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Original Article 
COX-2 contributes to LPS-induced Stat3 activation  
and IL-6 production in microglial cells
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Abstract: Many stimuli including lipopolysaccharide (LPS) could activate microglial cells to subsequently cause 
inflammatory nerve injury. However, the mechanism of LPS-induced neuroinflammation in microglial cells is still 
elusive. Thus, the present study was undertaken to examine the role of COX-2 in mediating the activation of Stat3 
and the production of IL-6 in BV2 cells challenged with LPS. After 24 h treatment, LPS dose-dependently enhanced 
COX-2 expression at both mRNA and protein levels. Meanwhile, IL-6 with other inflammatory cytokines including IL-
1β, TNF-α, and MCP-1 were similarly enhanced by LPS. Then a specific COX-2 inhibitor (NS-398) was administered 
to BV2 before LPS treatment. Significantly, COX-2 inhibition suppressed the upregulation of IL-6 at both mRNA and 
protein levels in line with the trend blockade on IL-1β, TNF-α, and MCP-1. Stat3 drives proinflammatory signaling 
pathways and contributes to IL-6 production via a transcriptional mechanism in many diseases. Here we found that 
inhibition of COX-2 entirely blocked LPS-induced Stat3 phosphorylation, which might contribute to the blockade of 
IL-6 production to some extent. Meanwhile, COX-2 siRNA approach largely reproduced the phenotypes shown by 
specific COX-2 inhibitor in LPS-treated BV2 cells. Together, these findings suggested that COX-2 might contribute to 
LPS-induced IL-6 production possibly through activating Stat3 signaling pathway in microglial cells.
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Introduction

Microglial cell are innate immune cells in the 
central nervous system (CNS), and are related 
to the inflammatory response in the brain. Un- 
der the normal state, microglial cells play an 
important role in immune surveillance, mainte-
nance of the homeostasis of CNS environment, 
clearance of damaged neurons and debris, and 
tissue repair [1, 2]. When exposed to the diver- 
se stimuli including infection, lipopolysaccha-
ride (LPS), and neuron damage, microglial cells 
could be activated [3-5]. The activated microg-
lial cells release pro-inflammatory mediators 
and cytokines, such as prostaglandin E2 (PGE2), 
IL-6, nitric oxide (NO), monocyte chemotactic 
protein-1 (MCP-1), interleukin (IL)-1β, and tumor 
necrosis factor-α (TNF-α) [2, 4, 6], leading to 
subsequent inflammation. Excessive produc-
tion of pro-inflammatory mediators by activated 
microglia play a critical role in the pathogenesis 
of neurodegenerative diseases including Alzhei- 

mer’s disease (AD), Parkinson’s disease (PD), 
cerebral ischemia, and multiple sclerosis [7, 8]. 
IL-6 is involved in the pathogenesis of artery 
atherosclerosis via promoting local inflamma-
tory lesions [9]. Several studies have reported 
that IL-6 plays an important role in blood-brain 
barrier (BBB) injury such as subarachnoid hem-
orrhage (SAH), excessive erythrocytosis, and 
cerebral ischemia [10-12]. BBB injury is a mark 
of neurological disorders and brain injury [13, 
14]. Therefore, targeting the excessive pro-
inflammatory cytokines produced by microglial 
cells and the associated signaling pathways to 
find the potential targets for the treatment of 
neural diseases is of importance. 

Cyclooxygenase (COX)-2, an inducible inform of 
COXs, is reported to participate in many inflam-
matory diseases [15, 16]. Several studies have 
indicated that COX-2 is involved in many neuro-
degenerative diseases such as Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), and prion 
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diseases [17-20]. Under the pathological condi-
tions, prostaglandin E2 (PGE2) is an important 
inflammatory mediator produced by COX-2 [21]. 
The secretion of PGE2 can be enhanced in re- 
sponse to various stimuli [2, 4, 6]. Stat3 is an 
important transcription factor in the immune 
system, participating in many inflammatory res- 
ponses in CNS [22]. In macrophages, Stat3 is 
reported to participate in inflammation by regu-
lating the production of pro-inflammatory cyto-
kines [23]. In glial cells, LPS-induced neuroin-
flammation was associated with the activation 
of Stat3 [22]. It’s also reported that an increase 
of COX-2/PGE2 offsets the repressive activity of 
Berberin on inhibiting the invasion and metas-
tasis of colorectal cancer cells via JAK2/Stat3 
signaling pathway [24]. However, the role of 
COX-2/PGE2/Stat3 signaling pathway in LPS-
induced microglial inflammation is unknown. 

In the present study, employing a specific COX-2 
inhibitor and COX-2 siRNA, we investigated the 
activation and contribution of COX-2 in LPS-
induced IL-6 production and Stat3 activation in 
microglial cells. 

Materials and methods

Reagents and antibodies

LPS was purchased from Sigma (St. Louis, 
USA). COX-2 inhibitor NS-398 was bought from 
Beyotime (Shanghai, China). Dulbecco’s modi-
fied Eagle’s medium (DMEM), fetal bovine se- 
rum (FBS), penicillin-streptomycin, and trypsin 
solution (EDTA) were bought from Gibco (Invi- 
trogen, Grand island, NY). The COX-2 antibody 
was purchased from Cayman Chemicals (Ann 
Arbor, MI). β-actin, Stat3, and p-Stat3 antibod-

mented with 10% fetal bovine serum (FBS; Gib- 
co), penicillin (100 U/ml) and streptomycin (100 
μg/ml), and maintained at 37°C in a humidified 
5% CO2 atmosphere. After BV2 were cultivated 
to 60%-70% confluence, cells were treated with 
LPS for 24 h at different doses (0.5, 1, 2 μg/ml) 
with or without a pretreatment of NS-398 (COX-
2 inhibitor). In another experiment, COX-2 siRNA 
was applied to silence COX-2 in LPS-treated 
BV2 cells.

Quantitative real-time PCR (qRT-PCR) analysis

Total RNA was extracted using Trizol reagent 
(TaKaRa), and cDNA was prepared using a 
PrimeScript RT reagent Kit (TaKaRa) according 
to the manufacturer’s protocol. Oligo nucleo-
tides were designed using Primer 5 software 
(available at http://frodo.wi.mit.edu/) and the 
sequences are shown in Table 1. Real-time 
PCR amplification was performed using the ABI 
7500 Real-Time PCR Detection System (Foster 
City, CA) by using SYBR Premix Ex Taq (TaKaRa). 
The cycling program consisted of a preliminary 
denaturation (95°C for 10 min), followed by 40 
cycles (95°C for 15 s and 60°C for 1 min). Re- 
lative gene expression of mRNA was normal-
ized to GAPDH and calculated using the ΔΔCt 
method from the threshold cycle numbers.

Western blotting

Cells were rapidly washed with ice-cold PBS 
and lysed on ice in lysis buffer containing prote-
ase inhibitors. An equal amount of protein was 
separated on 10% SDS-PAGE, and transferred 
onto PVDF membrane (Bio-Rad) which was blo- 
cked with 5% nonfat milk in TBST for an hour. 
Membrane was then incubated with primary 

Table 1. Sequences of primers for quantitative real-time PCR
Gene symbol Primer sequence Accession number
COX-2 5’-AGGACTCTGCTCACGAAGGA-3’ YP_001686701.1

5’-TGACATGGATTGGAACAGCA-3
IL-6 5’-GCTGGTGACAACCACGGCCT-3’ NM_001314054.1

5’-AGCCTCCGACTTGTGAAGTGGT-3’
IL-1β 5’-ACTGTGAAATGCCACCTTTTG-3’ NM_008361.4

5’-TGTTGATGTGCTGCTGTGAG-3’
TNF-α 5’-TCCCCAAAGGGATGAGAAG-3’ NM_001278601.1

5’-CACTTGGTGGTTTGCTACGA-3’
MCP-1 5’-GCTCTCTCTTCCTCCACCAC-3’ NM_011333.3

5’-ACAGCTTCTTTGGGACACCT-3’
GAPDH 5’-GTCT TCACTACCATGGAGAAGG-3’ M32599

5’-TCATGGATGACCTTGGCCAG-3’

ies were obtained from Cell Sig- 
naling Technology (Dan-vers, MA). 
The PGE2 enzyme immunoassay 
kit was purchased from Cayman 
Chemicals (Ann Arbor, MI). The IL- 
6 enzyme immunoassay kit was 
bought from Boster (Wuhan, Chi- 
na).

Cell culture

The mouse microglia cell line BV2 
was obtained from China Infra- 
structure of Cell Line Resources 
(Beijing, China). Cells were cultur- 
ed in Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco) supple-
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antibodies against COX-2 (1:500), Stat3 (1: 
500), p-Stat3 (1:1000), and β-actin (1:1000) 
overnight at 4°C. After washing, membranes 
were incubated with HRP-labeled secondary 

antibodies at room temperature for 1 h. β-actin 
was used as an internal standard control. Band 
intensity was measured using Image J software 
(NIH, Bethesda, MD, USA).  

Figure 1. Effects of LPS on the expressions of inflammatory cytokines in BV2 cells. The mRNA levels of IL-6 (A), IL-1β 
(B), TNF-α (C) and MCP-1 (D) were upregulated by LPS treatment for 24 h at different doses. All values are means ± 
SD; n = 6 in each group. *P < 0.05 versus control, **P < 0.01 versus control.

Figure 2. Effects of LPS on the expression of COX-2 in 
BV2 cells. A. Western blotting analysis of COX-2 in BV2 
cells. B. Quantitative analysis of COX-2 Western blots. C. 
qRT-PCR analysis of COX-2 in a dose-dependent experi-
ment. All values are means ± SD; n = 6 in each group. 
*P < 0.05 versus control, **P < 0.01 versus control. 
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ELISA assay

The cell culture medium was collected and cen-
trifuged for 10 min at 12,000× g. The IL-6 level 
in the medium was measured by ELISA kit 
(Boster). A ELISA kit from Cayman Chemicals 
was used to detect PGE2 in the medium accord-
ing to the manufacturer’s instructions.

Statistical analysis

Data are presented as means ± SD. Compari- 
sons among multiple groups were carried out 
using the one-way analysis variance (ANOVA) 
followed by Bonferroni’s comparison test. Sta- 
tistical calculations were performed by Graph- 
Pad Prism (GraphPad Software, San Diego, CA, 
USA). P<0.05 was considered significant.

Results

LPS treatment upregulated IL-6 and other in-
flammatory cytokines in BV2 cells

At first, we observed the expressions of IL-6 
and other inflammatory cytokines including IL- 
1β, TNF-α and MCP-1 in response to LPS stimu-
lation at different doses in BV2 cells. As shown 

by the data, after LPS treatment at 0.5, 1 and 2 
μg/ml for 24 h, the mRNA expressions of IL- 
6, IL-1β, TNF-α and MCP-1 were significantly 
increased in a dose-dependent manner (Figure 
1A-D). These data demonstrated that LPS suc-
cessfully induced the inflammatory response in 
BV2 microglial cells.

LPS upregulated COX-2 expression in BV2 cells

In order to investigate the effect of LPS on 
COX-2 expression, we observed the protein and 
mRNA levels of COX-2 after LPS treatment in 
BV2 cells. By qRT-PCR, we detected that LPS 
enhanced the protein expression of COX-2 with 
the highest upregulation at the dose of 1 μg/ml 
(Figure 2A, 2B). Next, we further examined the 
COX-2 mRNA expression via qRT-PCR. As shown 
in Figure 2C, COX-2 mRNA was significantly 
upregulated following LPS treatment. These 
data suggested that LPS could directly upregu-
late COX-2 expression in BV2 microglial cells.

COX-2 inhibitor attenuated LPS-stimulated 
PGE2 production

To evaluate the role of COX-2 in LPS-induced 
microglial inflammation, a specific COX-2 inhibi-

Figure 3. Effects of COX-2 inhibitor (NS-398) on COX-2 expression and PGE2 production in BV2 cells challenged with 
LPS. A. Western blotting analysis of COX-2 in BV2 cells. B. Quantitative analysis of COX-2 Western blots. C. COX-2 
mRNA levels were elevated by LPS treatment. D. The levels of PGE2 in cell culture media were measured via ELISA 
assay. All values are means ± SD; n = 6 in each group. *P < 0.05 versus control or LPS group, **P < 0.01 versus 
control or LPS group. 
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tor (NS-398) was applied to BV2 cells before 
LPS administration. As shown by Figure 3A-C, 
COX-2 inhibitor at a dose of 10 μM significantly 
decreased COX-2 expression at both mRNA and 
protein levels. To further examine the efficacy 
of COX-2 inhibition, we measured PGE2 produc-
tion in the medium. As shown by Figure 3D, LPS 
(1 μg/ml) treatment strikingly increased PGE2 
level by 2.5 folds, which was significantly blo- 
cked by COX-2 inhibitor treatment. The results 
demonstrated a COX-2-dependent induction of 
PGE2 in response to LPS treatment. 

Effects of COX-2 inhibition on LPS-induced 
upregulation of inflammatory cytokines in BV2 
cells

Furthermore, we examined the role of COX-2 
inhibition in LPS-induced inflammation. The 

BV2 cells were pretreated with COX-2 inhibitor 
for 24 h followed by LPS treatment for another 
24 h. LPS exposure significantly increased the 
production of IL-6, IL-1β, TNF-α and MCP-1 at 
mRNA levels, whereas only IL-6 was significant-
ly blocked by COX-2 inhibitor with a trend block-
ade on other inflammatory cytokines (Figure 
4A, 4C-E). Furthermore, we measured IL-6 pro-
tein production in the medium by ELISA and 
found that LPS-induced IL-6 release was also 
significantly blocked by COX-2 inhibitor (Figure 
4B).

COX-2 inhibitor blocked LPS-induced Stat3 
phosphorylation in BV2 microglia

Stat3 is a key transcription factor and contrib-
utes to the IL-6 production at a transcription 
level [25, 26]. We previously found that PGE2 

Figure 4. Effects of COX-2 inhibitor on the mRNA 
expressions of inflammatory cytokines in BV2 
cells challenged with LPS. A. qRT-PCR analysis 
of IL-6. B. ELISA assay of IL-6 in the medium. C. 
qRT-PCR analysis of IL-1β. D. qRT-PCR analysis of 
TNF-α. E. qRT-PCR analysis of MCP-1. All values 
are means ± SD; n = 6 in each group. *P < 0.05 
versus control or LPS group, **P < 0.01 versus 
control or LPS group. 
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could activate the Stat3 in podocytes [27]. 
Thus, we examined whether COX-2 inhibitor 
could attenuate LPS-induced Stat3 phosphory-
lation. As expected, LPS treatment strikingly 
enhanced Stat3 phosphorylation in BV2 mic- 
roglial cells, which was largely normalized by 
COX-2 inhibitor (Figure 5A, 5B). These data sug-
gested that LPS-stimulated Stat3 phosphoryla-
tion is through a COX-2-mediated mechanism, 
which might contribute to the IL-6 production to 
some extent.

Silencing COX-2 blunted LPS-induced Stat3 
phosphorylation and IL-6 upregulation in BV2 
cells

In order to further confirm the COX-2 effect in 
this experimental setting, we silenced COX-2 
using a siRNA approach. As shown by the data, 
both COX-2 protein and PGE2 secretion were 
blocked by COX-2 siRNA (Figure 6A-D), suggest-
ing the efficacy of COX-2 siRNA in silencing COX-
2. Meanwhile, we observed a significant block-

Figure 5. Effect of COX-2 inhibition on LPS-induced Stat3 phosphorylation. A. Western blotting analysis of p-Stat3 
and Stat3 in BV2 cells. B. The ratio of p-Stat3 to Stat3. All values are means ± SD; n = 6 in each group. *P < 0.05 
versus control or LPS group, **P < 0.01 versus control or LPS group. 

Figure 6. Silencing COX-2 ameliorated LPS-induced PGE2 production. To examine the role of COX-2 in LPS-induced 
PGE2 production, COX-2 siRNA was applied to BV2 cells. A. Protein levels of COX-2 in BV2 cells treated with COX-2 
siRNA or negative control treatment. B. mRNA levels of COX-2 in BV2 cells treated with COX-2 siRNA or negative 
control treatment. C. Representative images of Western blots of COX-2 with or without COX-2 silencing in response 
to LPS treatment. D. EIA assay of PGE2 in medium. All values are means ± SD; n = 6 in each group. *P < 0.05 versus 
control or LPS group, **P < 0.01 versus control or LPS group. 
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ade of Stat3 phosphorylation and IL-6 produc-
tion induced by LPS (Figure 7A-D), while other 
inflammatory cytokines like IL-1β, TNF-α, and 
MCP-1 were unaffected (Figure 7E-G). These 
data indicated a specific role of COX-2 in modu-
lating Stat-3 activation and IL-6 expression in 
BV2 cells.

Discussion

Microglial cells play a critical role in neurode-
generative diseases such as AD, PD, cerebral 

ischemia, and multiple sclerosis. LPS is a com-
ponent of the outer membrane of gram-nega-
tive bacteria. Exposure to LPS and LPS-induced 
inflammatory response could lead to septic 
shock and sepsis [28]. However, the pathologi-
cal mechanisms of LPS-induced microglial in- 
flammation still need in-depth investigation. 

Among a number of proinflammatory cytokines, 
IL-6 is an important one with multiple functions. 
Using either anti-IL-6 neutralizing antibody or 
IL-6 siRNA attenuated TNF-α-dependent gener-

Figure 7. Silencing COX-2 blunted LPS-induced Stat3 
phosphorylation and IL-6 upregulation. A. Western blot-
ting analysis of p-Stat3 and Stat3 in BV2 cells. B. The 
ratio of p-Stat3 to Stat3. C. The mRNA level of IL-6 was 
measured by qRT-PCR. D. IL-6 release in cell culture 
medium were measured by using a ELISA kit. E. qRT-
PCR analysis of IL-1β. F. qRT-PCR analysis of TNF-α. G. 
qRT-PCR analysis of MCP-1. All values are means ± SD; 
n = 6 in each group. *P < 0.05 versus control or LPS 
group, **P < 0.01 versus control or LPS group. 
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ation of reactive oxygen species (ROS) and 
brain microvascular endothelial cell (HBMvEC) 
hyperpermeability [29]. Some studies also re- 
ported that IL-6 was involved in the pathogen-
esis of artery atherosclerosis via promoting 
local inflammatory lesions [9]. In our study, LPS 
enhanced the production of IL-6, which was 
partially but significantly blocked by specific 
COX-2 inhibitor or COX-2 siRNA in line with the 
trend reduction of other inflammatory cyto-
kines including IL-1β, TNF-α and MCP-1. These 
results suggested that COX-2 inhibition amelio-
rated LPS-induced inflammatory response in 
microglial cells with a specific effect on block-
ing IL-6. It was established that COX-2 played 
important roles in many inflammatory diseases 
[9, 10], including the cytotoxicity in brain inju-
ries and many neurodegenerative diseases 
such as AD, PD, and prion diseases [17-20]. Our 
data suggested such a COX-2-medicated pro-
inflammatory effect in neural diseases could be 
through a IL-6-associated mechanism to some 
extent.   

Stat3 is an inflammation-associated transcrip-
tion factor and regulates many pro-inflammato-
ry or anti-inflammatory cytokines [23]. A study 
showed that berberine inhibited colorectal can-
cer cell invasion and metastasis via the down-
regulation of COX-2/PGE2-JAK2/Stat3 signaling 
pathway [24]. Our group also reported that 
PGE2 stimulated Stat3 to promote the inflam-
matory response in podocytes [27]. In agree-
ment with above findings, here we observed 
that LPS-induced Stat3 phosphorylation can be 
striking blocked by a specific COX-2 inhibitor or 
COX-2 siRNA. Considering that IL-6 is one of  
the cytokines driven by Stat3 signaling [25, 26], 
we could speculate that the effect of COX-2 on 
IL-6 production in microglial cells challenged 
with LPS might be through a Stat3-associated 
mechanism to some degree. In general, inflam-
mation-associated factors could activate each 
other to form a complex network to further pro-
mote the inflammation. Indeed, IL-6 also can 
activate Stat3 to magnify the inflammatory 
response [30, 31]. Therefore, in the present 
study, the reduction of IL-6 after COX-2 inhibi-
tion in LPS-treated microglial cells might also 
contribute to the regulation on Stat3 phosphor-
ylation in theory.    

Taken together, our study proposed a possible 
role of COX-2/PGE2/Stat3 cascade in LPS-indu- 
ced upregulation of IL-6 and inflammatory re- 
sponse in microglial cells and central nervous 

system. Therapies by targeting COX-2/PGE2/
Stat3/IL-6 signaling pathway in microglia and 
central nervous system might be beneficial for 
the treatment of neuroinflammatory diseases. 
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