphorylation of AKT [69]. Although 
AKT promotes several integrin-mediated func-
tions, our studies indicate a predominant role 
for the PI 3-Kinase/AKT pathway in prostate 
cancer cell migration [70].  
 
Survivin/Bcl-2 
 
Survivin, an important member of the inhibitor 
of apoptosis family, is a dual regulator of cell 
proliferation and cell viability. Survivin is ex-
pressed in embryonic and fetal organs, but is 
undetectable in most differentiated tissues. 
Survivin is shown to be upregulated in prostate 
cancer, especially in aggressive forms, such as 
high grade carcinoma and metastasis [71-73]. 
We demonstrate that β1 integrin engagement 
by FN upregulates the expression of survivin, 
and increases protection from apoptosis in-
duced by the TNF-α in aggressive prostate 
cancer cells. The expression of dominant neg-
ative survivin counteracts the ability of FN to 
protect cells from undergoing apoptosis. We 
also show that the regulation of survivin levels 
by integrins is mediated by the AKT pathway 
[74]. It should be noted that in addition to in-
tegrin-ECM interactions, IGF/mTOR signaling 
and anti-androgen therapy are associated with 

the modulation of survivin levels in prostate 
cancer [75].  
 
Bcl-2 is another important regulator of cell 
survival. Bcl-2 expression is restricted to the 
basal cells in normal and hypertrophic pros-
tate glands, but all epithelial cells in areas of 
PIN express Bcl-2 [76]. All primary prostatic 
carcinomas and metastases obtained from 
hormone-refractory tumors are shown to ex-
press Bcl-2 [76-78]. This suggests that they 
may protect tumor cells from apoptosis in-
duced in response to radiotherapy or chemo-
therapy. Integrin ligation, specifically by α5β1 
and αvβ3, but not αvβ1, stimulates Bcl-2 ex-
pression via the FAK and PI 3-Kinase pathways 
[79, 80]. This integrin-mediated regulation of 
Bcl-2 is also controlled by the activation of 
Ca2+/calmodulin-dependent protein kinase IV, 
NF-kappaB and CREB transcription factors 
[79, 80]. Bcl-2 is also known to suppress anoi-
kis induced by quinazoline based α1-
adrenoceptor antagonists in prostate cancer 
cells [81].  
 
All these recent studies highlight a crucial role 
for survivin and Bcl-2 in prostate cancer cell 
survival mediated by integrins. 
 
Conclusions and future studies 
 
The studies reviewed here indicate that de-
signing new diagnostic and therapeutic ap-
proaches for prostate cancer, based on inhibi-
tors of integrin functions or of integrin down-
stream signaling, will prove to be a successful 
strategy. However, the molecular pathways by 
which integrins contribute to prostate cancer 
progression, and in general, the molecular 
mechanisms that promote this disease remain 
to be fully investigated. Several areas of re-
search appear under-investigated. Among oth-
ers, a major effort is needed to study the me-
chanisms by which integrins are deregulated 
in prostate cancer and to characterize integrin-
mediated pathways which support survival of 
prostate cancer stem cells. Furthermore, new 
preclinical studies to test the efficacy of inte-
grin inhibitors in prostate cancer are neces-
sary. For this purpose, prostate cancer mouse 
models, such as the TRAMP mouse or the 
mouse which carries a conditional Pten dele-
tion in the prostate are useful tools. Future 
studies will also take advantage of the use of 
recently developed novel small animal molecu-
lar imaging approaches, such as biolumines-
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cence imaging (BLI) [82, 83]. A very innovative 
study, using BLI in mice that ubiquitously ex-
press luciferase (FLASH, firefly luciferase acti-
vated systemically in homozygotes), proves 
that we can increase our ability to detect tu-
mor response to therapeutic agents like siR-
NAs [84, 85]. 
 
In conclusion, studies aimed at elucidating the 
mechanisms by which deregulation of integrin-
mediated signaling pathways occurs in pros-
tate cancer will provide novel therapeutic ap-
proaches for this disease. 
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