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Abstract: Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropath-
ic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown 
and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized 
individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration 
dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences 
induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of 
their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the re-
gional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based 
morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and 
ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal 
ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) 
as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe 
significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to 
PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but 
increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and 
VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal 
gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change 
in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with 
HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. 

Keywords: Postherpetic neuralgia (PHN), herpes zoster (HZ), resting-state functional magnet resonance imaging 
(rsfMRI), regional homogeneity (ReHo), fractional amplitude of low frequency fluctuation (fALFF), voxel-based mor-
phometry (VBM), pain chronnification, brain

Introduction

Herpes Zoster (HZ) causes some complica-
tions, among which the postherpetic neuralgia 
(PHN) is the most common and refractory one 
[1]. PHN is a neuropathic pain (NP) which lasts 
more than one month [2] or three months [3, 4] 
following an outbreak of shingles. PHN is an 
economic burden of the gradually aging socie- 
ty [5], which affects the quality of life [6] and 
increases the risk of anxiety, depression and 
suicide [7, 8]. Although the HZ vaccines are 
promising [4], efficient analgesia and treatment 
are limited [9]. In addition, not like some types 

of NP, PHN animal model is not well enough [10, 
11] to mimic the Varicella-Zoster virus (VZV) 
caused NP in animals. Therefore, it is not easy 
to study the molecular mechanisms of HZ and 
PHN in animals, which hampered the under-
standing of HZ-PHN chronification and the clini-
cal neuroimaging studies are crucial to reveal 
the brain change.

However, the functional and structural change 
between HZ and PHN brain is not clear, althou- 
gh we reported that HZ and PHN brain display- 
ed functional differences in pain matrix (fron- 
tal lobe, insular and cerebellum etc.), occipital 
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lobe, temporal lobe and brainstem [12]. Some 
studies have explored functional changes in 
PHN brain relative to normal control by using 
functional magnetic resonance imaging (fMRI) 
[13-15]. Besides sensory-discriminative areas 
[16], brain areas associated with emotion, he- 
donics and reward (striatum, amygdale etc.) 
were also activated in PHN brain [13]. PHN 
brain showed increased cerebral blood flow 
(CBF) in S1 area, insula, thalamus, inferior pari-
etal lobule, amygdala and striatum and incre- 
ased CBF in the frontal cortex [17]. Functional 
connectivity (FC) analysis detected altered con-
nections between putamen and some regions 
in PHN patients [14]. Small-world network anal-
ysis found PHN brain showed decreased local 
efficiency in brain areas related to sense, mem-
ory and emotion [15]. We found PHN patients 
exhibited abnormal spontaneous brain activity 
in the pain matrix as well as the temporal lobe 
and brainstem as compared with healthy con-
trols [18].

The regional homogeneity (ReHo) [19, 20] and 
the fractional amplitude of the low frequency 
fluctuations (fALFF) [21, 22] are reliable indices 
to evaluate resting-state brain activity [23-25]. 
ReHo represents the local coherence of local 
spontaneous neuronal activity, while fALFF re- 
flects the resting-state brain activity, which had 
been proved to be more gray matter specific 
and sensitive to BOLD signal [21]. 

Voxel-based morphometry (VBM) is a popular 
approach for identifying grey matter volume 
(GMV) changes in diseases with chronic pain 
such as the trigimental neuralgia [26, 27], fi- 
bromyalgia [28, 29] and chronic back pain [30]. 

The brain activity and GMV may be varied 
among HZ patients and PHN patients, especial-
ly considering the fact that most of the HZ and 
PHN patients are old people, and decades of 
different habits may have influenced their brain 
function and GMV, therefore, we used the self-
controlled study to eliminate the individual dif-
ference induced experimental interferences. 

In the present study, we enrolled 12 HZ patients 
who became PHN at last, the MRI scans were 
taken at the HZ and PHN states. The ReHo, 
fALFF and VBM methods were employed to 
detect brain activity and GMV changes after 
HZ-PHN chronification.

Methods

Participants

This MRI study was approved by the Ethics 
Committee of the local hospital. Informed con-
sents were obtained from all participants. All of 
the 12 right handed patients were recruited 
from the Pain Medicine Department of the local 
hospital from December 2014 to March 2017. 
The diagnosis of HZ and PHN was based on the 
International Association for the Study of Pain 
(IASP) criteria [31]. Spontaneous pain intensity 
was evaluated by using the Visual Analogue 
Scale (VAS). All of the patients recruited in both 
states claimed intense pain (VAS scores ≥5), no 
antidepressants or antipsychotic drugs were 
taken before MRI scans. All HZ patients under-
went pain for less than three months after the 
HZ rash (shingles) and all PHN patients report-
ed persistent pain for more than three months 
after the HZ rash (shingles). All of these patients 
showed no visible brain structural abnormali-
ties in the MRI structural images.

Image acquisition

The MRI experiments were implemented on a 
GE Signa HDxT 3.0 T MRI scanner (GE Company, 
USA) with a standard eight channel head coil as 
we reported [12, 18]. fMRI data were acquired 
using an echo-planar image (EPI) sequence 
with parameters as follows: thickness/gap = 
4.0/0 mm, matrix = 64 × 64, TR = 2000 ms, TE 
= 40 ms, flip angle = 90°, field of view (FOV) = 
240 × 240 mm. A total of 210 time points and 
33 axial slices were obtained in 7 min. High-
resolution anatomic 3D T1 (TR = 5.8 ms, TE = 
1.8 ms, flip angle = 12°, thickness/gap = 1.0/0 
mm, 146 sagittal slices, FOV = 256 × 256 mm, 
matrix = 256 × 256) images were also acquired.

Image processing

Preprocessing was performed by using the 
Data Processing Assistant for Resting-State 
fMRI (DPARSF, http://rest.restfmri.net/forum/
DPARSF) [32] and SPM 8 (Wellcome Depart- 
ment, University College of London, UK) soft-
ware based on MATLAB R2012a (MathWorks, 
USA). 

DPARSF was used for data processing follow- 
ing the steps below: The first 10 volumes of  
the fMRI images were discarded to allow for  
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the scanner calibration and participants adap-
tation in the scan, and the remaining 200 vol-
umes were further analyzed. Processing steps 
included slice timing, head-motion correction, 
spatial normalization to the Montreal Neurolo- 
gical Institute (MNI) space and resampling with 
a 3 × 3 × 3 mm3 resolution. Participants with 
head motion >2.0 mm of translation or >2.0° of 
rotation in any direction were excluded from 
further processing. The linear trend of the  
fMRI data was removed. For ReHo analysis,  
the band-pass filtering (0.01-0.08 Hz) was con-
ducted to discard high-frequency physiological 
noise and the frequency drift lower than 0.01 
Hz [33]. Resting State fMRI Data Analysis 
Toolkit (REST, http://rest.restfmri.net) [22] was 
used for the conduct of subsequent steps: In- 
dividual ReHo map was generated by calculat-
ing the KCC of the time series of a given voxel 
with those of its neighbors (26 voxels) in a vox-
el-wise way [19, 34]. Afterwards, a whole-brain 
mask was adopted to remove the non-brain tis-
sues. For standardization purposes, the indi-

included the following steps: (1) checking for 
scanner artifacts and gross anatomical abnor-
malities for each subject; (2) setting the image 
origin to the anterior commissure; (3) segment-
ing the images into grey matter, white matter 
and cerebrospinal fluid (CSF) images; (4) using 
the DARTEL toolbox on SPM8 to produce a 
high-dimensional normalization protocol; (5) 
checking for homogeneity across the sample 
and applying a 8 mm full width at half-maxi- 
mum (FWHM) Gaussian kernel standard smo- 
othing. After this pre-processing, modulated, 
smoothed, normalized images were obtained 
for statistical analysis. 

Statistical analysis

Demographic and clinical data were analyzed 
using Prism 7.0 (GraphPad Software Inc, USA). 
Two-sample t-tests were used for detecting the 
age differences. χ2 test was applied for com-
parison of gender ratio. The criteria for all sta-
tistical significance were set as P<0.05.

Table 1. Demographic and clinical variables of 12 patients with HZ tran-
sited PHN

No. Age 
(year) Gender Location 

of lesion
Pain duration 

1 (month)
Pain duration 

2 (month)
Time gap 
(month)

VAS 
1

VAS 
2

1 66 F Left V2-3 0.25 12 11.75 9 5
2 65 F Right V3 0.66 9 8.34 9 6
3 66 M Right V1 0.66 6 5.34 5 4
4 60 F Right T6-9 1.00 6 5.00 7 4
5 76 M Left C2-6 0.66 12 11.34 7 5
6 62 M Right L1-2 2.00 9 7.00 6 6
7 73 M Right V2 0.66 9 8.34 5 4
8 59 M Right T5-7 0.66 6 5.34 7 4
9 71 F Right V1 1.00 9 8.00 5 4
10 71 M Left C2-4 2.00 9 7.00 5 4
11 72 F Left T2-4 2.00 13 11.00 5 5
12 54 M Right V1 0.50 15 14.50 8 5
M = male; F = female; C = cervical; T = thoracic; L = lumbar; S = sacral; V1: ophthalmic 
branch; V2: maxillary branch; V3: mandibular branch; VAS: visual analogue scale; Pain 
duration 1: pain duration at the time of the first MRI scan (HZ state); Pain duration 2: pain 
duration at the time of the second MRI scan (PHN state); Time gap: pain duration between 
the two MRI scans.

Table 2. Comparison of clinical variables in HZ and 
PHN state (mean ± SD)

HZ PHN P
VAS 6.50 ± 1.57 4.67 ± 0.78 0.0015
Pain duration (month) 1.00 ± 0.63 9.58 ± 2.91 <0.0001
PHN: postherpetic neuralgia; HZ: herpes zoster; VAS: visual ana-
logue scale.

vidual ReHo maps 
were divided by their 
own global mean KCC 
within the whole-brain 
mask. Then spatial 
smoothing was per-
formed on the st- 
andardized individual 
ReHo map with a 
Gaussian kernel of  
4 mm full-width at  
half maximum (FW- 
HM) [35]. 

fALFF analysis was 
conducted as previ-
ously described [21, 
24]. First, the resam-
pled images were sm- 
oothed with a 4 mm 
Gaussian kernel. Then 
the frequency band  
filtering was set as 
0.01-0.08 Hz, and the 

time courses were converted to the fre-
quency band using a Fast Fourier Trans- 
form. The mean and standard deviation  
of each individual’s ReHo and fALFF va- 
lue was calculated by DPARSF within the 
whole brain mask.

The VBM analysis was performed by using 
SPM 8 as we reported [36]. The procedure 
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For ReHo and fALFF comparison, paired t-tests 
were conducted in a whole-brain voxel-wise 
way with REST. To determine the significance  
of ReHo and fALFF between two groups, multi-
ple comparison correction was performed by 
Monte Carlo simulations [37] by using the REST 
AlphaSim utility [22]. Voxels with P<0.05 (two-
tailed, corrected with AlphaSim method: rmm = 
4 mm, cluster size was estimated according to 
the whole brain mask; http://afni.nih.gov/afni/
docpdf/AlphaSim.pdf) were regarded as brain 
areas with significant difference.

For VBM comparison, paired t-tests between 
two states were performed. Statistical maps 
were corrected for multiple comparisons by 

AlphaSim (P<0.05, rmm = 4 mm, cluster size 
was estimated according to the grey matter 
mask) on the voxel level.

REST Slice Viewer, which is a routine for the  
display of statistic results [22], was used to 
generate result graphs. Brain areas were over-
laid on structural brain images. A color-bar was 
set to illustrate the statistic values [38].

Results

Demographic and clinical features

Clinical characteristics of patients in the HZ 
and PHN state are listed in Table 1. The com-

Figure 1. The distribution of ReHo differential brain areas in the transversal sections (A), sagittal sections (B) and 
coronal sections (C) after trasition from HZ to PHN. The warm colors indicate higher ReHo, and cool colors indicate 
lower ReHo in PHN brain than that of HZ brain (P<0.05, AlphaSim corrected, paired t test, n = 12). Compared with 
HZ brain, PHN brain showed significantly increased ReHo mainly in the bilateral cerebellum (posterior lobe and 
inferior semi-lunar lobule) and the middle frontal gyrus. Lower ReHo values were observed in the right sub-lobar 
area (such as the putamen, the extra-nuclear and the lentiform nucleus) and the bilateral limbic lobe (mainly in the 
anterior-, posterior- and middle-cingulate). The detailed information for each cluster and their peak T values and 
coordinates are listed in Table 3. 
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parison of VAS score and pain duration are list-
ed in Table 2. Both the VAS score and pain 
duration showed significant differences betw- 
een the HZ and PHN state.

Comparison of ReHo between PHN and HZ 
state

As shown in Figure 1 and Table 3, compared 
with HZ brain, PHN brain showed significantly 
increased ReHo mainly in the bilateral cerebel-
lum (posterior lobe, inferior semi-lunar lobule) 
and the middle frontal gyrus. Lower ReHo val-
ues were observed in the right sub-lobar area 
(such as the putamen, the extra-nuclear and 
the lentiform nucleus) and the bilateral limbic 
lobe (mainly in the anterior-, posterior- and 
middle-cingulate).

Comparison of fALFF between PHN and HZ 
state

As shown in Figure 2 and Table 3, compared 
with HZ brain, PHN brain showed significantly 
increased fALFF mainly in the bilateral frontal 
lobe (bilateral inferior frontal gyrus, bilateral 
middle frontal gyrus, right superior frontal gyrus 

or- and middle-cingulated gyrus were negative- 
ly correlated with pain duration (Table 4; Figure 
3A-D). In addition, the ΔfALFF (fALFF (PHN) - 
fALFF (HZ)) of the left occipital lobe (Calcarine_ 
L (aal) and Occipital_Sup_L (aal)) was positively 
correlated with pain duration (Table 4; Figure 
3E and 3F).

Comparison of VBM between PHN and HZ 
brain

As shown in Figure 4 and Table 5, compared 
with HZ, PHN brain showed significantly decre- 
ased VBM values mainly in the right limbic  
lobe (the hippocampus and parahippocampa 
gyrus), the right extra-nuclear, the right frontal 
lobe (superior frontal gyrus and medial frontal 
gyrus) the thalamus, the occipital lobe (Calca- 
rine_R (aal) and Cuneus_R (aal)), the parietal 
lobe (postcentral gyrus, inferior parietal lobule 
and SupraMarginal_R (aal)) and the frontal lobe 
(bilateral precentral gyrus, middle frontal gyrus 
and Frontal_Sup_R (aal)). Higher VBM values 
were observed in the bilateral cerebellum (the 
inferior semi-lunar lobule, the posterior lobe 
and the cerebellar tonsil) and the temporal lobe 

Table 3. Clusters with different ReHo or fALFF values between 
PHN and HZ patients

Region (R: right; L: left)
Peak MNI 
coordinate

Peak 
T 

value

Voxel 
number

Brain 
volume 
(mm3)x y z

PHN>HZ (ReHo)
    Cerebelum_8_R (aal) 21 -66 -54 4.66 452 12204
    Frontal_Sup_L (aal) -30 0 66 6.07 68 1836
PHN<HZ (ReHo)
    Putamen_R (aal) 18 -6 12 -3.92 61 1647
    Cingulum_Ant_R (aal) 18 45 6 -3.90 198 5346
    Cingulum_Post_L (aal) -3 -33 30 -5.66 209 5643
PHN>HZ (fALFF)
    Frontal_Inf_Orb_R (aal) 21 18 -12 4.44 80 2160
    Frontal_Inf_Tri_L (aal) -54 33 9 6.34 65 1755
    Frontal_Sup_Medial_R (aal) 9 51 39 3.76 73 1971
    Frontal_Mid_L (aal) -27 0 63 4.70 123 3321
PHN<HZ (fALFF)
    Lingual_R (aal) 12 -72 -6 -4.87 87 -4.878
    Calcarine_L (aal) -3 -78 15 -6.35 236 -6.35
    Occipital_Mid_R (aal) 45 -78 0 -4.19 110 -4.19
ReHo: regional homogeneity; fALFF: fractional aplitude of low-frequency fluctua-
tion; PHN: postherpetic neuralgia; HZ: herpes zoster; MNI: Montreal Neurologi-
cal Institute; aal: anatomical automatic labeling.

and Precentral_L (aal or anatom-
ical automatic labeling)). Lower 
fALFF values were observed in 
the occipital lobe (such as the  
lingual gyrus, Calcarine_L (aal), 
middle occipital gyrus, Occipital_
inf_bilateral (aal) and Occipital_
sup_L (aal)) and the temporal 
lobe (mainly in the middle tem- 
poral gyrus and the inferior tem-
poral gyrus).

Correlation analyses of ΔReHo/
ΔfALFF and Δpain duration 
(PHN-HZ)

The correlation analysis of the 
ΔReHo (ReHo (PHN) - ReHo (HZ)) 
and pain duration (= pain dura-
tion PHN (at the second scan) - 
pain duration HZ (at the first 
scan)) indicated that ΔReHo val-
ues of the left cerebellum (i.e., 
the inferior semi-lunar lobule and 
the cerebellum posterior lobe) 
were positively correlated with 
pain duration between the two 
MRI scans, while the left posteri-
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(inferior temporal gyrus and middle temporal 
gyrus).

Correlation analyses of ΔVBM and Δpain dura-
tion between PHN and HZ patients

The correlation analyses of the ΔVBM (VBM 
(PHN) - VBM (HZ)) and Δpain duration (PHN - 
HZ) indicated that ΔVBM values of the right 
extra-nuclear was positively correlated with 
Δpain duration (Table 6; Figure 5A, 5B), while 
the right parahippocampal gyrus, the temporal 
lobe (the middle temporal gyrus) and the pari-
etal lobe (i.e., the SupraMarginal_R (aal)) were 

negatively correlated with pain duration (Table 
6; Figure 5C-H).

Discussion

As evidenced by ReHo, fALFF and VBM results, 
compared with HZ brain, PHN brains showed 
different brain activity and GMV in several brain 
regions. Most of these differential brain areas, 
such as the frontal lobe, cerebellum, thalamus, 
cingulated gyrus and parietal lobe, belong to 
the “pain matrix”, which was defined as regions 
that exhibited a reliable activation in response 
to increasing levels of pain [16, 39-41].

Figure 2. The distribution of fALFF differential brain areas in the transversal sections (A), sagittal sections (B) and 
coronal sections (C) after the transition from HZ to PHN. The warm colors indicate higher fALFF, and cool colors 
indicate lower fALFF in PHN brain than that of HZ brain (P<0.05, AlphaSim corrected, paired t test, n = 12). Com-
pared with HZ brain, PHN brain showed significantly increased fALFF mainly in the bilateral frontal lobe (bilateral 
inferior frontal gyrus, bilateral middle frontal gyrus, right superior frontal gyrus and Precentral_L (aal)). Lower fALFF 
values were observed in the occipital lobe (such as the lingual gyrus, Calcarine_L (aal), middle occipital gyrus, Oc-
cipital_inf_bilateral (aal) and Occipital_sup_L (aal)) and the temporal lobe (mainly in the middle temporal gyrus and 
the inferior temporal gyrus). The detailed information for each cluster and their peak T values and coordinates are 
listed in Table 3. aal: anatomical automatic labeling.
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The pain matrix includes somatosensory area, 
supplementary motor area, cerebellum, fore-
brain, thalamus, insula, anterior cingulate gyrus 
(ACC), posterior parietal cortex, periaqueductal 
grey and striatum [42, 43]. Our results indicat-
ed that besides regions of pain matrix, the 
occipital lobe, the temporal lobe and some 
other regions of the limbic lobe (i.e., the cingu-
late cortex and the hippocampus) were also 
involved. The functional differences of PHN 
brain are most similar as we found in the HZ 
and PHN patients (not self-controlled study, 
with independent t tests) [12]. In addition, the 
brain areas with structural change are concor-
dant with the brain activity changed ones. 
These suggest that the functional change could 
be resulted from structural change.

In this study, the cerebellum changed a lot  
both in the functional and structural aspect. It 
was activated in the PHN state and the GMV 
increased profoundly. Cerebellum is part of 
pain matrix and always activated in painful 
events in healthy humans [44] and in patients 
with chronic pain [45]. For example, neuralgia 
(mononeuropathy) patients showed an incre- 
ased rCBF in the cerebellum [46]. Kim et al. 
found that cerebellar activity correlated well 
with rat NP development in an eight-week  
longitudinal FDG microPET study [47]. More 
interestingly, the cerebellum activity seemed to 
be correlated with depression [48]. Abnormal 
cerebellar response to the anticipation of pain 
has been suggested to be a potential marker 
for depression [49]. Patients with depression 
showed increased activity in the cerebellum 

In this study, the bilateral limbic lobe (mainly 
the anterior-, posterior- and middle-cingulate 
gyrus) showed lower ReHo values in PHN  
brain. In addition, the ReHo values decreased 
in the left posterior- and middle-cingulate gyrus 
and these decreases were negatively correlat-
ed with pain duration. Furthermore, PHN brain 
showed lower VBM values in the right limbic 
lobe (the hippocampus and parahippocampa 
gyrus) as compared with HZ brain. These 
results indicate that PHN deactivated limbic 
lobe such as cingulate cortex and decreased 
the GMV of some areas such as hippocampus. 
It is reported that limbic regions of the pain 
matrix encode emotional aspects of pain per-
ception, and the primary sensory region enco- 
des the intensity and location of pain sens- 
ation [55, 56]. Chronic pain studies in rodents 
showed functional changes in limbic regions 
(the hippocampus [57-60], amygdale [61], stri-
atum [62], and frontal cortex [63-65]). Whole-
brain network analysis of NP rats showed FC 
changes within areas of the limbic system and 
between the limbic and nociceptive systems 
[66]. Recent human imaging studies [13, 15, 
67, 68] displayed the same trend. Although the 
effects of PHN on the GMV in limbic lobe are 
not clear, chronic pain induced alterations in 
limbic lobe in fibromyalgia patients [69] and 
hippocampus in migraine patients [70] have 
been widely reported.

In this study, the temporal lobe of PHN brain 
displayed lower fALFF values and higher VBM 
values relative to HZ brain. In addition, the GMV 
increase in temporal lobe (the middle temporal 

Table 4. Correlation between ΔReHo/ΔfALFF and Δpain 
duration

Region (R: right; L: left)
Peak MNI 
coordinate

Peak 
R 

value

Voxel 
number

Brain 
volume 
(mm3)x y z

+ correlation (ReHo)
    Cerebelum_8_L (aal) -27 -63 -51 0.69 3 81
- correlation (ReHo)
    Cingulum_Mid_L (aal) -3 -33 42 -0.77 17 459
+ correlation (fALFF)
    Calcarine_L (aal) -12 -78 3 0.84 4 108
- correlation (fALFF)
    None
ReHo: regional homogeneity; VAS: visual analogue scale; MNI: Montreal 
Neurological Institute; ΔReHo = ReHo (PHN) - ReHo (HZ); ΔfALFF = fALFF 
(PHN) - fALFF (HZ); MNI: Montreal Neurological Institute; aal: anatomical 
automatic labeling.

[50]. These literatures suggest that 
pain and depression may share a  
common mechanism within the cere-
bellum [48]. 

It is reported that in chronic pain 
states, the GMV of cerebellum could 
be increased or decreased. For exam-
ple, it was increased in patients with 
fibromyalgia [51] and cluster head- 
ache [52], but decreased in trigeminal 
neuralgia [26, 27] and burn moth syn-
drome [53]. Bocci et al. found that  
cerebellar direct current stimulation 
(tcDCS) could modulate pain percep-
tion and its cortical correlates [54], 
and thought cerebellum holds the 
potential to be one of the targets to 
defeat chronic pain.
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Figure 3. Correlation analysis of the ΔReHo/ΔfALFF and Δpain duration (PHN-HZ). ΔReHo values of the left cerebel-
lum (i.e., the inferior semi-lunar lobule and the cerebellum posterior lobe) were positively correlated with pain dura-
tion between the two MRI scans (A, B), while those of the left posterior- and middle-cingulated gyrus were negatively 
correlated with pain duration (C, D). In addition, the ΔfALFF values of the left occipital lobe (Calcarine_L (aal) and 
Occipital_Sup_L (aal)) were positively correlated with pain duration (E, F). ΔReHo = ReHo (PHN) - ReHo (HZ); ΔfALFF 
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gyrus) was positively correlated with PHN dura-
tion. Although the temporal lobe is considered 
to be one of the brain regions of pain integra-
tion [71, 72], some studies reported its func-
tional changes in NP patients and animal mod-
els. The medial temporal lobes are involved in 
pain perception and modulation [73]. The mid-
dle temporal lobe was activated in patients 
with chronic cluster pain [52]. In addition, fibro-
myalgia patients performed a reduced deacti-

vation in the temporal lobe when they recei- 
ved stimulation [74], which may be one of the 
causes of allodynia in this disease. 

Most of the pain-related VBM studies indicated 
that the temporal lobe displayed a decrease 
GMV in chronic pain [75-77] such as trigeminal 
neuralgia [26] and fibromyalgia [78]. Sinding et 
al. [53] detected a significant increase of GMV 
in the temporal gyrus in burning mouth syn-

= fALFF (PHN) - fALFF (HZ); Pain duration = pain duration at the second MRI scan (the PHN period) - pain duration 
at the first scan (the HZ period). Pearson correlation analysis, n = 12.

Figure 4. The distribution of VBM differential brain areas in the transversal section (A), sagittal section (B) and 
coronal section (C). The warm colors indicate higher VBM, and cool colors indicate lower VBM in PHN brain than 
that of HZ brain (P<0.05, AlphaSim corrected, paired t test, n = 12). Compared with HZ, PHN brain showed sig-
nificantly decreased VBM values mainly in the right limbic lobe (the hippocampus and parahippocampa gyrus), 
the right extra-nuclear, the right frontal lobe (superior frontal gyrus and medial frontal gyrus), the thalamus, the 
occipital lobe (Calcarine_R (aal) and Cuneus_R (aal)), the parietal lobe (postcentral gyrus, inferior parietal lobule 
and SupraMarginal_R (aal)) and the frontal lobe (bilateral precentral gyrus, middle frontal gyrus and Frontal_Sup_R 
(aal)). Higher VBM values were observed in the bilateral cerebellum (the inferior semi-lunar lobule, the posterior 
lobe and the cerebellar tonsil) and the temporal lobe (inferior temporal gyrus and middle temporal gyrus). The de-
tailed information for each cluster and their peak T values and coordinates are listed in Table 5. aal: anatomical 
automatic labeling.
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drome patients. We found a significant incre- 
ase in GMV in the middle temporal and inferior 
temporal gyrus. In addition, the middle tempo-
ral GMV increase positively correlated with  
pain duration. These results suggest that the 
temporal lobe may be involved in the HZ-PHN 
transition. 

Many occipital lobe areas showed lower brain 
activity relative to HZ brain in this study. In  
addition, the brain activity decrease degree in 
the occipital lobe was positively correlated  
with pain duration. The Calcarine_R (aal) and 
Cuneus_R (aal) of the occipital lobe in PHN 

found reduced [84]. We previously found that 
PHN patients showed abnormal microstructure 
in the occipital lobe as evidenced by decreased 
diffusional kurtosis imaging (DKI) intensity [38]. 
Thus, the effect of chronic pain on occipital 
lobe structure requires further investigation.

Besides pain processing, the ReHo and fALFF 
differential brain areas hold additional func-
tions. For example, the frontal lobe was associ-
ated with depression and anxiety [85]. The lim-
bic system were involved in sleep control [86]. 
Pain is an integrated feeling of sensory, affec-
tive and cognitive dimensions [87]. Geha et al. 

Table 5. Clusters with different VBM values between PHN and 
HZ brain

Region (R: right; L: left)
Peak MNI 
coordinate

Peak 
T 

value

Voxel 
number

Brain 
volume 
(mm3)x y z

PHN<HZ
    Hippocampus_R (aal) 12 -21 -15 -3.65 96 2592
    Extra-Nuclear_R (aal) 6 0 -15 -5.47 61 1647
    Frontal_Mid_L (aal) -27 54 15 -3.80 61 1647
    Thalamus_R (aal) 0 -12 18 -3.75 95 2565
    Calcarine_R (aal) 18 -72 18 -5.54 70 1890
    SupraMarginal_R (aal) 60 -36 24 -3.33 72 1944
    Precentral_L (aal) -33 -18 48 -3.54 156 4212
    Precentral_R (aal) 27 -27 69 -3.72 71 1917
    Postcentral_R (aal) 21 -42 78 -7.33 90 2430
PHN>HZ
    Cerebellum Posterior Lobe 15 -81 -57 2.81 2619 2619
    Cerebelum_Crus2 (aal) 51 -48 -48 3.88 1836 1836
    Temporal_Inf_L (aal) -33 0 -42 3.46 2160 2160
    Cerebelum_Crus1_R (aal) 51 -39 -33 5.06 2943 2943
    Temporal_Mid_L (aal) -57 -66 6 4.75 1836 1836
PHN: postherpetic neuralgia; HZ: herpes zoster; MNI: Montreal Neurological 
Institute; aal: anatomical automatic labeling.

brain also showed significant- 
ly decreased VBM, which indicat-
ed that PHN induces profound 
changes in occipital lobe, and 
these changes could be one rea-
son of the intractable pain of 
PHN. In painful events, occipital 
activity showed some abnormali-
ties. For example, a rsfMRI study 
found that PSPD patients dis-
played reduced occipital ReHo 
signal [79]. Karibe et al. found  
the rCBF in the occipital lobe of 
PSPD patients (with chronic pain) 
was significantly lower than that 
of healthy controls [80]. Electri- 
cal stimulation of the rat occipi- 
tal lobe reduced pain intensity, 
which may be related to the  
anatomical connection between 
occipital lobe and the pain des- 
cending inhibition system [81]. 
The occipital lobe is inhibited in 
NP rat and NP patients. Cauda  
et al. used independent compo-
nent analysis (ICA) and detected 
a significant activity reduction in 
occipital lobe of patients with  
diabetic NP relative to healthy 
controls [82]. Kim et al. [83] 
observed the metabolism decre- 
ase in the occipital lobe and cer-
ebellum in rats with spinal nerve 
ligation (SNL, a NP model) by 
using PET. 

To date, only a few studies had 
reported structural changes of 
the occipital lobe in chronic pain 
condition. The GMV of the occipi-
tal lobe in migraine patients was 

Table 6. Correlation between ΔVBM and pain duration

Region (R: right; L: left)
Peak MNI 
coordinate

Peak 
R 

value

Voxel 
number

Brain 
volume 
(mm3)x y z

+ correlation
    Extra-Nuclear_R (aal) 12 0 -3 0.82 4 108
- correlation
    Hippocampus_R (aal) 27 -24 -9 -0.61 4 108
    Temporal_Mid_L (aal) -54 -63 6 -0.77 6 162
    SupraMarginal_R (aal) 54 -36 33 -0.64 3 81
ReHo: regional homogeneity; VAS: visual analogue scale; MNI: Montreal Neuro-
logical Institute; aal: anatomical automatic labeling.
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[13] analyzed the BOLD signal of PHN patients 
and detected that brain areas with BOLD 
change was not restricted to the sensory-dis-
criminative areas, but also the emotion, reward 
and punishment related brain regions. It was 
reported that chronic pain and neuropsychiat-
ric disease such as depression [88] and axiety 
[89], congnitive disfunctions [90] and sleep dis-
order [91] were highly comorbid. Indeed, up to 
50% of patients with chronic pain exhibited 
symptoms of anxiety or depression [92], where-
as in some studies the number reached to 75% 
[93]. Importantly, the prevalence of depression 
increased with greater pain severity [88]. This 
reminds us that when we handle PHN, we can-
not be confined to analgesia, the mental health 
evaluation is necessary.

Rodriguez-Raecke et al. [76] reported that a 
long-term suffering of pain may cause changes 
in brain plasticity. They found the GMV reduc-
tion in brain areas such as anterior cingulate 
gyrus (ACC) in patients with hip arthritis recov-
ered in hip replacement subgroups (no pain  
for 6 weeks after surgery group and 4 months 
group). Meanwhile, we think these changes in 
PHN brain may be some reasons for the refrac-
tory NP in PHN patients. 

More detecting time points in PHN state may 
be useful to observe the functional and GMV 
change with the prolongation of PHN. In addi-
tion, fMRI study using conventional software 
may hold a high false-positive rate [94], alter-
native neuroscience technologies are warrant-
ed to identify the functional and structural 
changes in HZ and PHN brains.

Conclusions

The chronification from HZ to PHN induces 
brain activity changes and alters the GMV of 
several brain areas. These differential brain 
areas are not only regions of pain matrix (cere-
bellum etc.) but also the temporal lobe and 
occipital lobe. Functional and structural chang-
es in the cerebellum, occipital lobe, parietal 
lobe, temporal lobe, frontal lobe and limbic lobe 
may be not only the results of the chronification 

from HZ to PHN, but also the reasons for the 
refractory pain of PHN.
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