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Abstract: The present study aimed to investigate the gene expression changes in prostate cancer (PC) and screen 
the hub genes and associated pathways of PC progression. The authors employed integrated analysis of GSE46602 
downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases to identify 484 consen-
sual differentially expressed genes (DEGs) in PC, when compared with adjacent normal tissue samples. Functional 
annotation and pathway analysis were performed. The protein-protein interaction (PPI) networks and module were 
constructed. RT-qPCR was used to validate the results in clinical PC samples. Survival analysis of hub genes was 
performed to explore their clinical value. GO analysis results revealed that DEGs were significantly enriched in 
negative regulation of nitrobenzene metabolic process, extracellular space and protein homodimerization activity. 
KEGG pathway analysis results revealed that DEGs were most significantly enriched in focal adhesion. The top 10 
hub genes were identified to be hub genes from the PPI network, and the model revealed that these genes were 
enriched in various pathways, including neuroactive ligand-receptor interaction, p53 and glutathione metabolism 
signaling pathways. RT-qPCR results validated that expression levels of eight genes (PIK3R1, BIRC5, ITGB4, RRM2, 
TOP2A, ANXA1, LPAR1 and ITGB8) were consistent with the bioinformatics analysis. ITGB4 and RRM2 with genetic 
alterations exhibited association with a poorer survival rate, compared with those without alterations. These results 
revealed that PC-related genes and pathways have an important role in tumor expansion, metastasis and prognosis. 
In summary, these hub genes and related pathways may act as biomarkers or therapeutic targets for PC.
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Introduction

Among the diagnosed American male cancer 
patients, prostate cancer is the most common 
cancer except skin cancer [1]. In 2016, there 
were 181,000 newly diagnosed cases and 
26,000 cases of mortality in the United States 
[2]. With the development of clinical and ex- 
perimental research, progress has been made 
regarding the treatment and understanding of 
the fundamental biology underlying PC. In 
terms of detection, prostate-specific antigen 
(PSA) is still the commonly used marker to 
identify increased risk [3]. Various studies 
have shown that certain genes have an impor-
tant role in the development and progression 
of PC, such as MXI1, BRCA1 and BRCA2. 
Regarding associated signaling pathways, it 
has been demonstrated that glioma and inte-

grated breast cancer pathways, in addition to 
notch signaling and androgen receptor (AR) 
pathways, are associated with PC [4]. Further- 
more, numerous novel biomarkers aid with 
profitable prognostic information, which may 
have vital therapeutic implications. This infor-
mation may be used as selection criteria for 
patients eligible for active surveillance or can-
didates for radiotherapy/surgery [5].

However, identification of a valid biomarker  
to complement PSA for screening, molecu- 
lar stratification methods and treatment of 
metastatic disease is of primary concern. The 
excavation of disease-related genes or bio-
markers associated with the pathogenesis 
and molecular mechanism of PC is of great sig-
nificance in the diagnosis and treatment of 
patients [6].

http://www.ajtr.org
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With the rapid development of molecular biol-
ogy and bioinformatics, chip and sequencing 
technology is widely used, and research in this 
area is continuous. The Gene Expression 
Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) database have accumulated abundant 
genomic and gene expression profiles for dif-
ferent diseases during the past decade. 
Through the analysis of these data, various 
key genes and signaling pathways related to 
the disease may be identified, which will result 
in a better understanding of the occurrence 
and development mechanism of the disease.

In the present study, large-scale gene data 
sets regarding PC were downloaded from the 
GEO and TCGA databases. GEO2R and The R 
Programming Language (R) was utilized for 
preprocessing and analysis of these data to 
obtain the differentially expressed genes 
(DEGs). For these DEGs, the Database for 
Annotation Visualization and Integrated Dis- 
covery (DAVID) database was used to facilitate 
the functional annotation and pathway analy-
sis, and the STRING database was used to 
construct the protein-protein interaction (PPI) 
network and modules selection. Then, RT-PCR 
was used to validate the hub genes in clinical 
PC samples. Finally, a survival analysis of the 
hub genes was conducted to explore their clin-
ical value. The present study aimed to identify 
critical genes involved in PC, which may be 
helpful for the development of novel targets for 
therapeutic intervention.

Materials and methods 

Microarray data

The gene expression profile GSE46602 was 
downloaded from the GEO database of the 
National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/geo). Then, the 
probe-level information was converted into 
the corresponding gene symbol according to 
the explanation data downloaded from plat-
form GPL570 (Affymetrix Human Genome 
U133 Plus 2.0 Array), and 54,675 probes were 
used to detect levels of gene transcription. 
The genome expression dataset consisted of 
36 tumor sample specimens from patients 
with prostate cancer and 14 control samples 
from patients with benign prostate glands 
adjacent to cancer or benign prostate glands. 
In the present study, the dataset including the 

14 control and 35 PC samples was select- 
ed. The genomic data and clinical data of PC 
from TCGA (https://cancergenome.nih.gov/) 
were also downloaded. These RNA sequencing 
(RNA-seq) data from Illumina HiSeq RNASeq 
platform included 498 tumor sample speci-
mens from patients with prostate cancer and 
52 control samples from patients with benign 
prostate glands adjacent to cancerous glands.

Data preprocessing and DEGs screening

GEO2R (https://www.ncbi.nlm.nih.gov/geo/g- 
eo2r/) is an interactive web tool which was 
applied to detect DEGs by comparing two or 
more groups of samples in a GEO series [7]. 
GEOquery and Limma R package in GEO2R 
was applied to identify the DEGs between PC 
samples and control samples. The Benjamini-
Hochberg (BH) method [8] was introduced to 
adjust the raw P-values into a false discovery 
rate to avoid the multi-test problem, which 
might produce too many false positive results. 
The adjust P value <0.05 and |log2 fold 
change (FC)| ≥1 were set as the thresholds for 
identifying DEGs. 

The RNA-Seq data of PC samples and control 
samples were downloaded from TCGA in 
September 2017. The edgeR package in R was 
subsequently used for the calculation of DEGs 
by comparing PC samples and control sam-
ples. The adjust P value <0.05 and I log2 fold 
change (FC) I ≥1 were set as the cut-off crite-
ria. The genes that presented in both GEO and 
TCGA analysis results were selected as the 
final DEGs.

Functional and pathway enrichment analysis 
of DEGs 

The DAVID (https://david.ncifcrf.gov/) databa- 
se is a biological database regularly used to 
facilitate functional annotation and pathway 
analysis. In order to better understand the bio-
logical functions and characteristics, the pres-
ent study performed Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses in the DAVID data-
base to identify DEGs. The human genome 
was selected as the background list parame-
ter, and P value <0.05 and count ≥2 were cho-
sen as the thresholds to indicate a statistically 
significant difference. 
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PPI network construction and modules selec-
tion

The present study used the STRING database 
(http://string-db.org/) to construct a PPI net-
work. PPI analysis provides novel insights into 
protein function and may help to reveal the 
generic organization principles of functional 
cell systems and aid in the discovery of func-
tional associations between proteins on a 
genome-wide scale. All the DEGs were import-
ed into Cytoscape plugin to create network 
visualizations. Then, the resulting PPI network 
was subjected to module analysis with the 
Plugin Molecular Complex Detection (MCODE) 
with the default parameters (degree cutoff ≥2, 
node score cutoff ≥2, K-core ≥2, and maxi-
mum depth =100).

Validation based on clinical samples of PC 

The aforementioned section described the 
creation of the PPI network using STRING and 
Cytoscape software. The hub genes were 
screened out according to the degree. To fur-
ther verify the data of the hub genes, reverse 
transcription-quantitative polymerase chain 
reaction (RT-qPCR) was conducted to detect 
the expression levels of the hub genes within 
clinical PC samples (n=12) obtained from the 
First Affiliated Hospital of Guangzhou Medical 
University. All of the individuals participating 
in the project gave informed consent, and the 
study was approved by the human study eth-
ics committee of the First Affiliated Hospital  
of Guangzhou Medical University. Total RNA 
was extracted from tissues using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). A total of 1 µg total 
RNA was reverse transcribed to cDNA, which 
was amplified by PCR within a 10 μl reaction 

ainst GAPDH expression levels. A paired-sam-
ple t-test was performed to compare the hub 
genes between PC and para-cancerous pros-
tate tissues, using SPSS software, version 
22.0 (IBM SPSS, Armonk, NY, USA). 

Survival analysis

In order to reveal the genetic alterations and 
Kaplan-Meier curves, cBioportal (http://www.
cbioportal.org/) [10, 11] was applied to ana-
lyze the hub genes. The hub genes were 
imported to cBioPortal to investigate gene 
expression changes in PC with mRNA expres-
sion data (n=499) from the TCGA Prostate 
Project dataset, as compared with normal pros-
tate samples. The aberrant mRNA expression 
threshold was defined as z-score ±2.0.

Results

Data preprocessing and DEG screening

The gene data were downloaded from GEO and 
TCGA. Based on the GEO2R and R analysis, a 
total of 3,714 DEGs were identified in PC com-
pared with the control samples in GEO, and 
1,415 DEGs were identified in PC compared 
with the control samples in TCGA. A total of 484 
DEGs presented in both the GEO and TCGA 
analysis results. These genes included 168 
upregulated and 316 downregulated genes. 
Two volcano plots of DEGs and one Venn dia-
gram of the DEG screening are presented in 
Figure 1.

Functional and pathway enrichment analysis 
of DEGs

Three GO category results are presented, 
through the use of DAVID, including biological 
processes, cellular components and molecu-

Table 1. Primer sequences for RT-qPCR
Gene Forward primer (5’-3’) Reverse primer (5’-3’)
PIK3R1 ACCACTACCGGAATGAATCTCT GGGATGTGCGGGTATATTCTTC
BIRC5 AGGACCACCGCATCTCTACAT AAGTCTGGCTCGTTCTCAGTG
ITGB4 GCAGCTTCCAAATCACAGAGG CCAGATCATCGGACATGGAGTT
RRM2 GTGGAGCGATTTAGCCAAGAA CACAAGGCATCGTTTCAATGG
TOP2A ACCATTGCAGCCTGTAAATGA GGGCGGAGCAAAATATGTTCC
ANXA1 CTAAGCGAAACAATGCACAGC CCTCCTCAAGGTGACCTGTAA
LPAR1 CTTTGCTGGGTTGGCCTACTT GCCATGTGCTAACAGTCAGTCT
ITGB8 ACCAGGAGAAGTGTCTATCCAG CCAAGACGAAAGTCACGGGA
GAPDH GAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTT

system using PrimeScript™ RT 
Reagent Kit (Takara Bio, Inc., 
Otsu, Japan). RT-qPCR proce-
dures were performed using SYBR 
Premix Ex Taq™ GC (Takara Bio, 
Inc.) on a BIO-RAD system, acc- 
ording to the manufacturer’s in- 
structions. Relative expression 
values were calculated using the 
2-ΔCT method [9]. The primers were 
synthesized by Generay Biotech 
Co., Ltd. (Shanghai, China), and 
sequences are listed in Table 1. 
All values were normalized ag- 
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lar functions. The biological process results 
revealed that DEGs were primarily enriched in 
nitrobenzene metabolic processes, glutathione 
derivative biosynthetic process and cochlea 
development. The cellular component results 
indicated that DEGs were mainly enriched in 
extracellular space, plasma membrane and 
proteinaceous extracellular matrix. The molec-
ular function results showed that DEGs were 
mainly enriched in protein homodimerization 
activity, calcium ion binding and glutathione 
binding (Figure 2A-C; Table 2A). To investigate 
pathway enrichment, KEGG signaling pathway 
analysis was used to identify the top five path-
ways, which included ‘focal adhesion’, ‘gluta-

thione metabolism’, and ‘chemical carcinogen-
esis’ (Figure 2D; Table 2B).

PPI network construction and module selec-
tion

All DEGs were analyzed using the STRING 
online database and Cytoscape software. 
‘Confidence score ≥0.7’ was set as the cut-off 
criterion. A total of 145 DEGs of the 484 com-
monly altered DEGs were filtered into the DEG 
PPI network complex, including 145 nodes and 
288 edges (Figure 3A). Of the 145 DGEs, 14 
hub genes were identified with the criteria of 
degree >10. The top 10 node degree genes 

Figure 1. Two volcano plots of DEGs and one Venn diagram of the DEGs screening. For the volcano, the volcano plot 
on the left (A) is the result of the GEO database and the volcano plot on the right (B) represents the result of the 
TCGA database. The abscissa is logFC and the ordinate is -log10 (adj. P Value). The red and green spots represent 
DEGs. The black dots represent genes that are not differentially expressed between PC and control samples. Red: 
upregulated; green: downregulated. The Venn diagram (C) indicates the number of DEGs in four different datasets 
and the crossing area indicates the cross-DEGs in different datasets. 168 upregulated and 316 downregulated 
genes were identified from the data obtained from the TCGA and GEO databases. GEO, Gene Expression Omnibus; 
TCGA, The Cancer Genome Atlas; PC, prostate cancer; DEG, differentially expressed gene.
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were PIK3R1, BIRC5, ITGB4, AGTR1, RRM2, 
TOP2A, ANXA1, LPAR1, CCNB2 and ITGB8. 

Furthermore, the top 3 significant modules 
from the PPI network were identified using 
MCODE plugin in Cytoscape (Figure 3B-D). The 
DEGs in the top 3 modules were selected to 

cluded amplification, deep deletion, mRNA 
upregulation, truncating mutation (putative 
passenger) and missense mutation (putative 
passenger) (Figure 5A). It was demonstrated 
that the cases with genetic alterations in 
these genes (ITGB4, P=0.00158; RRM2, 
P=0.00771) exhibited a poorer survival rate 

Figure 2. Top five Gene Ontology enrichment analysis and KEGG pathways. 
(A) Biological processes, (B) cellular components, (C) molecular functions 
and (D) KEGG pathway analysis. KEGG, Kyoto Encyclopedia of Genes and 
Genome.

perform pathway enrichment 
analysis. The pathway enrich-
ment analysis results revealed 
that the genes in module 1 
and module 3 were predomi-
nantly associated with neuro-
active ligand-receptor interac-
tion, p53 signaling pathway 
and glutathione metabolism 
(Table 3).

Validation based on clinical 
samples of PC 

To validate the findings in  
the integrated analysis, eight 
hub genes were selected  
for RT-qPCR in 12 tissues 
obtained from PC patients, 
compared with matched pa- 
ra-cancerous tissue. Acco- 
rding to the experimental 
results, the expression pat-
tern of selected genes in PC 
and matched para-cancerous 
tissue was similar to that 
observed in the integrated 
analysis (Figure 4). The ex- 
pression levels of BIRC5, 
RRM2 and TOP2A were up-
regulated in PC compared 
with matched para-cancerous 
tissue, whereas the expres-
sion levels of PIK3R1, ITGB4 
and ANXA1, LPAR1 and ITGB8 
were down-regulated. 

Survival analysis  

Finally, two genes (ITGB4 and 
RRM2) were screened from 
cBioPortal. The Oncoprint fr- 
om cBioPortal revealed that 
a total of 12% of cases with 
genetic alterations could be 
obtained. A total of two gen- 
es (ITGB4 and RRM2) had 
genetic alterations which in- 
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compared with cases without alterations 
(Figure 5B).

Discussion

PC has become one of the most common  
non-skin malignancies among men with an 
incidence of approximately 0.01% worldwide 
[12]. Efficient progress has been made in 
genetics and molecular pathogenesis, howev-
er the detection of PC and treatment of the 
localized disease remains of primary concern, 
and requires further investigation [6]. 

In the present study, GEO2R and R was used 
to analyze the gene data downloaded from 
GEO and TCGA databases. A total of 484 DEGs 
in PC compared with control samples were 
identified, which included 168 upregulated 
and 316 downregulated genes. DEGs were 
mainly enriched in 15 GO terms, including neg-
ative regulation of nitrobenzene metabolic 
process, extracellular space and protein ho- 

modimerization activity. The KEGG pathway 
enrichment analysis result showed that the 
DEGs were related to focal adhesion, glutathi-
one metabolism and chemical carcinogenesis. 
The focal adhesion pathway has great signifi-
cance in the transfer and treatment of pros-
tate cancer. In this pathway, talin1, a focal 
adhesion complex protein, enhances prostate 
cancer cell adhesion, migration and invasion 
[13]. Previous studies indicate that the overex-
pression of bone sialoprotein (BSP) in PC is 
correlated with tumor progression [14-16]. 
Gordon et al. demonstrated that BSP stimu-
lates focal adhesion kinase and focal adhe-
sion-related signaling pathways [17]. There- 
fore, monitoring of this signaling pathway may 
be beneficial to understanding the mechanism 
of carcinogenesis and researching treatment 
of prostate cancer.

Furthermore, the present study constructed 
PPI networks to investigate the critical DEGs, 
and 10 hub genes were identified. Furthermore, 

Table 2A. The top 15 enriched Gene Ontology terms of differentially expressed genes
Category Term Count P Value
BP Nitrobenzene metabolic process 4 5.72E-05
BP Glutathione derivative biosynthetic process 6 1.60E-04
BP Cochlea development 6 2.48E-04
BP Metabolic process 14 2.57E-04
BP Negative regulation of neuron apoptotic process 12 4.04E-04
CC Extracellular space 61 2.16E-06
CC Plasma membrane 140 4.21E-06
CC Proteinaceous extracellular matrix 20 2.60E-05
CC Integral component of plasma membrane 55 4.32E-04
CC Cell surface 27 6.50E-04
MF Protein homodimerization activity 38 1.81E-05
MF Calcium ion binding 36 6.59E-05
MF Glutathione binding 5 9.70E-05
MF Glutathione transferase activity 7 1.72E-04
MF Phospholipase A2 inhibitor activity 3 3.39E-03
BP: biological process; CC: cellular component; MF: molecular function.

Table 2B. The top five enriched pathways of differentially expressed genes
Category Term Count P Value
KEGG_PATHWAY Focal adhesion 16 1.54E-04
KEGG_PATHWAY Glutathione metabolism 8 2.24E-04
KEGG_PATHWAY Chemical carcinogenesis 9 7.31E-04
KEGG_PATHWAY Malaria 7 1.18E-03
KEGG_PATHWAY Drug metabolism-cytochrome P450 8 1.32E-03
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the differential expression of eight of these 
genes (PIK3R1, BIRC5, ITGB4, RRM2, TOP2A, 
ANXA1, LPAR1 and ITGB8) was verified in 12 
tissues of PC patients, compared with ma- 
tched paracancerous tissues, via RT-qPCR. 
The phosphoinositide 3-kinase (PI3K) signal-
ing pathway and AR signaling may mediate 

prostate cancer survival signals and androgen 
inhibits PIK3R1 in prostate cancer cells [18]. 
Therefore, PIK3R1 may be a target for the 
treatment of PC, however this hypothesis 
requires further investigation. Survivin (encod-
ed by the gene BIRC5) is an anti-apoptotic pro-
tein that is overexpressed in many cancer 

Figure 3. PPI network of the DEGs and modular analysis. (A) DEG PPI network complex, (B) module 1 of DEGs from 
PPI network, (C) module 2 of DEGs from PPI network and (D) module 3 of DEGs from PPI network. Red nodes rep-
resent the upregulated DEGs and green nodes represent the downregulated DEGs. Increased node interaction sug-
gests a greater biological significance. PPI, protein-protein interaction; DEG, differentially expressed gene.

Table 3. Top three significant modules selected from the protein-protein interaction network
Module Name Count P value Genes 
Module 1 Neuroactive ligand-receptor interaction 5 1.22E-05 EDNRB, AGTR1, CYSLTR2, ADRA1A, LPAR1

cGMP-PKG signaling pathway 4 1.31E-04 EDNRB, AGTR1, ADRA1A, PIK3R1

Calcium signaling pathway 4 1.65E-04 EDNRB, AGTR1, CYSLTR2, ADRA1A

Pathways in cancer 4 1.68E-03 EDNRB, AGTR1, LPAR1, PIK3R1

Adrenergic signaling in cardiomyocytes 3 4.25E-03 AGTR1, ADRA1A, PIK3R1

Module 2 p53 signaling pathway 2 2.8E-02 CCNB2, RRM2

Module 3 Glutathione metabolism 7 8.31E-13 GSTM1, GSTM2, GSTM3, GSTM4, GPX3, GSTM5, GSTP1

Drug metabolism-cytochrome P450 7 5.04E-12 GSTM1, GSTM2, CYP3A5, GSTM3, GSTM4, GSTM5, GSTP1

Metabolism of xenobiotics by cytochrome P450 7 8.52E-12 GSTM1, GSTM2, CYP3A5, GSTM3, GSTM4, GSTM5, GSTP1

Chemical carcinogenesis 7 1.38E-11 GSTM1, GSTM2, CYP3A5, GSTM3, GSTM4, GSTM5, GSTP1
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types, including gastric, lung, colon and breast 
cancer [19]. BIRC5 levels are correlated with 
Ras signaling signature expression, which is 

upregulated in PC [20]. Danilewicz et al. had 
confirmed that the immunoexpression of  
survivin is augmented in PC compared with 

Figure 5. Genetic alterations and the prognostic value of differentially expressed genes in prostate cancer. A. Ge-
netic alterations: Red represents amplification, blue represents deep deletion, pink represents mRNA upregulation, 
gray represents truncating mutation (putative passenger) and green represents missense mutation (putative pas-
senger). B. Kaplan-Meier curves of two hub genes between group with alterations and group without alterations. 
The Kaplan-Meier survival curves showed the significant prognostic value of ITGB4 and RRM2 alteration regarding 
survival. Red line represents cases with alterations in query genes. Blue line represents cases without alterations 
in query genes. The x-axis indicates overall survival time (months) and the y-axis represents the survival rate. These 
curves were downloaded from cBioPortal.

Figure 4. The expression levels of eight hub genes were detected in 12 tissues of PC patients and their matched 
para-cancerous tissue, using reverse transcription-quantitative polymerase chain reaction. GAPDH was used as an 
internal reference gene for normalization.
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benign prostatic hyperplasia, and positively 
correlated with parameters of tumor aggres-
siveness [21]. These results suggest that 
BIRC5 may be used as a therapeutic target in 
PC treatment. TOP2A encodes topoisomerase 
IIα, which is a ribozyme that controls DNA 
topology and cell cycle progression. This 
enzyme is a marker of cell proliferation in nor-
mal and tumor tissue [22]. Previous studies 
have reported that increased expression of 
TOP2A is linked to shortened survival in 
breast, ovary, brain, skin and small cell lung 
cancers [23-27]. Sullivan et al. suggested that 
increased TOP2A is a strong predictor of 
advancing stages and tumor grade in PC [28]. 
De Resende et al. suggested that TOP2A pro-
tein expression levels may act as a prognostic 
index for patients with PC [22]. Annexin A1 
(ANXA1) is a Ca2+-binding protein in the inva-
sive stages of PC. Bizzarro et al. indicated that 
ANXA1 may be a pivotal mediator of hypoxia-
related metastasis-associated processes in 
PC [29]. D’Acunto et al. reported that the 
expression of ANXA1 is a contributing factor to 
the promotion of apoptosis in PC [30]. ANXA1 
may increase the accuracy of prognostication 
as a biomarker of PC following radical prosta-
tectomy [31]. Therefore, ANXA1 is important in 
PC and may be used as a prognostic indicator. 
Lysophosphatidic acid (LPA) is a growth factor 
in many cells, including prostate and ovarian 
cancer-derived cell lines [32]. In both in vivo 
and in vitro systems, LPA has been demon-
strated to be involved in multiple aspects of 
cancer progression, including cell prolifera-
tion, growth, survival, migration, invasion and 
progression of angiogenesis [33-35]. LPA and 
LPA receptor 1 (LPAR1), mediated by activa-
tion of nuclear factor-κB, promotes prolifera-
tion, survival and migration of PC cells [36, 
37]. HärmäV et al. suggested that LPAR1 and 
Gα (12/13) signaling regulates cellular motility 
and invasion with epithelial maturation in PC 
[38]. These results suggest that LPAR1 has a 
potential therapeutic benefit in PC. Integrin 
(ITGB)8 is one of the members of the integrin 
family. ITGB8 has been shown to be upregu-
lated in some cancers, including head and 
neck cancer, hepatocellular carcinoma, ovari-
an cancers and melanoma cell lines, in addi-
tion to primary non-small lung cancer samples 
and brain metastases from several epithelial 
cancers [39-41]. Furthermore, a six-gene ex- 
pression signature biomarker, which includes 

ITGB8, may predict the occurrence of lung 
metastasis from breast cancer [42]. Rutkowski 
et al. reports that the overexpression of EPH 
Receptor (Eph) B4 leads to aggressive phe- 
notypes in PC cells. The study additionally 
revealed that EphB4 regulates ITGB8 expres-
sion [43]. However, the role of ITGB8 in the 
motility of PC cells remains to be fully 
elucidated.

ITGB4 is also a member of the integrin family. 
Aberrant expression of integrin subunits has 
been implicated in the malignant phenotype 
of a variety of cancers [44]. Brendle et al. sug-
gests that ITGB4 may influence tumor aggres-
siveness and survival, and it may have prog-
nostic value in breast cancer [45]. In pancre-
atic ductal adenocarcinoma, ITGB4 overex-
pression promotes cell scattering and motility, 
downregulates E-cadherin and upregulates 
vimentin expression. Masugi et al. revealed 
that IGTB4 has a potential role in the regula-
tion of cancer invasion and epithelial-mesen-
chymal transition [46]. Kettunen et al. demon-
strated that the ITGB4 is upregulated in malig-
nant pleural mesothelioma (MM) suggesting 
that the ITGB4 has link with the development 
of MM [47]. ITGB4 is important in PC migration 
and expansion of prostate tumor progenitors 
[48]. Kawakami et al. reports that ITGB and 
vinculin may be useful markers for the pro-
gression of PC associated with taxane resis-
tance, and this result may provide a basis for 
the diagnosis of PC [49]. In the present study, 
it was demonstrated that the PC patients with 
ITGB4 alterations exhibited a poorer survival 
rate compared with those without the gene- 
tic alterations. This result suggests that the 
mutation in ITGB4 reduces the survival rate of 
patients with PC. Ribonucleotide reductase is 
required for DNA synthesis and repair [50], 
and is responsible for the de novo conversion 
of the ribonucleoside diphosphates to deoxyri-
bonucleoside diphosphates. The ribonucleo-
tide reductase M2 subunit (RRM2) determines 
malignant cellular behavior in a range of 
human cancers [51], such as colorectal can-
cer, oral squamous cell carcinoma, nasopha-
ryngeal carcinoma, hepatocellular carcinoma, 
adrenocortical cancer, pancreatic adenocarci-
noma and breast cancer. In the present study, 
the PC patients with an RRM2 alteration had a 
lower survival rate compared with patients 
without alteration. Notably, Huang et al. dem-
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onstrated that RRM2 is important in the prolif-
eration and invasion of PC, which suggests 
that RRM2 may act as a novel biomarker for 
assessment of patients with low-risk PC [52]. 
The results of the present study are consistent 
with the results of previous studies. RRM2 
may have an important role in the progression 
of PC, however this requires further study, in 
order to verify the specific molecular marker 
role of RRM2 in the diagnosis of patients with 
low-risk PC.

The module analysis result of the PPI network 
demonstrated that the development of PC was 
associated with neuroactive ligand-receptor 
interaction, the p53 signaling pathway and  
the glutathione metabolism pathway. The neu-
roactive ligand-receptor interaction signaling 
pathway is a collection of receptors and lig- 
ands on the plasma membrane that are asso-
ciated with intracellular and extracellular sig-
naling pathways [53]. Fang et al. and Liu et al. 
used bioinformatics to demonstrate that the 
neuroactive ligand-receptor interaction signal-
ing pathway is associated with progression of 
bladder cancer and renal cell carcinoma [54, 
55]. Myers et al. revealed that five pathways 
were enriched in prostate tumors in members 
of the African-American population, including 
the neuroactive ligand-receptor interaction 
signaling pathway, via protein analysis [56]. In 
accordance with the results of previous stud-
ies, the present study demonstrated that  
neuroactive ligand-receptor interactions are 
involved in the progression of PC, however the 
specific molecular mechanisms in PC require 
further investigation. Furthermore, previous 
studies have demonstrated that glutathione 
metabolism is associated with PC. Glutathione 
peroxidase 1 polymorphism is involved in pro- 
state carcinogenesis [57]. Glutathione exhib-
its an important role in survival mechanisms 
of PC cells [58] and this pathway is linked to 
the antineoplastic function and recrudes-
cence in PC [59, 60]. The p53 gene is the most 
common mutant gene in human tumors, and 
the primary function of the p53 protein is to 
prevent the cells into the DNA synthesis peri-
od and make it stagnation in the G1 phase to 
repair damaged DNA [61, 62]. The mutation 
rate of the p53 gene in patients with primary 
PC is 10-20%, whereas the rate in the progres-
sion of PC is 42% and is closely related to 
malignant features such as bone metastasis 
and androgen dependence [63, 64]. Kluth  

et al. analyzed tissue microarrays including 
11,152 prostate cancer samples using immu-
nohistochemistry and fluorescence in situ 
hybridization, and demonstrated that p53 may 
be a useful clinical molecular feature of PC 
[65]. These results indicate that p53 has an 
important role in the progression and progno-
sis of PC. Therefore, monitoring and blocking of 
neuroactive ligand-receptor interaction, p53 
signaling pathway, and glutathione metabo-
lism pathway are promising therapeutic strate-
gies for future investigation and treatment of 
PC patients.

Conclusion

In conclusion, the present study identified var-
ious DEGs by using comprehensive bioinfor-
matics analysis. Furthermore, various hub 
genes and pathways involved in the progres-
sion of prostate cancer, which may be predic-
tors or therapeutic targets for PC were identi-
fied. However, lack of experimental verification 
is a limitation of the present study. Further 
experimental research is necessary to fully 
elucidate the mechanisms underlying PC 
tumorigenesis. 
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