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Abstract: Nanostructured calcium phosphate (CaP) and magnesium phosphate (MgP) are promising for the applica-
tion as the nanocarriers in drug delivery. However, the difference between CaP and MgP nanocarriers in drug delivery 
is rarely investigated. In this work, we comparatively investigated nanostructured CaP, MgP and calcium magnesium 
phosphate (CMP) for the delivery of SRT1720, which is a silent information regulator (SIRT1) specific activator with 
pro-angiogenic and anti-aging properties in response to hydrogen peroxide (H2O2)-induced endothelial senescence. 
The protection of SRT1720-loaded CaP nanospheres, MgP nanosheets and CMP microspheres on the H2O2-induced 
senescent endothelium was examined by using human umbilical vein endothelial cells (HUVECs), demonstrating the 
improved cell viability, anti-aging, tube formation and migration. In addition, the SRT1720-loaded CaP nanospheres, 
MgP nanosheets and CMP microspheres can rescue the impaired angiogenic potential of HUVECs via activation of 
Akt/eNOS/VEGF pathway. The SRT1720-loaded MgP nanosheets and CMP microspheres have a similar protective 
effect compared with the pure SRT1720, while the SRT1720-loaded CaP nanospheres decrease the protective ca-
pability of SRT1720. These results lead us to figure out both MgP nanosheets and CMP microspheres are suitable 
and effective delivery for SRT1720 and this system can be further applied in vivo treatment.
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Introduction

The mortality of cardiovascular disease (CVD)  
is higher than others all over the world. One of 
the primary risk factor of CVD is aging. Aging  
is dramatically related to vascular cell deterio-
ration which leads to the disruption of normal 
vascular tension and vascular diseases [1, 2]. 
The vascular tension, integrity and remodeling 
are mainly dependent on vascular endothelial 
cells (VECs) regulation to keep the vascular 
homeostasis [3]. Aging would cause endotheli-

al senescence and augment regeneration abili-
ty decrease, which has been discovered in pa- 
tients with atherosclerosis, diabetes, hyperlip-
idemia, hypertension, obesity, and aging [4-8].

Sirtuin belongs to histone deacetylases family 
with homological molecular structure to sac-
charomyces cerevisiae silent information regu-
lator 2 (Sir2) that requires nicotinamide-ade-
nine dinucleotide as a cofactor for the deace- 
tylation reaction. The sirtuin mediated deacety-
lases are proved to be regulated by oxidative 
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stress, metabolism and microenvironment [9]. 
In mammals, there are seven different sirtuins. 
Among the seven human sirtuins, Sirtuin-1 
(SIRT1) plays the most critical roles during the 
processes of cell senescence, organism lon-
gevity, stress resistance, gene silencing, apop-
tosis and inflammation [10-12]. The expression 
of SIRT1 is extremely high in VECs and regu-
lates the function of VECs [13]. Thus, altera-
tions in endothelial SIRT1 expression would af- 
fect normal vascular endothelial function and 
vascular physiology. The protective effects of 
SIRT1 in cardiovascular diseases have been 
emphasized in recent studies [14, 15]. SRT- 
1720, a new synthetic small molecule, has be- 
en confirmed the specific activation of SIRT1 
[16]. In our previous study, we demonstrated 
the anti-aging and anti-apoptotic beneficial of 
SRT1720 and confirmed that SRT1720 rescu- 
ed the impaired angiogenic potential of HUV- 
ECs via activation of Akt/eNOS/VEGF signaling 
pathway [17].

cent endothelium. We would figure out the  
suitable nanoscale carriers for SRT1720 to 
achieve anti-aging and anti-apoptotic effects 
and uncover the underlying molecular mech- 
anisms.

Materials and methods

Preparation of CaP nanospheres

CaP nanospheres were synthesized according 
to our previous report [25]. In brief, 0.110 g of 
adenosine 5’-triphosphate disodium salt (ATP) 
was added into 30 mL of CaCl2 (111 mg) solu-
tion and the pH value was adjusted to 9 using 1 
M NaOH, then 10 mL of Na2CO3 (106 mg) solu-
tion was added dropwise to the above solution 
under magnetic stirring, and the pH value was 
maintained at 9. The resulting suspension was 
stirred at room temperature for 1 h, loaded into 
a 60 mL autoclave, sealed, microwave-heated 
in a microwave oven (MDS-6, Sineo, China) to 

Figure 1. Characterization of nanostructured CaP, MgP and CMP. SEM (A and 
C-E) and TEM (B and F) micrographs of CaP nanospheres (A and B), MgP 
nanosheets (C and D) and CMP microspheres (E and F).

In further clinical practice, 
SRT1720 need to be co-ad- 
ministered with other subst- 
ances to maximize the the- 
rapeutic effects while mini-
mizing the possible side ef- 
fects. Over the past three de- 
cades, the use of nanoscale 
carriers to achieving targeted 
delivery has been focused. 
Nanostructured calcium pho- 
sphate (CaP) and magnesium 
phosphate (MgP) are promis-
ing nanocarriers for drug de- 
livery owing to their excellent 
biocompatibility, high drug lo- 
ading capacity and pH-sen- 
sitive drug release property 
[18-24]. Usually, nanostructu- 
red CaP or MgP was investi-
gated independently for drug 
delivery. The difference in dr- 
ug delivery between CaP and 
MgP nanocarriers was rarely 
reported. Herein, we compar-
atively investigate nanostruc-
tured CaP, MgP and calcium 
magnesium phosphate (CMP) 
for the delivery of SRT1720, 
and the protection of SRT- 
1720-loaded CaP, MgP and 
CMP nanostructured carriers 
for the H2O2-induced senes-
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180°C, maintained at this temperature for 10 
min, and then cooled naturally to room temper-
ature. The product was separated by centrifu-
gation, washed with deionized water and etha-
nol several times, and dried at 60°C for 24 h. 

Preparation of MgP nanosheets

MgP nanosheets were synthesized according to 
our previous report [24]. 12 mL of MgCl2∙6H2O 
(244 mg) solution and 8 mL of NaH2PO4∙2H2O 
(125 mg) solution were added dropwise to 20 
mL of deionized water under magnetic stirring 

at room temperature while the pH value was 
maintained at pH 10 using 1 M aqueous solu-
tion of NaOH. The resulting suspension was 
loaded into an autoclave (60 mL), sealed, heat-
ed in a microwave oven (MDS-6, Sineo, China) 
to 120°C, and maintained at this temperature 
for 10 min. After cooling to room temperature, 
the product was separated by centrifugation, 
washed with deionized water and ethanol sev-
eral times, and dried at 60°C for 24 h.

Preparation of CMP microspheres

CMP microspheres were synthesized according 
to our previous report [26]. 3 mL of CaCl2 (100 
mM), 7 mL of MgCl2∙6H2O (100 mM) and 10 mL 
of creatine phosphate disodium salt tetrahy-
drate (60 mM) were added dropwise to 20 mL 
of deionized water under magnetic stirring at 
room temperature. The resulting suspension 
was loaded into an autoclave (60 mL), sealed, 
heated in a microwave oven (MDS-6, Sineo, 
China) to 150°C, and maintained at this tem-
perature for 10 min. After cooling to room tem-
perature, the product was separated by cen-
trifugation, washed with deionized water and 
ethanol several times, and dried at 60°C for  
24 h.

Drug loading

Drug loading experiments were performed as 
follows: dried powder of CaP nanospheres (120 
mg), MgP nanosheets (120 mg) or CMP micro-
spheres (120 mg) was dispersed into a solu- 
tion of ethanol (10 mL) with a SRT1720 con- 
centration of 20 mg mL-1. The suspension was 
shaken in a sealed vessel at 37°C for 24 h, fol-
lowed by centrifugation, and then dried to ob- 
tain the drug-loaded CaP, MgP and CMP [27].

Characterization

Scanning electron microscopy (SEM) images 
were recorded with a field-emission scanning 
electron microscope (FEI Magellan 400, USA). 
The thermogravimetric (TG) curves were mea-
sured on a STA 409/PC simultaneous thermal 
analyzer (Netzsch, Germany) with a heating 
rate of 10°C min-1 in flowing air.

Cell culture

Human umbilical vein endothelial cells (HUV- 
ECs), obtained from the American Type Culture 
Collection (ATCC, Cat. CRL1730), were mainta- 

Figure 2. TG curves of the as-prepared CaP nano-
spheres (A), MgP nanosheets (B), and CMP micro-
spheres (C) before and after drug loading.
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ined in a humidified atmosphere of 95% air  
and 5% CO2 at 37°C. Cells were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM, 
low glucose) with 10% (v/v) fetal bovine serum 
(FBS). HUVECs in passages 2-4 were used in 
this study. According to our previous study, we 
found that H2O2 effectively induced HUVECs 
senescence following a dose-dependent man-
ner and 300 μM of H2O2 displayed a maximum 
anti-angiogenic effect followed by remarkable 
endothelial dysfunction. Meanwhile, SRT1720 
achieved the maximum efforts at optimum con-
centration of 10 μM [17]. This time, HUVECs 
were treated with 300 µM of H2O2 (Sigma, St. 
Louis, MO) for 4 hours to induce cell senes-
cence. For analyzing the anti-aging effect of 
SRT1720 (Sellect, Shanghai, China), HUVECs 
were pretreated with 10 µM (final concentra-
tion) SRT1720 or SRT1720-loaded CaP, MgP 
and CMP nanostructured carriers for 24 hours 
before H2O2 administration. Supernatant and 
cell lysates were collected for biological ana- 
lysis.

CCK-8 assay

WST-8 Cell Counting Kit-8 (CCK-8 kit, Beyo- 
time) was used to analyze cell growth. After 
treated with 1 mM different nanometer ma- 
terials (MCaP, MMgP, MCMP) or SRT1720 and 
SRT1720-loaded CaP, MgP and CMP nanostru- 
ctured carriers (the final concentration of SRT- 
1720 was 10 µM), HUVECs (2×104/mL) were 
seeded on 96-well plates with 100 μL DMEM 
(with 10% FBS) and incubated at 37°C. After  

anghai, China) for SA-β-gal activity analyses. 
The number of blue cells (×100 magnification) 
was counted in 5 random fields to determine 
the percentage of SA-β-gal positive cells [28].

Transwell migration assay

24-well Boyden Transwell chambers (Corning, 
Cambridge, MA) with 6.5-mm-diameter poly- 
carbonate filters (8-µm pore size) were em- 
ployed to determine cells migration. Briefly, 
600 µL DMEM (with 10% FBS) was added into 
the lower compartment. HUVECs (3×105/mL) 
treated with H2O2 and pure SRT1720 or SRT- 
1720-loaded CaP, MgP and CMP nanostruc-
tured carriers were seeded in upper compart-
ment of the transwell chambers in 100 μL 
serum-free Medium. 12 hours later, the cells 
that migrated to the underside were fixed with 
cold 4% paraformaldehyde and stained with 
0.1% crystal violet. Stained cells were count- 
ed in 5 random fields using light microscopy 
(×100 magnification).

Tube formation assay

The tube formation assay was performed as 
described previously [29]. In brief, HUVECs (5× 
105/mL) treated with or without H2O2 together 
with pure SRT1720 or SRT1720-loaded CaP, 
MgP and CMP suspended by 50 μL DMEM  
(with 10% FBS) were reseeded into Matrigel 
(BD Biosciences) coated 96-well dishes, and 
exposed to their original mediators. After 6-8 
hours’ incubation, graphs were captured with a 

Figure 3. Nanometer materials augmented cell viability of HUVECs. A. HU-
VECs were pretreated with 1 mM different nanometer material for 24 hours. 
The proliferation was analyzed by Cell Count Kit-8 (CCK-8) as indicated. 
B. HUVECs were pretreated with 10 μM SRT1720 and the different micro-
spheres contained 10 μM SRT1720 for 24 hours. The proliferation was ana-
lyzed by Cell Count Kit-8 (CCK-8) as indicated. Values are mean ± SEM; n = 
4, *means P<0.05, **means P<0.01. One-way ANOVA (Bonferroni post hoc 
test) was used. 

24 hours 10 µL CCK-8 so- 
lution was added and incub- 
ated at 37°C for 2 hours.  
The absorbance of the reac-
tive system was measured at 
450 nm wavelength.

Galactosidase (β-gal) staining

After treated with 10 µM pure 
SRT1720 or SRT1720-loaded 
CaP, MgP and CMP nano-
structured carriers for 24 
hours, HUVECs were treated 
with or without 300 µM H2O2 
for 4 hours. Then the cells 
washed twice with PBS and 
stained by β-Galactosidase 
Staining Kit (Beyotime, Sh- 
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fluorescent microscope (IX-71; Olympus, Tokyo, 
Japan) with 12.8 M pixel recording digital color 
cooled camera (DP72; Olympus). Each experi-
ment was repeated 4 times. The images of tube 
morphology were taken and tube lengths were 
calculated and represented as fold of control 
under ×100 magnification.

Western blotting

Cell lysates of HUVEC treated with H2O2 and 
pure SRT1720 or SRT1720-loaded CaP, MgP 
and CMP nanostructured carriers. Equal amo- 
unts of total protein from the cell lysates of 
HUVECs were resolved in SDS 10% polyacryl-
amide gel and transferred to nitrocellulose 
membranes for Western blotting as described 
previously [30, 31]. The primary antibodies 
were follows, anti-eNOS (1:1000, Sigma, St. 
Louis, MO), anti-VEGF (1:1000, Proteintech, Chi- 
cago, IL), anti-phosphor-Akt (p-Akt) and anti-
GAPDH (1:1000, Cell Signaling Technology, 
Beverly, MA). Positive signals were visualized 
with a FluorChem E data system (Cell Bio- 
sciences, Santa Clara, CA) and quantified by 
densitometry using Quantity One 4.52 (Bio-
Rad, Hercules, CA). Blots were reprobed with 
GAPDH to confirm equal loading of cell lysate 
proteins.

Statistical analysis

Data were expressed as mean ± standard error 
of the mean (SEM). One-way ANOVA analysis of 
variance with the post-hoc Bonferroni test was 

applied for multiple comparisons. Statistical 
analysis was performed in SPSS software ver-
sion 17.0 (SPSS Inc., Chicago, IL, USA). All ex- 
periments were repeated at least four times.  
P values <0.05 were considered significant.

Results

Characterization of nanostructured CaP, MgP 
and CMP

The morphology of the prepared CaP sample 
was observed by SEM and TEM. From the SEM 
(Figure 1A) and TEM (Figure 1B) micrographs, 
one can see that the CaP sample was com-
posed of CaP nanospheres, which formed by 
the self-assembly of CaP nanopaticles. Accor- 
ding to our previous study [25], the crystal 
phase of the as-prepared CaP nanospheres 
was carbonated hydroxyapatite. The SEM mi- 
crographs (Figure 1C and 1D) of the as-pre-
pared MgP sample indicate that the MgP sa- 
mple was composed of nanosheets, and the 
crystal phase of the as-prepared MgP nano- 
sheets was magnesium phosphate hydrate 
(Mg3(PO4)2∙5H2O) [24]. The as-prepared CMP 
sample was composed of microspheres con-
structed by self-assembled nanoparticles, and 
the crystal phase was amorphous calcium ma- 
gnesium phosphate [26].

The TG curves of the as-prepared samples are 
shown in Figure 2. The weight loss of the CaP 
nanospheres (Figure 2A) was approximately 
14.40%, while the weight loss of drug-loaded 

Figure 4. SRT1720 augmented cell viability of HUVECs. HUVECs were pretreated with or without 10 μM SRT1720 
and the different microsphere contained 10 μM SRT1720 for 24 hours, followed by 300 μM H2O2 or PBS for addi-
tional 4 hours. (A) SA-β-gal staining was performed and senescent cells were stained with blue color, (B) The ratio of 
SA-β-gal positive cells was calculated per group. Values are mean ± SEM; n = 4, *means P<0.05, **means P<0.01, 
vs. control group, #means P<0.05, ##means P<0.01, vs. H2O2 group. Scale bar indicated 50 μm. One-way ANOVA 
(Bonferroni post hoc test) was used. 
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CaP was 15.86%, thus the drug loading capac-
ity of the CaP was about 17.35 mg g-1 (milligram 
drug per gram carrier). For the MgP nanosheets 
(Figure 2B), the weight loss of MgP was approxi-
mately 23.99%, while the weight loss of drug-
loaded MgP was 26.11%, and the drug loading 
capacity was about 28.69 mg g-1. For the CMP 
microspheres, the weight loss of CMP before 
and after drug loading was 17.81% and 19.47%, 
respectively, thus the drug loading capacity 
was about 20.61 mg g-1.

structured carriers and pure SRT1720. The re- 
sult indicated that the protective effect of SRT- 
1720-loaded CMP and MgP was similar to pure 
SRT1720. SRT1720-loaded CaP could also res-
cue the senescent HUVECs but less effective 
(Figure 4A, 4B). We also investigated the effe- 
ct of three SRT1720-loaded-microspheres on 
HUVECs tube formation. The three SRT1720-
loaded nanostructured carriers significantly en- 
hanced the tube formation which was similar 
as pure SRT1720. The effect of SRT1720-load- 

Figure 5. SRT1720 augmented cell viability of HUVECs. HUVECs were pre-
treated with or without 10 μM SRT1720 and the different SRT1720 mi-
crosphere for 24 hours, followed by 300 μM H2O2 or PBS for additional 4 
hours. A. Representative images of tube formation and quantitative analysis 
of tube length were represented as fold of control. B. Migrated cells were 
stained and quantitative analysis of migrated cells was represented as fold 
of control. C. The statistical graph of migrate cell. D. The statistical graph of 
tube length. Values are mean ± SEM; n = 4, **means P<0.01, vs. control, 
#means P<0.05, ##means P<0.01, vs. H2O2 group. One-way ANOVA (Bonfer-
roni post hoc test) was used.

The effects of nanometer ma-
terials and SRT1720-loaded 
nanostructured carriers on 
normal HUVECs

The CCK-8 assay shows that 
the viability of HUVECs treat-
ed with three different nano-
meter materials has no sig- 
nificant difference with the 
control group (Figure 3A). The 
result indicated that the na- 
nometer materials themsel- 
ves didn’t influence the via- 
bility of HUVECs and safe for 
application. Then, we analyze 
the function of SRT1720 and 
SRT1720-loaded nanostruc-
tured carriers on normal HU- 
VECs. All the final concentra-
tion of SRT1720 is 10 μM. As 
shown in Figure 3B, SRT1720-
loaded CMP and MgP, similar 
as pure SRT1720, significant-
ly ameliorate the viability of 
HUVECs to compare with con-
trol group and SRT1720-load- 
ed CaP group. There was al- 
most no difference between 
SRT1720-loaded CaP groups 
and control ones. 

The protective effects of 
SRT1720-loaded nanometer 
materials on H2O2-treated 
HUVECs

In previous study, we con-
firmed that SRT1720 rescu- 
ed the senescent HUVECs  
on the cell apoptosis, tube  
formation, migration and cell 
proliferation [17]. In present 
study, we compared the effe- 
ct of SRT1720 loaded nano-
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ed CaP was weaker than that of others (Figure 
5A, 5C). For migration assay, we found that al- 
though SRT1720-loaded nanostructured carri-
ers can improve HUVECs migration significantly 
than non-treated group, the effect was not as 
good as pure SRT1720 (Figure 5B, 5D).

SRT1720 and SRT1720-loaded nanometer 
particles showed similar effects on angiogenic 
factors in H2O2-treated HUVECs

HUVECs were pre-treated with or without 10  
μM SRT1720 or SRT1720-loaded nanostructu- 
red carriers for 24 hours, followed by 300 μM 
H2O2 or PBS for 4 hours and then continue incu-
bated for additional 24 hours. We found that 
pure SRT1720 could significantly activate sirt1 
expression and increase angiogenic factors 
(eNOS, VEGF and pAkt/Akt) level in H2O2-induc- 
ed senescent HUVECs. The result well match- 
ed our previous study [17]. The effect of SRT- 
1720-loaded CMP and MgP were similar as 
pure SRT1720 (Figure 6), while the SRT1720-

loaded CaP nanospheres decrease the protec-
tive effect of SRT1720.

Discussion

Calcium and magnesium are both important 
elements of human body. They play important 
roles in regulating various life activities of 
human beings. They are widely distributed in 
hard tissues such as bones and teeth in the 
form of phosphate. Therefore, the synthetic  
calcium/magnesium phosphate nanomaterials 
have good biocompatibility and are widely us- 
ed in biomedicine and other fields [32, 33]. 
Therefore, SRT1720-loaded CaP nanospheres, 
MgP nanosheets and CMP microspheres can 
be further applied to the organism. 

In our study, 300 μM of H2O2 induced a signifi-
cant anti-angiogenic effect of HUVECs and 
remarkable endothelial dysfunction. This cellu-
lar model was used to evaluate the ability of dif-
ferent SRT1720-loaded nano-carriers to pro-
tect HUVECs. As the carriers of SRT1720, the 

Figure 6. SRT1720 augmented cell viability of HUVECs. HUVECs were pretreated with or without 10 μM SRT1720 
and the different SRT1720 microsphere for 24 hours, followed by 300 μM H2O2 or PBS for additional 4 hours. The 
protein expressions of eNOS, VEGF, pAkt, and Akt in HUVECs were examined by Western blotting, data were rep-
resented as fold of control. Values are mean ± SEM; n = 4, *means P<0.05, **means P<0.01, vs. control group, 
#means P<0.05, ##means P<0.01, vs. H2O2 group. One-way ANOVA (Bonferroni post hoc test) was used.
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drug loading capacity of CaP, MgP and CMP are 
similar. Nanomaterials CaP, MgP and CMP 
didn’t influence the viability of HUVECs and  
safe for application. However, the SRT1720-
loaded nanostructured carriers showed differ-
ent effects on normal HUVECs and H2O2-treat- 
ed HUVECs in several assays. The pore size  
and other characteristics of the nanomaterials 
maybe cause different drug release capability 
which influenced the results [34, 35]. The pro-
tect ability of SRT1720-loaded CaP was weaker 
than others.

In summary, we comparatively investigate na- 
nostructured CaP, MgP and CMP for the deliv-
ery of SRT1720, and the protection of SRT17- 
20-loaded CaP, MgP and CMP nanostructured 
carriers for the H2O2-induced senescent en- 
dothelium. In comparison with pure SRT1720, 
SRT1720-loaded MgP and CMP show the simi-
lar effects on promoting cell proliferation, mi- 
gration and tube formation, while the capacity 
of SRT1720-loade CaP was weaker. To further 
investigate the underline mechanism, we found 
that SRT1720-loaded CaP nanospheres, MgP 
nanosheets and CMP microspheres can rescue 
the impaired angiogenic potential of HUVECs 
via activating Akt/eNOS/VEGF pathway. These 
results suggested that MgP nanosheets and 
CMP microspheres should be the most suit- 
able carriers for SRT1720. We’ll further apply 
this system in vivo study.
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