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Abstract: Emerging evidence suggests the microbiome may affect a number of diseases, including lung cancer. 
However, the direct relationship between gut bacteria and lung cancer remains uncharacterized. In this study, we 
directly sequenced the hypervariable V1-V2 regions of the 16S rRNA gene in fecal samples from patients with 
lung cancer and healthy volunteers. Unweighted principal coordinate analysis (PCoA) revealed a clear difference 
in the bacterial community membership between the lung cancer group and the healthy control group. The lung 
cancer group had remarkably higher levels of Bacteroidetes, Fusobacteria, Cyanobacteria, Spirochaetes, and Len-
tisphaerae but dramatically lower levels of Firmicutes and Verrucomicrobia than the healthy control group (P < 
0.05). Despite significant interindividual variation, eight predominant genera were significantly different between 
the two groups. The lung cancer group had higher levels of Bacteroides, Veillonella, and Fusobacterium but lower 
levels of Escherichia-Shigella, Kluyvera, Fecalibacterium, Enterobacter, and Dialister than the healthy control group 
(P < 0.05). Most notably, correlations between certain specific bacteria and serum inflammatory biomarkers were 
identified. Our findings demonstrated an altered bacterial community in patients with lung cancer, providing a sig-
nificant step in understanding the relationship between gut bacteria and lung cancer. To our knowledge, this is 
the first study to evaluate the correlations between certain specific bacteria and inflammatory indicators. To better 
understand this relationship, further studies should investigate the underlying mechanisms of gut bacteria in lung 
cancer animal models.
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Introduction

Lung cancer, a disease of global geographic 
reach, is the most common type of cancer and 
the leading cause of cancer-related death 
among men [1]. According to the annual report 
on the status of cancer in China, the number of 
new lung cancer diagnoses increased by 34.8% 
from 2005 to 2011 [2]. Currently, limited clini-
cal approaches exist for the prevention and 
treatment of lung cancer, resulting in an 11% 
five-year survival rate for patients [3]. Smoking 
accounts for approximately 80% of the global 
lung cancer burden in men and 50% in women 
[4]. Tobacco smoke includes carcinogens that 
are attributable to increased mutation and mis-
replication of DNA damage [5]. However, stud-
ies also demonstrate that the progression of 

lung cancer is associated with the systemic 
immune and inflammatory response [6, 7], 
which may be modulated by human gut 
microbiota.

More than 1,000 different species, totaling 
1014 bacterial cells in the human gastrointesti-
nal tract, play a vital role in the maintenance of 
normal physiological function of the human 
intestine [8]. Accumulating evidence shows that 
gut bacteria, including Fusobacterium nuclea-
tum, Escherichia coli, Bacteroides fragilis, and 
Proteobacteria, are associated with carcino-
genesis [7, 9]. Previous studies also have 
revealed the possible effects of gut bacteria on 
carcinogenesis, which primarily involves modu-
lating the immune response, activating Toll-like 
receptors, producing carcinogenic toxins, and 

http://www.ajtr.org


Altered fecal bacteria in lung cancer patients

3172 Am J Transl Res 2018;10(10):3171-3185

inducing chronic inflammation [7, 10]. Further 
evidence has demonstrated that alterations of 
gut bacteria play an important role in the devel-
opment of extraintestinal cancers, such as 
hepatocellular carcinoma and breast cancer 
[11, 12]. A series of studies have shown that an 
altered bacteria community in lung tissue, spu-
tum, bronchoalveolar lavage fluid, or saliva 
samples is prospectively associated with an 
increased risk of lung cancer [13-18], and one 
study reported that Lactobacillus shows antitu-
mor effects in the intestinal tract of a Lewis 
lung cancer mouse model [19]. Additionally, gut 
bacteria affect the efficacy of tumor therapy 
against epithelial tumors [20-22], raising the 
possibility that the quality of existing therapeu-
tic approaches may be improved in combina-
tion with treatment of certain specific bacteria. 
Studies have also revealed that gut bacteria 
affect immune and inflammatory responses 
not only locally at the mucosal level but also 

systemically, including the pulmonary organs 
through the gut-lung axis [12, 23-27]. Further- 
more, certain bacteria have been recognized 
as potential biomarkers for cancer detection 
and classification [18, 28]. However, the exact 
composition of gut bacteria in patients with 
lung cancer remains poorly understood. More- 
over, the correlations between gut bacteria and 
certain prognostic indexes have not yet been 
observed.

To better understand the relationship between 
gut bacteria and lung cancer, we directly 
sequenced the 16S rRNA gene in fecal samples 
from patients with lung cancer and healthy  
volunteers using next-generation sequencing 
technology. We compared the unique composi-
tions of bacteria in lung cancer patients with 
those in healthy volunteers. Additionally, for  
the first time, we evaluated the correlations 
between certain specific bacteria and clinical 

Table 1. Descriptive data of included adults in the study 
Parameter Lung cancer (N = 41) Healthy controls (n = 41) P-Value
Age (years; mean ± SD) (range)* 57.97 (7.68) (41-71) 59.05 (6.78) (48-74) 0.50
Females/Males, No. (%)# 11/30 (26.83%/73.17%) 15/26 (36.59%/63.41%) 0.48
BMI (mean, SD) (range)* 24.05 (1.91) (20.08-27.16) 23.38 (2.09) (19.13-28.08) 0.13
Smoking status (%)# 0.12
    Never smoker 15 (36.59%) 23 (56.10%)
    Ever smoker 26 (63.41%) 18 (43.90%)
Alcohol consumption status (%)# 0.89
    Never drinker 25 (60.98%) 23 (56.10%)
    < 1 standard drink per day 6 (14.63%) 11 (26.83%)
    ≥ 1 standard drink per day 10 (24.39%) 7 (17.07%)
Final diagnosis NA
    Non-small cell cancer 34 (82.93%)
        Adenocarcinoma 22 (53.66%)
        Squamous cell cancer 12 (29.27%)
        Stage I/II/III/IV 11/12/18/0 (26.83%/29.27%/43.90%/0)
    Small cell cancer 7 (17.07%)
NLR, mean (SD) 2.60 (1.25) NA
PNI, mean (SD) 49.43 (5.04) NA
PLR, mean (SD) 146.15 (53.58) NA
PLT, mean (SD) 241.17 (80.07) NA
IL-6 (pg/ml), mean (SD)* 5.75 (4.23) 3.90 (2.53) 0.020
IL-12 (pg/ml), mean (SD)* 20.39 (6.58) 23.08 (7.54) 0.089
IL-17 (pg/ml), mean (SD)* 33.72 (1.63) 25.20 (1.19) 0.008
sCTLA-4 (ng/ml), mean (SD)* 9.53 (6.25) 21.51 (2.78) 0.009
*Student’s t test; #Chi-square test; Abbreviations: BMI, body mass index; NLR, neutrophil-lymphocyte ratio; PNI, prognostic nutri-
tional index; PLR, platelet-lymphocyte ratio; PLT, platelet; IL-6, interleukin-6; IL-12, interleukin-12; IL-17, interleukin-17; s-CTLA-4, 
soluble cytotoxic T lymphocyte associated antigen-4; NA, not available.
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inflammatory indicators. The identification of 
specific genera correlated with lung cancer may 
provide a broader understanding of gut bacte-
ria and pave the way for further inspiring explo-
ration in this research area.

Materials and methods

Patients and samples

This study was approved by the Research Ethics 
Board of the Second Hospital of Shandong 
University (Jinan, China) and Shandong Provin- 
cial Chest Hospital (Jinan, China) and complied 
according to the ethical guidelines outlined in 
the 1975 Declaration of Helsinki. Prior to inclu-
sion in this study, written informed consent was 
obtained from all participants.

The study was conducted in 2016 from May 1 
to October 30. Forty-one patients with lung 
cancer (aged 41-71 years) were recruited from 
the Department of Thoracic Surgery at the 
Second Hospital of Shandong University and 
Shandong Provincial Chest Hospital. All patients 
enrolled in our study had a definite postopera-
tive pathological diagnosis. No patients recei- 
ved chemotherapy, radiation therapy, or sur-
gery for lung cancer before sample collection. 
Forty-one age-, gender-, and BMI-matched 
healthy volunteers were recruited from the 
Physical Examination Center of the Second 
Hospital of Shandong University. The healthy 
status of these volunteers was self-reported. 
All study participants were Han Chinese resi-
dents who had lived in the Jinan district for at 
least 5 years prior to the date of sample collec-
tion. For participant recruitment, the following 
exclusion criteria were strictly applied: (i) use of 
antibiotic, probiotics, or steroids within the past 
year; (ii) acute or chronic infection within the 
preceding 3 months; (iii) clinically diagnosed 
with psychiatric disorders; (iv) previous diagno-
sis of hypertension, diabetes, gastrointestinal 
tract disease, autoimmune disease, or any met-
abolic diseases; or (v) a history of gastrointesti-
nal surgery. Additionally, the clinical character-
istics of all participants are listed in Table 1.

Detection of serum cytokines

Matched blood samples were collected from 
participants immediately after recruitment, 
transferred to the laboratory in an icebox, and 
stored at -80°C within 15 min after preparation 
for further analysis. Serum levels of interleu-

kin-6, IL-12, IL-17, and soluble cytotoxic T- 
lymphocyte associated antigen 4 (sCTLA-4) 
were determined using enzyme-linked immuno-
sorbent assay (ELISA) kits. Human IL-6 
(#KE00007), IL-12 (#KE00019) and IL-17 
(#KE00015) ELISA kits were purchased from 
Proteintech Group (Wuhan, China); sCTLA-4 
(#437407) ELISA kit was obtained from 
Biolegend (San Diego, CA, USA).

Fecal sample collection and DNA extraction

The fecal samples from all participants were 
freshly collected into sterile plastic cups and 
were placed on ice immediately for transfer to 
-80°C freezer. All samples were stored at -80°C 
until they were further processed. Fecal bacte-
rial DNA was extracted with the QIAamp DNA 
stool mini kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s protocol. The quality 
of the DNA was evaluated by a NanoDrop 
ND-1000 spectrophotometer (Thermo, USA), 
and the concentration and purity were moni-
tored on 2% agarose gels. All DNA was stored at 
-20°C until further analysis.

16S rRNA gene PCR amplification and se-
quencing

The hypervariable V1-V2 region of the bacterial 
16S rRNA gene was amplified with specific  
barcoded primers targeting 27F and 355R 
(27F: 5’-AGAGTTTGATCMTGGCTCAG-3’; 355R: 
5’-GCTGCCTCCCGTAGGAGT-3’). All PCR reac-
tions were conducted with Phusion® High-
Fidelity PCR Master Mix (New England Biolabs). 
Then, the PCR products were purified with a gel 
extraction kit (Qiagen, Germany) and quantified 
by a NanoDrop ND-1000 spectrophotometer. 
Sequencing libraries were generated using 
TruSeq® DNA PCR-free sample preparation kit 
(Illumina, USA) and sequenced on an Illumina 
MiSeq platform at Novogene Bioinformatics 
Technology Co., Ltd. (Beijing, China). The blank 
controls, carried out with an empty sterile tube, 
were processed for DNA extraction, amplified, 
and sequenced with the same procedures and 
reagents for the fecal samples. No detectable 
amplification was found in the negative con-
trols by qPCR.

Bioinformatics and statistical analysis

The 16S sequence paired-end reads were 
merged using the FLASH method (version 1.2.7, 
http://ccb.jhu.edu/software/FLASH/) [29]. A 
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quality-controlled process was performed 
according to the Quantitative Insights into 
Microbial Ecology (QIIME, version 1.7.0, http://
qiime.org/index.html) pipeline [30, 31] to 
obtain high-quality clean tags. These tags were 
compared with the reference database (Gold 
database, http://drive5.com/uchime/uchime_
download.html) using the UCHIME algorithm 
(UCHIME algorithm, http://www.drive5.com/
usearch/manual/uchime_algo.html) [32, 33], 
and then the effective tags were obtained. 
Sequence analyses were performed using 
Uparse software (Uparse version 7.0.1001, 
http://drive5.com/uparse/) [34]. Sequences 
with ≥ 97% similarity were assigned to the 
same operational taxonomic units (OTUs). For 
each representative sequence, the GreenGene 
Database (http://greengenes.lbl.gov/cgi-bin/nph- 
index.cgi) [35] was used based on the ribosom-
al database project classifier (version 2.2, 
http://sourceforge.net/projects/rdp-classifier/) 
[36] algorithm to annotate taxonomic informa-
tion. Alpha diversity indices in our samples 
were calculated with QIIME and displayed with 

R software (version 2.15.3, http://www.R- 
project.org). Beta diversity was determined by 
principal coordinate analysis (PCoA) using R 
software, and unweighted pair-group method 
with arithmetic means clustering was conduct-
ed using QIIME software. 

Metastats analysis was performed on the rela-
tive abundance to determine which taxa were 
statistically different between the two groups. 
Only taxa with an average abundance greater 
than 1%, a P value less than 0.05, and a low Q 
value (false -discovery rate) were considered 
significant [37]. The linear discriminant analysis 
(LDA) effect size method (http://huttenhower.
sph.harvard.edu/lefse/), which emphasizes 
both the statistical significance and biological 
relevance [38], was used to identify bacterial 
biomarkers that were enriched in the fecal 
samples of the lung cancer group, with a signifi-
cance alpha of 0.05 and an LDA score greater 
than 4.0.

Intergroup comparisons of ELISA data were 
performed using Student’s t-test. A Spearman’s 

Table 2. Comparison of phylotype coverage and diversity estimation of the 16S rRNA gene libraries at 
97% similarity from the sequencing analysis

Group No. of 
reads

No. of 
OTUs1

Good’s2 
(%)

PD-whole 
tree

Richness estimator Diversity index
ACE 95% CI Chao 1 95% CI Shannon Simpson

Lung cancer 3,240,700 30,680 99.10% 47.77 774.81 674.63-874.98 755.29 655.44-855.14 5.02 0.88

Healthy controls 1,749,961 29,279 99.18% 49.11 721.87 674.86-768.88 699.81 649.94-749.67 5.13 0.90
1The operational taxonomic units (OTUs) were defined with 97% similarity level. 2The coverage percentage (Good’s) and richness estimators (ACE and Chao 1), and 
diversity indices (Shannon and Simpson) were calculated using the R software. No alpha diversity index between the lung cancer group and healthy controls reached the 
statistically different (P < 0.05, Student t test). 

Figure 1. Beta diversity comparisons by principal coordinate analysis (PCoA) plots based on (un)weighted UniFrac 
distances. The percentage of explained variability of each PC is indicated on the axis. Each point represents a 
sample and is colored by sample types (red squares, lung cancer; green circles, healthy controls). A. PCoA based on 
the unweighted UniFrac distances. B. PCoA based on the weighted UniFrac distances. 
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rank-correlation analysis was used for correla-
tion analyses between the altered bacteria and 
inflammation indicators. A P value greater than 
0.05 was considered to indicate statistical sig-
nificance. Statistical analyses were performed 
using SPSS software version 17.0 for Windows 
(IBM, SPSS Inc., Chicago, IL, USA).

Availability of data and materials

The sequence data from this study have been 
submitted to NCBI Sequence Read Archive 
(accession number: SRA096351, http://www.
ncbi.nlm.nih.gov/sra).

Results

Differences in fecal bacterium diversity

Fecal bacterium diversity profiles were gener-
ated from a total of 41 patients with lung can-

cer and 41 healthy volunteers. No difference in 
the age, gender, BMI, smoking status, and alco-
hol consumption was observed between the 
two groups (P < 0.05). The clinical characteris-
tics are listed in Table 1.

Barcoded 16S rRNA amplicon sequencing us- 
ing Illumina MiSeq yielded a total of 5,755,467 
effective reads. From these, 4,990,760 taxon 
reads were selected, with a mean of 60,863 
reads per barcoded sample (range, 20,514-
152,145). A total of 59,959 OTUs were ob- 
tained, based on the conventional criterion of 
97% sequence similarity, with 30,680 OTUs in 
the lung cancer group and 29,279 OTUs in the 
healthy control group. The values of Good’s cov-
erage in our study were nearly 99% for all sam-
ples, indicating that the reads obtained from 
both groups represented most of the bacteria 

Figure 2. UPGMA tree based on unweighted UniFrac distance matrix. The community differentiation was measured 
by the unweighted UniFrac algorithm, and the scale bar indicates the distance between the clusters in UniFrac units. 
The red bars represent patients with lung cancer, and the blue bars indicate healthy volunteers.



Altered fecal bacteria in lung cancer patients

3176 Am J Transl Res 2018;10(10):3171-3185

presented in the samples of this study. Alpha 
diversity was determined to analyze the com-
plexity of species diversity in each sample. No 
differences were found in the alpha diversity 
indices between the healthy control and lung 
cancer groups (P < 0.05) (Table 2). A summary 
of these results is presented in Table 2. Taken 
together, they suggest a high similarity in com-
positional complexity of gut bacteria between 
lung cancer patients and healthy volunteers.

To characterize the dysbiosis in the gut micro-
bial communities of lung cancer patients, the 
beta diversity of the microbiota was used by 
evaluating the overall structure features. As is 
expected, PCoA based on unweighted UniFrac 
distances at the OUT level revealed a statisti-
cally significant separation of the two groups 
(Figure 1A). However, there was no significant 
difference in the PCoA based on the weighted 
UniFrac distance (Figure 1B), indicating that 
the primary difference lies in a less abundant 
taxon.  Next, we performed an analysis of simi-
larities. The results indicated that the structure 
of the gut bacteria in patients with lung cancer 
was significantly different from that in healthy 
volunteers (Adonis, R = 0.270, P = 0.001). Addi- 

tionally, the cluster tree analysis based on the 
relative abundance of the OTUs in each sample 
indicated that the bacterial communities were 
divided into clusters between lung cancer 
patients and healthy volunteers, and the micro-
biota composition from the same community 
was more similar (Figure 2).

Differences in bacterial communities

A taxon-dependent analysis using the ribosom-
al database project classifier was conducted to 
explore lung cancer-associated differences in 
the fecal microbiota. Nineteen phyla and two 
candidate divisions (SR1 and WCHB1-60) were 
revealed from the study samples of the two 
groups. The analysis showed that Bacteroidetes, 
Firmicutes, and Proteobacteria were the most 
common phyla identified in the two groups, 
contributing 96.26% and 99.18% of the gut 
bacteria in the lung cancer group and healthy 
control group, respectively. However, the lung 
cancer group had a conspicuously lower abun-
dance in Firmicutes and Proteobacteria than  
the healthy control group (Figure 3C, 3D). 
Additionally, the Metastats analysis showed 
that three predominant phyla-Bacteroidetes, 

Figure 3. Relative abundances of the predominant taxa in fecal microbiota from patients with lung cancer and 
healthy volunteers. A, C. Abundances of fecal microbiota in each sample at phylum level and genus level, respec-
tively. B, D. Abundances of fecal microbiota in lung cancer and healthy control groups at the phylum level and genus 
level, respectively.
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Figure 4. Significant differences of the predominant taxa in fecal microbiota from lung cancer patients and healthy volunteers. A-C. Phylum level. D-L. Genus level. 
Data are presented as the means ± SEM; horizontal bars indicate means. Statistical analysis was performed by Metastats analysis. *P < 0.05, **P < 0.01, ***P 
< 0.001.
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Figure 5. Different structures of fecal microbiota from patients with lung cancer and healthy volunteers. A. Histogram of the linear discriminant analysis (LDA) scores 
for differentially abundant taxon (relative abundant ≥ 1%). The enriched taxa in lung cancer group are indicated with a positive LDA score (green), and taxa enriched 
in healthy volunteers have a negative score (red). Only taxa that met an LDA significant threshold > 4 are shown. B. Taxonomic representation of statistically and 
biologically consistent differences between patients with lung cancer and healthy volunteers. Differences are represented by the color of the most abundant taxon 
(green, lung cancer; yellow, non-significant; red, healthy). The diameter of each dot is proportional to the taxon’s abundance. 
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Firmicutes, and Fusobacteria-were significantly 
different between the lung cancer and healthy 
control group (Figure 4A-C).

At the genus level, 398 genera were classified 
from the fecal bacteria, with 335 genera in the 
lung cancer group and the same number of 
genera in the healthy control group. The pre-
dominant genera were defined as comprising 
greater than 1% of the total gut bacteria. Among 
the total genera identified in the gut bacteria, 
15 predominant genera were detected in the 
lung cancer group, and 16 were detected in the 
healthy control group, with 10 predominant 
genera found in both groups. These predomi-
nant genera accounted for 78.22% and 79.39% 
of the total sequences from the lung cancer 
group and the healthy control group, respec-
tively; and the most predominant genera in the 
two groups were Bacteroides (Figure 3A, 3B). 
The Metastats analysis showed that 169 gen-
era differed significantly between the two 
groups, including eight predominant and 161 
less predominant genera. Among the predomi-
nant differential genera, three genera-Bacteroi-
des, Veillonella, Fusobacterium-were higher 
and five genera-Escherichia-Shigella, Kluyvera, 
Fecalibacterium, Enterobacter, and Dialister-
were lower in the lung cancer group than in the 
healthy control group (Figure 4D-L). 

Additionally, the metagenomic biomarker dis-
covery approach was used to identify the great-
est different phylotypes responsible for the dif-
ference in gut bacteria between the two groups. 
We found that the lung cancer group was asso-
ciated with significantly higher Bacteroidetes 
and Fusobacteria. Bacteroides was the promi-
nent genus level biomarker for lung cancer 
group, and thus, the lung cancer group might 
be designated by the Bacteroides dominant 
cluster. Other biomarkers for lung cancer group 
included Prevotella-9, Klebsiella, and Fuso- 
bacterium. For healthy controls, Proteobacteria 
and Firmicutes were the top two abundant 
phyla, and Dialister, Enterobacter, Faecalibac- 
terium, and Escherichia-Shigella were the most 
prominent genus level biomarker. Thus, the 
healthy control group might be designated as 
the Prevotella and Prevotella_7 dominant clus-
ter. The other biomarkers for healthy controls 
included Porphyromonadaceae, Prevotellace- 
ae, Bacteroidia, and Bacteroidales. These dom-
inant phylotypes contributed to this difference 
between the lung cancer and healthy control 
groups (Figure 5).

Differences in expressed cytokines

To investigate the associations between fecal 
bacteria and clinical indicators, we detected 
the serum levels of IL-6, IL-12, IL-17, and sCTLA-
4 in the lung cancer and the healthy control 
groups. No significant difference was observed 
in serum IL-12 level between the two groups. 
However, the serum levels of IL-6, IL-17, and 
sCTLA-4 in the lung cancer group were signifi-
cantly higher than those in the healthy control 
group (Table 1) (P < 0.05).

We also retrospectively reviewed medical 
records of the patients with lung cancer for sys-
temic inflammation-related markers, including 
neutrophil-to-lymphocyte ratio (NLR), platelet-
to-lymphocyte ratio (PLR), lymphocyte-to-mo- 
nocyte ratio (LMR), and prognostic nutritional 
index (PNI), which are potentially independent 
prognostic factors in survival of lung cancer 
(Table 1). Moreover, we evaluated the correla-
tions between these systemic inflammation-
related markers and the relative abundance of 
the bacterial genera with significant differenc-
es. Because of significant interindividual varia-
tion, two identified genera, Escherichia-Shigella 
and Enterobacter, were positively correlated 
with serum NLR level, and Dialister was nega-

Table 3. Summary of the significant correla-
tions between systemic inflammatory indica-
tors and certain specific genera
Correlating pair of the 
variables

Correlation  
Coefficient (R) P value

NLR-Escherichia-Shigella 0.453 0.003
NLR-Enterobacter 0.439 0.004
NLR-Dialister -0.323 0.040
PLR-Dialister -0.397 0.010
IL12-Veillonella 0.449 < 0.001
IL12-Dialister -0.259 0.019
IL12-Fusobacterium 0.278 0.011
IL17-Veillonella -0.224 0.043
IL17-Fusobacterium -0.278 0.012
sCTLA-4-Escherichia 0.307 0.005
sCTLA-4-Veillonella -0.300 0.006
sCTLA-4-Fusobacterium -0.305 0.005
sCTLA-4-Enterobacter 0.318 0.004
sCTLA-4-Dialister 0.293 0.008
The spearman rank correlation (R) and probability (P) 
were used to evaluate statistical importance, and the 
correlation was filtered by P < 0.05.
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tively correlated with serum levels of NLR and 
PLR. Furthermore, correlations were found 
between Dialister and serum levels of IL-12 and 
CTLA-4. Significant correlations between cer-
tain bacteria and inflammatory cytokines are 
presented in Table 3.

Discussion

In the present study, we characterized the 
unique composition of gut bacteria in 41 
patients with lung cancer and healthy volun-
teers. Our study found an altered gut bacterial 
community in patients with lung cancer. 
Furthermore, we evaluated the correlations 
between certain specific bacteria and clinical 
indicators. For the first time, correlations were 
identified between certain specific bacteria 
and inflammatory status in patients with lung 
cancer. These findings provided a broader 
understanding of gut bacteria in lung cancer 
patients, paving the way for further investiga-
tion in this research area.

Altered gut bacteria composition has been 
identified in patients with intestinal or extraint-
estinal cancers [39, 40]. Up to now, studies on 
microbiota were primarily focused on bron-
choalveolar lavage fluid, sputum and salivary 
samples, airway microbiome, and lung tumor 
tissues [10, 13, 15, 18, 41, 42] in patients with 
lung cancer. These studies provided insights 
into the microbiota communities of these 
patients and their potential link to lung cancer. 
Previous studies also documented that gut bac-
teria played an important role in the carcino-
genesis of gastrointestinal cancer and other 
cancers via metabolism, inflammation, and 
immune response [7, 10-12]. These findings 
highlighted the reciprocal relationship between 
gut bacteria and lung cancer.

Decreased alpha diversity of bacteria from 
tumor lung tissues [15], bronchoalveolar lavage 
fluid, and sputum samples from cancer patients 
[14, 43] is commonly reported to be associated 
with cancer states. However, in the present 
study, no significant difference in alpha diversi-
ty was found between the two groups. This 
result does not exist in isolation as a similar 
result was also reported in buccal samples 
from patients with lung cancer [43]. Inflam- 
mation and immune status may be two of the 
major factors that affect gut bacterial alpha 
diversity [9, 44]. Diet, lifestyle, age, and other 

related factors also cannot be ignored [45]. 
Given the limited residence and diet style of our 
study participants, our results merely represent 
the patients commonly seen in clinical practice 
in the Jinan district. Therefore, large well-con-
ducted studies are needed to further elucidate 
the lack of difference in alpha diversity.

In the present study, we provided evidence that 
patients with lung cancer had lower abundanc-
es in Firmicutes and Proteobacteria, along with 
relatively higher levels of Bacteroidetes and 
Fusobacteria, indicating the potential links 
between gut bacteria and lung cancer. In gen-
eral, the dysbiosis of gastrointestinal tract 
metabolism has been repeatedly associated 
with a reduced Firmicutes/Bacteroidetes ratio 
[46, 47]. Our findings agree with this feature, as 
the lung cancer group exhibited a low 
Firmicutes/Bacteroidetes ratio. This low ratio 
results in a low concentration of circulating 
short-chain fatty acids, which are important 
influencing elements for host systemic immu-
nity and systemic inflammation [48, 49]. 
Moreover, butyrate, one of the most crucial of 
these fatty acids, is associated with trophic and 
anti-inflammatory activities, and induces differ-
entiation of regulatory T cells, cellular prolifera-
tion, and apoptosis through the activation of 
signaling pathways (such as NF-κB) [50, 51]. 
Additionally, all butyrate-producing bacteria 
belong to the Firmicutes phylum in human bac-
terial communities. Increased opportunistic 
pathogens, such as Proteobacteria, constitute 
a major structural imbalance of gut microbiota 
in patients with cancer [52, 53]. These data 
provided initial insights into the dysbiosis in gut 
microbiota associated with lung cancer. 
However, we cannot rule out that the altered 
bacteria diversity may be a passive byproduct 
of tumor progression. Therefore, additional 
studies of the longitudinal changes of the gut 
bacteria are warranted.

Our findings indicated that several other  
bacteria abundant in the intestines had a 
potential function in lung cancer (Figure 5). 
Fusobacterium, which is reportedly correlated 
with the development of several types of  
malignant tumors [54], was found to be signifi-
cantly higher in patients with lung cancer  
than in healthy volunteers. Overgrowth of 
Fusobacterium, a potential inducer of T regula-
tory cells or carcinogens [40, 55, 56], promotes 
autophagy activation with poor outcomes in 
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colon cancers [21]. Additionally, a higher abun-
dance of this bacteria is found in the bronchoal-
veolar lavage fluid samples from “healthy” 
smokers [57]. Thus, it is not a stretch to infer 
that Fusobacterium may contribute to the pro-
gression of lung cancer. An elevated abun-
dance of Veillonella in patients with lung cancer 
was identified as a potential diagnostic bio-
marker for lung cancer in saliva samples [18], 
indicating a potential link between this type of 
gut bacteria and lung cancer. However, further 
mechanism studies are required to investigate 
this hypothesis. Faecalibacterium, the major 
type of butyrate-producing bacteria, and 
Bacteroides belonging to the Bacteroidetes 
phylum have been reported to enrich anti-cyto-
toxic T-lymphocyte-associated protein (CTLA) 4 
plus anti-programmed cell death protein (PD) 1 
receptors in epithelial tumors, indicating the 
potential synergistic antitumor effect on immu-
notherapy in patients with cancer [22, 58]. 
Furthermore, Kluyvera and Dialister, which 
were significantly lower in patients with lung 
cancer, were barely reported in relation to carci-
nogenesis until now. These results further sup-
ported the hypothesis that gut bacteria is linked 
with lung cancer. However, because the com-
plex roles of those bacteria are unreaveled, fur-
ther research, preferably with longitudinal stud-
ies, should be conducted to clarify the 
underlying mechanisms at work.

Interestingly, our study revealed that gut bacte-
ria are correlated with inflammation indicators. 
A previous study showed that gut microbiota 
could regulate the lifespan of neutrophils and 
inflammatory monocytes [59, 60]. Elevated 
NLR and PLR were associated with the poor 
prognosis in patients with lung cancer [61, 62]. 
Moreover, combination immune checkpoint-
targeted therapies such as CTLA-4 and PD-1/
PD-L1 and bacterial treatments for cancer 
patients exerted great promise in antitumor 
responses [22, 63]. These evidences men-
tioned above make us infer that there might 
have been a direct relationship between the 
gut bacteria and inflammatory indicators in 
lung cancer patients. Our findings demonstrat-
ed the correlations between certain specific 
bacteria and inflammation indicators and, fur-
thermore, provided the associations between 
bacterial markers and lung cancer. While these 
findings have sparked much new interest, the 
current data is unlike to yield any firm conclu-

sion on whether the observed associations are 
a consequence of the disease or a causative 
mechanism. Future studies would benefit from 
a precise longitudinal study design to evaluate 
the causal relationships between inflammatory 
indicators and gut bacteria.

We acknowledge that our study contained 
some limitations. First, the sample size of 
patients was small. We could not comprehen-
sively and systematically profile the bacterial 
communities of lung cancer patients. Thus, 
additional larger number of subjects is needed 
to verify our observations. Second, our experi-
ments did not monitor the bacterial community 
structure dynamically in the process of lung 
cancer, which may contribute to a better under-
standing of the altered gut bacteria associated 
with lung cancer. Third, the effect of depression 
on gut bacteria in patients with lung cancer 
was not evaluated in this study. Nevertheless, 
further research on this topic is required, pref-
erably studies with a longitudinal study design 
using a lung cancer animal model to investigate 
the underlying mechanisms of the relationship 
between gut bacteria and lung cancer.

In conclusion, we presented a detailed descrip-
tion of the altered fecal bacteria in patients 
with lung cancer, providing a significant first 
step in understanding the relationship between 
fecal bacteria and lung cancer. Moreover, our 
work is the first to evaluate the correlations 
between certain specific bacteria and inflam-
matory indicators. Our work not only extends 
this observation to patients with lung cancer, 
but also might facilitate clinical therapeutic 
strategies for monitoring and altering gut bac-
teria dysbiosis in lung cancer patients.
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