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Abstract: Ewing’s sarcoma is one of leading cause of malignancy occurred in the children and adolescents world-
wide. Given the emerging critical role of long noncoding RNA (lncRNA) in the human cancer, as well as Ewing’s 
sarcoma, we aim to identify the biological role of DLX6-AS1 in the tumorigenesis. Results unveil that DLX6-AS1 
expression was increased in the tissue sample and cells. Functionally, the silencing of DLX6-AS1 could repress 
the proliferation and accelerate the apoptosis of Ewing’s sarcoma cells. Mechanically, DLX6-AS1 functioned as the 
sponge of miR-124-3p, and then miR-124-3p targeted the 3’-UTR of CDK4 mRNA, forming the DLX6-AS1/miR-124-
3p/CDK4 regulatory pathway. In conclusion, the critical role of DLX6-AS1 might unveil a potential therapeutic target 
for Ewing’s sarcoma. 
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Introduction

Ewing’s sarcoma is a type of aggressive malig-
nancy occurred in the children and adoles-
cents, leading to increasing number of lethality 
worldwide [1, 2]. As regarding the clinic treat-
ment, the surgery accompanied by chemother-
apy or radiotherapy could play an important 
role [3]. However, there are still abundant pa- 
tients with Ewing’s sarcoma died of the dis-
ease. Therefore, the novel therapeutic strate-
gies with high specificity are necessary [4]. 

Long noncoding RNAs (lncRNAs) are group of 
transcripts, ranging from hundreds nucleotide 
base to thousands nucleotide base, which is 
short of protein-coding potential [5-7]. Abnor- 
mal expression of lncRNAs has been identified 
to exist in multiple human cancers, and numer-
ous lncRNAs regulate the tumorigenesis and 
development [8]. Being similar to micro RNA or 
circular RNA, lncRNAs could wildly regulate the 
tumorigenesis of human cancer [9]. For in- 
stance, lncRNA SBF2-AS1 is upregulated in 
lung adenocarcinoma and the SBF2-AS1-miR-

338-3p/362-3p-E2F1 axis promotes the tumo- 
rigenesis [10]. In human adipose-derived stem 
cells, lncRNA-PCAT1 is negatively correlated wi- 
th miR-145-5p and positively regulated TLR4 to 
regulate osteogenic differentiation [11]. 

LncRNA DLX6-AS1 is a oncogene in the human 
cancer that identified in multiple human cancer, 
such as liver cancer, non-small cell lung cancer, 
pancreatic cancer, osteosarcoma and son on 
[12-15]. In this research, we identified that 
DLX6-AS1 was increased in the Ewing’s sarco-
ma tissue and cells. Given the oncogenic role of 
DLX6-AS1 confirmed by our study, we discov-
ered the biological function and mechanism of 
DLX6-AS1 on the tumorigenesis via miR-124-
3p/CDK4. 

Materials and methods

Clinical sample collection

Ewing’s sarcoma tissues and the adjacent nor-
mal tissues were obtained from the patients 
who experienced surgery at Weinan Maternal 
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and Child Health Hospital. Tumor samples were 
provisionally frozen in liquid nitrogen and then 
chronically stored at -80°C. Patients involved in 
this research signed the informed consent 
before study. This study obtained the permis-
sion from the ethical committee of Weinan 
Maternal and Child Health Hospital. 

Ewing sarcoma cell lines

Ewing sarcoma cell lines (SK-ES-1, A673, RD- 
ES) and mesenchymal stem cells (MSCs) we- 
re provided by the American Type Culture 
Collection (ATCC). Cells were grown in DMEM 
(Corning) supplemented with 10% FBS (Omega 
Scientific) and 100 U/100 μg, 2 mM glutamine 
(Invitrogen, USA). 

Cellular transfection

The small interacting oligonucleotides targeting 
the DLX6-AS1 were designed by RiboBio (Gu- 
angzhou, China). The sequences were present-
ed in the Table S1. The transfection was per-
formed using the Lipofectamine 2000 (Invi- 
trogen, USA). 

Quantitative real-time PCR (qRT-PCR) 

Total RNA was extracted from Ewing’s tissues 
and cells using TRIzol (Thermo, USA). Total RNA 
(1 ug) was conversely synthesized to form the 
first-strand cDNA using One-Step RT-PCR Kit 
(TaKaRa). The RT-PCR was performed an ABI-
7500 RT-PCR system (Applied Biosystems). 
GAPDH acted as the housekeeping gene and 
U6 RNA acted as a miRNA internal control. The 
relative expression was detected with the 2-ΔΔct 
method. The primers were presented in the 
Table S1. 

Western blotting 

All the primary antibodies were provided by 
Abcam, including rabbit anti-human antibody 
(1:1,000). Horseradish peroxidase-conjugated 
(HRP) anti-rabbit antibodies (1:5,000; Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) acted 
as the secondary antibodies. Antibody dilution 
(1:1000) was used for anti-CDK4 (Abcam). The 
proteins were detected using enhanced chemi-
luminescence (ECL) system and exposed to 
X-ray film and quantified by Gel-Pro Analyzer 
(Media Cybernetics, Rockville, MD, USA) for the 
densitometry. 

CCK-8 assay and colony formation assay 

The proliferative ability of Ewing’s sarcoma was 
detected using the CCK-8 assay and colony for-
mation assay as previously described [16]. 
Ewing’s sarcoma cells were seeded in a 96-well 
plate by the 2000 cells/well density. Then, 20 
μl of Cell Counting Kit-8 (Beyotime Institute of 
Biotechnology) was added to each well after 48 
h. The absorbance was measured at 450 nm. 

Flow cytometry analysis

The apoptosis and cycle analysis were per-
formed using flow cytometry analysis. In brief, 
the cells were trypsinized and seeded in the 1 
ml 2% FBS in PBS at the density of 1×104 cell 
per wells and washed with cold PBS. Cells were 
resuspended in binding buffer (100 μl) and 
stained with FITC Annexin V (5 μl) and propidi-
um iodide (PI, 5 μl) for 15 min at room tempera-
ture in the dark. The apoptosis Kit (KeyGen, 
Nanjing, China) was administrated and subject-
ed to flow cytometric analysis FACS Canto II 
flow cytometry (BD Biosciences). The cycle an- 
alysis was stained with 10 mg propidium io- 
dide/ml and performed using analyzed using 
FACSCalibur flow cytometer (Becton Dickinson). 

Subcellular fractionation location 

The nuclear or cytosolic fraction was purified 
and extracted using the PARIS kit (Life Tech- 
nologies, Carlsbad, CA, USA) according to the 
manufacturer’s protocols. 

Dual-luciferase reporter assay

The sequences at the 3’-UTR of DLX6-AS1 and 
CDK4 were amplified and the products were 
cloned into the luciferase reporter vector pGL3-
basic (Promega, USA). 48 h after transfection, 
the luciferase activity was assessed using the 
Dual-Luciferase Reporter Assay System (Pro- 
mega) based on the Firefly/Renilla luciferase 
activity. Renilla luciferase vector was transfect-
ed as an internal control.

Statistical analysis

The data were determined by repeated analysis 
and presented as median and differences. The 
differences within different groups were ana-
lyzed by the student’s t-test or one way ANOVA 
or Mann-Whitney U-test. Difference was regard-

RETR
ACTE

D



DLX6-AS1/miR-124-3p/CDK4 promotes Ewing’s sarcoma

6571 Am J Transl Res 2019;11(10):6569-6576

ed as P<0.05. Statistical analyses were per-
formed with GraphPad Prism 6.0 (GraphPad 
Software, La Jolla, CA, USA). 

Results

LncRNA DLX6-AS1 is increased in Ewing’s 
sarcoma

In the Ewing’s sarcoma cells (SK-ES-1, A673, 
RD-ES), the expression of DLX6-AS1 was ana-
lyzed by the RT-PCR. As respected, the expres-
sion of DLX6-AS1 was remarkedly up-regulated 
compared to the normal cells (Figure 1A). In the 
clinical Ewing’s sarcoma specimens, lncRNA 
DLX6-AS1 expression was up-regulated com-
pared to the normal controls (Figure 1B). In the 
clinical dataset, the abundance of DLX6-AS1 
was also highly expressed in the Ewing’s sar-
coma (Figure 1C). Therefore, lncRNA DLX6-AS1 
is increased in Ewing’s sarcoma. 

The knockdown of DLX6-AS1 represses the 
proliferation and accelerates the apoptosis of 
Ewing’s sarcoma cells

The over-expression of DLX6-AS1 in the Ewing’s 
sarcoma tissue and cells indicated its potential 
oncogenic roles in the Ewing’s sarcoma tumori-
genesis. The independent small interfering RN- 
As were transfected into Ewing’s sarcoma ce- 
lls (SK-ES-1, A673) to silence the DLX6-AS1 
expression (Figure 2A). The colony formation 
assay presented that DLX6-AS1 silencing re- 

pressed the growth significantly in SK-ES-1 and 
A673 cells (Figure 2B). CCK-8 assay indicated 
that DLX6-AS1 silencing repressed the absor-
bance for these cells (Figure 2C). Flow cytome-
try demonstrated that DLX6-AS1 silencing ac- 
celerates the apoptosis of Ewing’s sarcoma 
cells (SK-ES-1, A673) (Figure 2D). Moreover, 
the cycle analysis using flow cytometry illustrat-
ed that DLX6-AS1 silencing facilitated the G0/
G1 phase arrest compared to the negative con-
trols (Figure 2E, 2F). The evidence indicates 
that the knockdown of DLX6-AS1 represses the 
proliferation and accelerates the apoptosis of 
Ewing’s sarcoma cells. 

DLX6-AS1 acts as a sponge of miR-124-3p

Bioinformatics tools indicated that there were 
series of miRNAs that could bind with DLX6-
AS1 at the 3’-UTR (3’-untranslated regions) 
(Figure 3A). Besides, we found that the prior 
distribution of DLX6-AS1 in the SK-ES-1 was 
cytoplasm (Figure 3B). When the DLX6-AS1 
plasmids (wild type or mutant) were co-trans-
fected with the miR-124-3p (mimics or blank 
controls), the luciferase activities were mea-
sured using the luciferase reporter assay (Fi- 
gure 3C). This data suggested that DLX6-AS1 
could bind with the miR-124-3p by molecular 
binding. In the Ewing’s sarcoma specimens, 
miR-124-3p expression was decreased (Figure 
3D). In the Ewing’s sarcoma cells, miR-124-3p 
expression was similarly down-regulated (Fi- 

Figure 1. LncRNA DLX6-AS1 is increased in Ewing’s sarcoma. A. LncRNA DLX6-AS1 expression in Ewing sarcoma 
cell lines (SK-ES-1, A673, RD-ES) and mesenchymal stem cells (MSCs) by RT-PCR. B. lncRNA DLX6-AS1 expression 
in the clinical Ewing’s sarcoma specimens. C. In the clinical dataset, the abundance of DLX6-AS1 in the Ewing’s 
sarcoma. **Indicates the p-value less than 0.01. 
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gure 3E). When the DLX6-AS1 was silenced, 
miR-124-3p was inversely up-regulated (Figure 
3F). In the clinical tissue samples, the interac-
tion within DLX6-AS1 and miR-124-3p was neg-
ative (Figure 3G). Overall, DLX6-AS1 acts as a 
sponge of miR-124-3p in the Ewing’s sarcoma 
cells. 

DLX6-AS1/miR-124-3p conjointly regulates 
CDK4

For the target of the DLX6-AS1/miR-124-3p, we 
found that miR-124-3p could bind with the 
3’-UTR of CDK4 (Figure 4A). Luciferase reporter 
assay indicated that CDK4 wild type could effi-
caciously target and conjugate with the miR-
124-3p (Figure 4B). The mRNA level of CDK4 in 
the Ewing’s sarcoma cells (SK-ES-1, A673) was 

increased (Figure 4C). Furthermore, the miR-
124-3p mimics transfection decreased the 
CDK4 mRNA, and the si-DLX6-AS1 transfection 
silence the CDK4 mRNA (Figure 4D). In the clini-
cal landscape dataset, CDK4 expression was 
significantly up-regulated in the Ewing’s sarco-
ma specimens (Figure 4E). Clinically, the higher 
expression of CDK4 in the Ewing’s sarcoma 
cohort indicated the lower survival rate com-
paring with the normal specimens (Figure 4F). 
Overall, DLX6-AS1/miR-124-3p conjointly regu-
lates CDK4 in the Ewing’s sarcoma. 

Discussion

The roles of lncRNAs in the human cancers 
were diversified and have caught more and 
more researcher’s attention [17]. Ewing’s sar-

Figure 2. The knockdown of DLX6-AS1 represses the proliferation and accelerates the apoptosis of Ewing’s sarcoma 
cells. A. The independent small interfering RNAs were transfected into Ewing’s sarcoma cells (SK-ES-1, A673) to 
silence the DLX6-AS1 expression. B. The colony formation assay presented growth ability of Ewing’s sarcoma cells. 
C. CCK-8 assay indicated the absorbance with or without DLX6-AS1 silencing. D. Flow cytometry demonstrated the 
apoptosis of Ewing’s sarcoma cells (SK-ES-1, A673). E, F. Flow cytometry demonstrated the cycle analysis of the G0/
G1 phase arrest compared to the negative controls. **Indicates the p-value less than 0.01. RETR
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coma is an aggressive soft tissue malignancy 
of adolescents or children [18]. With the rapid 
development of high-throughput sequencing or 
next-generation sequencing technology, a large 
number of new identified lncRNAs have been 
discovered [19]. On this basis, the bioinformat-
ics tools help the researchers to find the in-
depth interaction within the ncRNAs and human 
cancers, including micro RNAs, lncRNAs and 
circular RNA [9]. 

In the Ewing’s sarcoma tissue and cells, we 
found that lncRNA DLX6-AS1 was significantly 
up-regulated compared with the normal tissue 
and cells. This data indicated that the DLX6-
AS1 overexpression in this pathogenesis could 
act as the oncogene. The critical pathogenic 
roles of lncRNAs in the human cancers have 
been identified and reported. In multiple can-
cers, lncRNA DLX6-AS1 is reported to functions 
as the oncogene and onco-promoting element. 

Figure 3. DLX6-AS1 acts as a sponge of miR-124-3p. A. Bioinformatics tools indicated that miR-124-3p could bind 
with DLX6-AS1 at the 3’-UTR (3’-untranslated regions). B. The distribution of DLX6-AS1 in the SK-ES-1. C. The lucif-
erase activities were measured using the luciferase reporter assay with the co-transfection of DLX6-AS1 plasmids 
(wild type or mutant) and miR-124-3p (mimics or blank controls). D. miR-124-3p expression in the Ewing’s sarcoma 
specimens. E. miR-124-3p expression in Ewing’s sarcoma cells. F. miR-124-3p expression when the DLX6-AS1 was 
silenced. G. The interaction within DLX6-AS1 and miR-124-3p in the clinical tissue samples. **indicates the p-value 
less than 0.01. 
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Such as hepatocellular carcinoma tissue and 
cells, lncRNA DLX6-AS1 expression is up-regu-
lated compared with adjacent normal tissue. 
Moreover, bioinformatics analysis revealed the 
targeting within miR-203a and DLX6-AS1 3’- 
UTR and MMP-2 mRNA 3’-UTR [20]. In renal cell 
carcinoma, DLX6-AS1 is upregulated and DL- 
X6-AS1 promotes renal cell carcinoma deve- 
lopment via regulation of miR-26a/PTEN axis 
[21]. 

There are numerous lncRNAs, oncogenic or 
anti-cancer, in the disease and tumorigenesis 
[22]. In the glioma carcinogenesis, enhanced 
DLX6-AS1 expression in plasmids and silenced 
DLX6-AS1 expression by siRNAs inhibited the 
proliferation, invasion and tumor growth in vitro 
and in vivo [23]. In the pancreatic cancer, the 
high expression of DLX6-AS1 is positively cor-
related with lymph node metastasis, advanced 
TNM stage and larger tumor size [24]. Therefore, 

these researches support the conclusion that 
DLX6-AS1 might function as the oncogenic fac-
tor in the human cancer, as well as the Ewing’s 
sarcoma tumorigenesis identified in present 
study. 

The subcellular location of DLX6-AS1 in the 
Ewing’s sarcoma is cytoplasm, suggesting the 
potential post-transcriptional regulation [25]. In 
other hand, if the lncRNAs are mainly located in 
the nuclear, the regulatory mechanism for them 
might be transcriptional regulation occurred in 
the nuclear [26]. In this study, we found that 
DLX6-AS1 could act as the sponge of miR-124-
3p, and then miR-124-3p targets the CDK4 
mRNA. Therefore, this research identified the 
DLX6-AS1/miR-124-3p/CDK4 axis in the Ew- 
ing’s sarcoma. In the Ewing sarcoma, long non-
coding RNA-277 (EWSAT1) is a downstream tar-
get of EWS-FLI1, by which facilitating the pro-
gression of Ewing sarcoma [27]. 

Figure 4. DLX6-AS1/miR-124-3p conjointly regulates CDK4. A. Bioinformatics tools showed that miR-124-3p could 
bind with the 3’-UTR of CDK4. B. Luciferase reporter assay indicated that CDK4 wild type could efficaciously target 
and conjugate with the miR-124-3p. C. The RT-PCR revealed the mRNA level of CDK4 in the Ewing’s sarcoma cells 
(SK-ES-1, A673). D. The RT-PCR revealed the mRNA level of CDK4 in the transfection of miR-124-3p mimics and 
si-DLX6-AS1. E. CDK4 expression in the clinical landscape dataset for Ewing’s sarcoma specimens. F. The survival 
rate of Ewing’s sarcoma cohort with higher expression or lower expression of CDK4. **Indicates the p-value less 
than 0.01.
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In Ewing’s sarcoma, it has been emerged that 
CDK4 4/6 pathway acts as a dependency [28, 
29]. Therefore, the specific single agent inhibi-
tor target CDK4 4/6 was discovered to explore 
novel drugs for Ewing sarcoma. Moreover, the 
high-expression of CDK4 is closely correlated 
with the poor prognosis and indicates the bad 
outcome for Ewing sarcoma [30, 31]. In present 
study, we found that CDK4 acts as the target of 
DLX6-AS1/miR-124-3p, constructing a regula-
tion in the oncogenesis. The cell cycle and pro-
liferation are the critical elements of Ewing’s 
sarcoma. CDK4 acts as the essential factor in 
the cycle. Moreover, the cell-cycle inhibition 
might be a therapeutic target for Ewing’s sar-
coma. Clinically, a small-molecule CDK4 and 
CDK6 (CDK4 and 6) inhibitor is currently under 
clinical investigation [32]. 

Overall, this research presents a finding that 
DLX6-AS1 promotes the Ewing’s sarcoma 
tumorigenesis via regulating miR-124-3p/CD- 
K4, constructing a cascade regulation. Given 
the critical role of CDK4 in the Ewing’s sarco-
ma, the role of DLX6-AS1 might unveil a poten-
tial therapeutic target for Ewing’s sarcoma. 
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Table S1. Primers sequences for qRT-PCR and sequences of siRNA
Sequences

DLX6-AS1 Forward, 5’-TCTGACCGCGTATGCGCGG-3’
Reverse, 5’-TTCGCGAGGCTGCGTTAAG-3’

miR-124-3p Forward, 5’-GAAGTGGACGTTAGTCTG-3’
Reverse, 5’-AATTACGATTGATTACA-3’

si-DLX6-AS1-1 5’-GGCATGCCTGTCCCCCGT-3’
si-DLX6-AS1-2 5’-ACGCCAGCTTACAGTTCCGT-3’
si-DLX6-AS1-3 5’-TCATACGCACATTAAGTC-3’
CDK4 Forward, 5’-ATGGCTACCTCTCGATATGAGC-3’

Reverse, 5’-CATTGGGGACTCTCACACTCT-3’
miR-124-3p inhibitor 5’-ATUUAAGGGGUGUUAAGGAC-3’;
miR-124-3p mimics 5’-GTAAAUGGACACCAATGGGCT-3’; 
GAPDH Forward, 5’-AGAAGGCTGGGGCTCATTTG-3’

Reverse, 5’-AGGGGCCATCCACAGTCTTC-3’
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