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Abstract: This study aimed to explore the role of certain genes and long non-coding RNAs (lncRNAs) in homo- 
cysteine (HCY)-induced vascular endothelial injury. HUVECs were treated with HCY, then cell cycle and apoptosis 
were analyzed by flow cytometry. HUVECs were then sequenced and analyzed using bioinformatics, with a focus on 
differentially expressed genes/lncRNA (DEGs/DEL), protein-protein interaction (PPI), functional enrichment analy-
ses, and lncRNA-target prediction. Although HCY did not affect the cell cycle, it significantly increased the number 
of apoptotic cells. In total, 382 DEGs and 147 DELs were identified; DEGs such as CD34, FGF2, and SERPINE1 
were the hub nodes in the PPI network, in addition to being the targets of AC005550.3, RP11-415D17.3, and RP1-
140K8.5, respectively. Functional enrichment analysis showed that the targets of downregulated AC005550.3 and 
RP11-415D17.3 were significantly enriched in blood vessel development and those of upregulated RP1-140K8.5 
were enriched in fibrinolysis. RT-qPCR showed that the mRNA levels of AC005550.3, RP11-415D17.3, and RP1-
140K8.5 were consistent with the results predicted by our bioinformatics analysis. In conclusion, downregulated 
AC005550.3 and RP11-415D17.3 targeting CD34 and FGF2 and upregulated RP1-140K8.5 targeting SERPINE1 
may play an important role in HCY-induced vascular endothelial injury by regulating blood vessel development and 
fibrinolysis, respectively.

Keywords: Vascular endothelial injury, long non-coding RNA, transcriptome sequence, homocysteine, cardiovascu-
lar disease

Introduction

Cardiovascular disease (CVD) is considered the 
leading cause of disability and mortality, with a 
high morbidity worldwide [1]. The main risk fac-
tors of CAD include advanced age, dyslipid-
emia, hypertension, diabetes, smoking, and 
obesity [2]. The existence of cardiovascular risk 
factors is predicted to cause an additional 23% 
increase in CVD events and 7.7 million deaths 
annually from 2010 to 2030 in China [3]. 
Although an extraordinary effort has been 
made to control major cardiovascular risk fac-
tors, CVD leads to a high burden of disability 
and mortality [4]. Therefore, it is necessary to 
ascertain the molecular and pathophysiologi-
cal mechanisms underlying CVD and search for 
novel diagnostic and therapeutic targets.

The pathogenesis of CVD is complex, and vas-
cular endothelial injury plays a major role in its 
development [5]. As the first barrier between 

blood and tissue, vascular endothelial cells pro-
tect vascular smooth muscle and maintain nor-
mal organizational structure and function [6]. 
Under pathological conditions, inflammatory 
factors can degrade the endothelium and cause 
increased permeability, leading to increased 
adherence factors, monocyte adherence, and 
aggregation, thereby resulting in endothelial 
dysfunction and major blood vessel atheroscle-
rosis [7]. It has been previously shown that 
homocysteine (HCY), a sulfhydryl-containing 
amino acid, is associated with an increased risk 
of CVD [8]. HCY can promote apoptosis, gener-
ate reactive oxide species, and produce endo-
plasmic reticulum stress in vascular endothelial 
cells [8]. However, the mechanism underlying 
vascular endothelial injury in response to HCY 
remains to be explored.

Long non-coding RNAs (lncRNAs) are non-cod-
ing RNA molecules that contain over 200 nucle-
otides. By mediating target-gene transcription, 
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lncRNAs play important regulatory roles in vari-
ous diseases [9] such as cancers [10], neuro-
degeneration [11], autoimmune disorders [12, 
13], and CVD [14]. Several lncRNAs, including 
MALAT1 and Tie-1-AS, are involved in the regu-
lation of blood vessel growth and function via 
endothelial cell proliferation [15]. However, lit-
tle evidence exists regarding the role of lncRNAs 
in vascular endothelial injury in response to 
HCY.

In the present study, human umbilical vein vas-
cular endothelial cells (HUVECs) were treated 
with HCY to identify the genes and lncRNAs 
involved in the mechanism underlying the HU- 
VEC response to HCY. HCY-treated and untreat-
ed HUVECs were sequenced, and bioinformat-
ics analysis was used to further study the genes 
and lncRNAs. Our results may offer new insights 
in understanding the role of lncRNAs in vascu-
lar endothelial injury in response to HCY.

Materials and methods

Cell culture

HUVECs were purchased from Lifeline Cell 
Technology (Walkersville, MD, USA) and were 
cultured in Endothelial Cell Medium (ECM, 
Lifeline, Cell Technology) at 37°C with 5% CO2. 
For the experiment, HUVECs were cultured in 
ECM containing 2.5 mmol/L HCY at 37°C for 24 
h, and the cells cultured only in ECM served as 
control.

Cell cycle and apoptosis

For cell cycle analysis, HUVECs were fixed over-
night with 5 mL 70% ethyl alcohol at 4°C. On 

the next day, the fixed cells were washed twice 
with phosphate buffered saline (PBS) and were 
digested with 50 µg/mL RNase A at 37°C for 
30 min. The cells were stained with 5 μL prop-
idium iodide (PI) for 15 min at 4°C in the dark 
and were then used for flow cytometry (FACSC- 
alibur, BD, Franklin Lakes, NJ, USA). The Annexin 
V-FITC/PI Apoptosis Detection kit (BD) was 
used for the detecting apoptosis. The cells 
were washed once with PBS and were resu- 
spended in 1× Binding Buffer. Subsequent- 
ly, the cells were stained with 5 μL FITC-Anne- 
xin V and 5 μL PI at 25°C for 15 min in the dark. 
Finally, the cells were analyzed using a flow  
cytometer (BD).

Transcriptome sequencing

mRNA extracted from HUVECs was used to con-
struct an mRNA-seq library. Sequencing was 
performed using the Illumina Genome Analyzer 
IIx sequencing platform. The raw reads were 
obtained using the Illumina instrument soft-
ware and were deposited in the NCBI (National 
Center for Biotechnology Information) SRA 
(Sequence Read Archive) database under the 
accession number of SRP149384 (https://
www.ncbi.nlm.nih.gov/sra/?term=SRP1493- 
84). Followed by reads and beads with low qual-
ity were removed. The clean reads were then 
mapped to the human reference genome 19 
using TopHat2 (v 2.1.0) [16]. The expression 
values of genes and lncRNAs calculated by 
counts per million were obtained based on 
human gene annotation provided by Gencode 
database [17] using StringTie tool (v 1.2.3) [18].

Bioinformatics analysis of target genes and 
lncRNAs

DEGs and DELs belonging to HUVECs treated 
with and without HCY were obtained using the 
edgeR package in R [19]. The cutoff criteria for 
DEGs and DELs were set up as follows: |log2 
fold change| value > 0.585 and p-value < 0.01. 
For the functional analysis of DEGs and lncRNA 
targets, gene ontology (GO) in biological pro-
cess (BP), cellular component (CC), and molec-
ular function (MF) as well as Kyoto Encyclopedia 
of Genes and Genomes (KEGG) were checked 
using the Database for Annotation, Visualiza- 
tion and Integrated Discovery (DAVID, v 6.8) 
[20]. Protein-protein interaction(PPI) network 
for DEGs was constructed using the Search 
Tool for the Retrieval of Interacting Genes 
online database [21] and was visualized using 

Table 1. Primer sequence of lncRNAs
Gene Primer sequence (5’-3’)
GAPDH-hF TGACAACTTTGGTATCGTGGAAGG
GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG
RP1-140K8.5-hF ACCTTGGCTGAGTCTTGACA
RP1-140K8.5-hR CAATTCCCACCAGCACGAAC
AC005550.3-hF GCATGGATTTTCTTCCGCCTC
AC005550.3-hR TTTCATCACCGTCAGGTTGAGC
RP11-415D17.3-hF TGAGCTGTCATAATCGTGCTT
RP11-415D17.3-hR GCTGGTTAACTGATCTCATCCAC
RP11-691H4.4-hF CCGCCTCAGTTCCCACGGTA
RP11-691H4.4-hR CTTTGTCCGCCTTTATTGTTGGTG
CTD-2280E9.1-hF GTACACCAGCTCAAGATGACT
CTD-2280E9.1-hR TCTTCCTGCCACTTAGAGCAA
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Figure 1. HCY promotes HUVEC apoptosis. A. Cell apoptosis ratio with respect to G0/G1, S, and G2/M phases in untreated HUVECs (control group) and HUVECs 
treated with HCY (HCY group) as analyzed by flow cytometry. B. Cell apoptosis ratio in untreated HUVECs and HUVECs treated with HCY by Annexin V-FITC/PI Apop-
tosis Detection kit. ***P < 0.001 compared with control. HCY, homocysteine; HUVECs, human umbilical vein vascular endothelial cells.
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Cytoscape [22]. In addition, the target genes  
of lncRNAs (Pearson correlation coefficient > 
0.98) among DEGs were screened [23], and the 
lncRNA-target regulatory network was visual-
ized using Cytoscape. GO in BP terms and 
KEGG enrichment of lncRNA targets were ana-
lyzed using the clusterprofile package [24] in R.

Validation of lncRNAs using real-time quantita-
tive polymerase chain reaction (RT-qPCR)

Total RNA from HUVECs treated with and with-
out HCY was isolated using TRIzol (Invitrogen, 
Carlsbad, CA, USA) and was reverse transcribed 
into cDNA using PrimeScript RT Master Mix 
(Takara, Dalian, China) according to the manu-
facturer’s instructions. Gene expression was 
measured using SYBR Green PCR Master 
(Thermo Fisher Scientific, Waltham, MA, USA) 
under the following conditions: 50°C for 3 min, 
40 cycles at 95°C for 3 min, 95°C for 10 s, and 
60°C for 30 s. lncRNA primers are listed in 
Table 1.

Statistical analysis

Statistical analysis was performed using SPSS 
22.0 (SPSS Inc., Chicago, IL, USA). Data were 
expressed as mean ± SEM and were analyzed 
by Student’s t-test. A p-value of < 0.05 was con-
sidered statistically significant, and P < 0.01 
was considered highly significant.

Results

Effect of HCY on cell cycle and apoptosis in 
HUVECs

The cell cycle assay showed that HUVECs treat-
ed with HCY showed no evident changes with 
respect to the G0/G1, S, and G2/M phases 
compared with untreated HUVECs (Figure 1A). 
However, HCY treatment significantly increased 
the cell apoptosis ratio compared with untreat-
ed HUVECs (12.43% vs 3.65%; P < 0.001, 
Figure 1B).

DEG screening and functional enrichment 
analyses

According to the sequencing data, 382 DEGs, 
including 101 upregulated genes and 281 
downregulated genes, were identified in HUV- 
ECs treated with HCY. GO enrichment analysis 
showed that DEGs were significantly enriched 
with respect to extracellular space, cell adhe-

sion, proteinaceous extracellular matrix, plate-
let activation, response to mechanical stimu-
lus, and regulation of blood pressure (Figure 
2A). KEGG enrichment analysis revealed that 
DEGs belonging to the pathways of comple-
ment and coagulation cascades, ECM-receptor 
interaction, cytokine-cytokine receptor interac-
tion, platelet activation, and renin secretion 
were significantly enriched (Figure 2A). In addi-
tion, PPI among the DEG-encoded proteins 
(Figure 2B) showed that the top 10 nodes 
involved in this network were FGF2 (degree = 
24), CCL2 (degree = 18), VWF (degree = 16), 
SERPINE1 (degree = 15), BMP4 (degree = 12), 
CD34 (degree = 12), PLAU (degree = 11), GNG7 
(degree = 10), CD40 (degree = 10), and CDC6 
(degree = 9).

DEL screening and functional enrichment 
analyses

Based on the sequencing data, 147 DELs, in- 
cluding 32 upregulated lncRNAs and 115 down-
regulated lncRNAs, were identified in HUVECs 
treated with HCY. Twenty upregulated lncRNAs 
and 93 downregulated lncRNAs predicted its 
targets from DEGs, and the lncRNA-target net-
work was constructed with 292 nodes (pro-
teins) and 1097 edges (PPI pairs) (Figure 3). 
DELs with target genes of over 10 are shown in 
Table 2, such as RP11-165N12.2 (n = 101), 
AC005550.3 (n = 81), CTD-2280E9.1 (n = 78), 
RP11-834C11.4 (n = 47), RP11-415D17.3 (n = 
44), RP1-140K8.5 (n = 15), and RP11-776H- 
12.1 (n = 10). To further analyze the lncRNAs 
involved in regulation, functional enrichment 
analyses of the lncRNA targets were also per-
formed. GO enrichment analysis showed that 
the targets for AC005550.3, RP11-165N12.2, 
and RP11-415D17.3 had similar functional 
enrichment terms, including anatomical struc-
ture morphogenesis, response to wounding, 
positive regulation of BP, cell motility, and blood 
vessel development. Targets for CTD-2280E9.1 
were significantly enriched in response to wo- 
unding, organ morphogenesis, and cell motility, 
and targets for RP1-140K8.5 were significantly 
enriched with respect to plasminogen activa-
tion, glutamine metabolic process, and fibrino-
lysis (Figure 4). In addition, KEGG enrichment 
analysis revealed that targets of AC005550.3 
and RP11-415D17.3 were both significantly 
enriched with regards to platelet activation, 
and targets for RP1-140K8.5 were significantly 
enriched with respect to complement and coag-
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Figure 2. Functional enrichment analyses and PPI network for differentially expressed genes. A. The top five GO in 
BP, CC, and MF terms as well as KEGG terms for DEGs according to p-values; black line represents -log10 (p-value). 
B. PPI network for upregulated and downregulated DEGs. Red nodes stand for upregulated DEGs and the green 
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nodes stand for downregulated DEGs. GO, gene ontology; BP, biological process; CC, cellular component; MF, mo-
lecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 3. LncRNA-target network. The red circle represents the upregulated DEGs, the green circle represents the 
downregulated DEGs, the red triangle represents upregulated lncRNAs, and the green triangle represents down-
regulated lncRNAs. lncRNA, long non-coding RNA; DEGs, differentially expressed genes.
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ulation cascades; alanine, aspartate, and glu-
tamate metabolism; and the apelin signaling 
pathway (Figure 4).

Validation of DELs

According to the bioinformatics results, chang-
es in the expression of several DELs in HUV- 
ECs were validated using RT-qPCR. The results 
showed that following HUVEC treatment with 
HCY, the mRNA levels of AC005550.3 and 
RP11-415D17.3 decreased significantly, where-
as those of RP1-140K8.5 increased compared 
with those in untreated HUVECs (Figure 5).

Discussion

HCY has been demonstrated to be an indepen-
dent risk factor for CAD [25]. The present study 
found that HCY significantly promoted HUVEC 

apoptosis but had no effect on the cell cycle. To 
find the putative lncRNAs involved in HCY-
related CAD, the present bioinformatics study 
included HUVECs treated with and without HCY. 
Following HCY treatment, our results revealed 
101 upregulated and 281 downregulated genes 
in addition to 32 upregulated and 115 down-
regulated lncRNAs. CD34, FGF2, and SERPI- 
NE1 were the hub nodes in the PPI network, 
and AC005550.3, RP11-415D17.3, and RP1-
140K8.5 were found to play a critical role in the 
regulation of these DEGs. Furthermore, the 
downregulation of AC005550.3 and RP11-41- 
5D17.3 as well as upregulation of RP1-140K8.5 
were detectable by RT-qPCR, which was consis-
tent with the results predicted by our bioinfor-
matics analysis.

Both AC005550.3 and RP11-415D17.3 were 
found to be downregulated in HCY-treated HU- 
VECs. These two lncRNAs had similar targets 
such as CD34 and FGF2 in addition to similar 
functional enrichment pathways. We also found 
that CD34 and FGF2, which are associated with 
blood vessel development, were downregulat-
ed in HCY-treated HUVECs compared with tho- 
se in untreated HUVECs. CD34, a highly glyco-
sylated transmembrane glycoprotein, usually 
expresses in hematopoietic stem and progeni-
tor cells as well as in vascular endothelial cells 
[26]. CD34 plays an important role in cell adhe-
sion and participates in hematopoietic stem 
cell transport as well as inflammatory response 
[27]. In particular, previous studies have shown 
that CD34 plays an antiadhesive role during 
lumen formation in blood vessel development 
[28, 29], and CD34 expression in endothelial 
cells is closely associated with active angiogen-
esis [26]. This indicates that CD34 may be ben-
eficial to endothelial repair and vascular recon-
struction. Along these lines, we detected down-
regulated CD34 in HCY-treated HUVECs, which 
may lead to vascular endothelial injury.

Fibroblast growth factor 2 (FGF2), another tar-
get of AC005550.3 and RP11-415D17.3, is 
involved in diverse BPs, including tumor growth, 
wound healing, and nervous system develop-
ment [30]. It also participates in mitogenic and 
angiogenic activities and can promote cell pro-
liferation and differentiation along with induc-
ing angiogenesis and cell migration [31]. It has 
been previously shown that vascular endotheli-
al cell apoptosis is related to reduced FGF2 lev-
els [32], which is consistent with our present 

Table 2. LncRNA and the number of its targets
lncRNA (down) Number lncRNA (up) Number
RP11-165N12.2 101 RP1-140K8.5 15
AC005550.3 81 RP11-776H12.1 10
CTD-2280E9.1 78
RP11-834C11.4 47
RP11-415D17.3 44
MIR503HG 40
CTC-558O19.1 35
RP11-95C14.1 34
RP11-306O1.2 33
RP11-800A3.4 31
RP11-588K22.2 28
AP001189.4 23
NPPA-AS1 23
RP11-923I11.6 23
RP11-715J22.3 22
RP11-693M3.1 21
GPC5-AS1 17
RP11-360L9.7 17
RP13-923O23.6 16
AC118754.4 13
RP11-691H4.4 13
RP11-84A19.2 13
CTD-3157E16.1 12
RP11-782C8.1 12
RP11-423O2.5 11
LINC00954 10
MYCBP2-AS2 10
RP11-92K15.1 10
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Figure 4. Functional enrichment analyses for differentially expressed lncRNAs. P-value represents significance of terms; GeneRatio represents the ratio of the 
number of lncRNA targets in this GO/KEGG term to the number of lncRNA targets in all GO/KEGG term. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; lncRNA, long non-coding RNA.
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results. In addition, angiogenesis is associated 
with endothelial cell dysfunction, and angiogen-
esis or vascular remodeling is beneficial in the 
treatment of CVD [33]. Several clinical studies 
have further demonstrated that FGF2 can 
improve myocardial perfusion and function and 
symptoms of patients with CVD [34-36]. All 
these results indicate that AC005550.3 and 
RP11-415D17.3 may play a role in blood vessel 
development by targeting CD34 and FGF2, 
thereby regulating HCY-treated vascular endo-
thelial injury.

We additionally found that RP1-140K8.5 is up- 
regulated in HCY-treated HUVECs. SERPINE1,  
a target of RP1-140K8.5, was upregulated in 
HCY-treated HUVECs and is associated with 
plasminogen activation and fibrinolysis. Fibrino- 
lysis abnormality has been shown to be associ-
ated with vascular endothelial injury [37], and 
vascular endothelial injury may be involved in 
thrombosis and atherosclerosis [38]. It has 
also been shown that impaired fibrinolytic activ-
ity can be caused by elevated levels of plasmin-
ogen activator inhibitor type 1 (PAI-1) [39]. PAI-
1, encoded by SERPINE1, is a member of the 
serine proteinase inhibitor superfamily [40]. It 
is a major inhibitor of fibrinolysis, which it 
achieves by inhibiting urokinase (uPA) and tis-
sue-type plasminogen activator (tPA) [40]. PAI-1 
deficiency can induce bleeding disorders, and 
high levels of PAI-1 are related to thrombophi- 
lia [41]. In particular, PAI-1 is associated with 
endothelial dysfunction [42]. Thus, elevated 
PAI-1 levels are closely linked to CVD, including 
reinfarction, coronary heart disease, acute 
ischemic stroke, and atherosclerosis [43, 44]. 
In addition, tPA administration can be used for 
treating acute ischemic stroke because it can 
inhibit PAI-1 action [45]. This indicates that 
RP1-140K8.5 may be involved in fibrinolysis 

because it targets SERPINE1, thereby regulat-
ing HCY-treated vascular endothelial injury.

Our study revealed that downregulated AC00- 
5550.3 and RP11-415D17.3 targeting CD34 
and FGF2 and upregulated RP1-140K8.5 tar-
geting SERPINE1 may be associated with HCY-
induced vascular endothelial injury by regulat-
ing blood vessel development and fibrinolysis, 
respectively. Further investigation of the func-
tions of these lncRNAs in CVD is necessary.
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