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Abstract: Small nuclear ribonucleoprotein polypeptide G (SNRPG), often referred to as Smith protein G (SmG), is an 
indispensable component in the biogenesis of spliceosomal uridyl-rich small nuclear ribonucleoprotein particles (U 
snRNPs; U1, U2, U4 and U5), which are precursors of both the major and minor spliceosome. SNRPG has attracted 
significant attention because of its implicated roles in tumorigenesis and tumor development. Suggestive evidence 
of its varying expression levels has been reported in different types of cancers, which include breast cancer, lung 
cancer, prostate cancer and colon cancer. The accumulating evidence suggests that the splicing machinery compo-
nent plays a significant role in the initiation and progression of cancers. SNRPG has a wide interaction network, and 
its functions are predominantly mediated by protein-protein interactions (PPIs), making it a promising anti-cancer 
therapeutic target in PPI-focused drug technology. Understanding its roles in tumorigenesis and tumor development 
is an indispensable arsenal in the development of molecular-targeted therapies. Several antitumor drugs linked to 
splicing machinery components have been reported in different types of cancers and some have already entered 
the clinic. However, targeting SNRPG as a drug development tool has been an overlooked and underdeveloped strat-
egy in cancer therapy. In this article, we present a comprehensive and perspective view on the oncogenic potential 
of SNRPG in PPI-focused drug discovery. 
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Introduction

Protein-protein interactions (PPIs) are indis-
pensable in normative cellular processes and 
are tremendously important mediators in the 
progression of many disease states [1-3]. More 
than 600,000 disease-relevant PPIs have so 
far been reported in the human interactome [4, 
5], most of which remain elusive and underex-
plored. Optimizing the integration of PPIs with 
conventional and targeted cytotoxic therapies 
may lead to greatly protracted remissions and 
even curative therapies for several diseases, 
including cancer [6-8]. Over the years PPIs have 
been regarded as prototypically “intractable” 
and “undruggable” owing to their highly dynam-
ic and expansive interfacial areas [2, 3]. 
However, owing to improving technology exper-
tise, the advent of PPI-focused smart-drug 

technology presents a notable advance in dis-
ease diagnostics and therapeutic studies [7-9]. 
PPIs have emerged as significant arsenals in 
the drug development armory and inhibiting 
PPIs using small molecules or peptides modu-
lates biochemical pathways and has therapeu-
tic significance [4, 7, 8, 10]. 

The emergence of PPI-focused drug technology 
has prompted scientists to consider targeting 
splicing machinery components as possible tar-
gets in alleviating the existing cancer challeng-
es [5-7]. The strategy ushered in a new dawn in 
the field of drug discovery. A few drugs are 
already on the market and some potential drug-
like candidates are in clinical trials [2, 3, 11-13]. 
Nevertheless, targeting Smith (Sm) proteins as 
PPI drug development tools has been an over-
looked and underdeveloped strategy in cancer 
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therapy [7, 14]. Varying expression levels have 
been reported in different types of cancers, 
which include breast cancer, lung cancer, pros-
tate cancer and colon cancer [15-20]. However, 
very little is known about their putative interac-
tions in cancer-cell protein networks and their 
roles in different types of cancers. 

Understanding their functional implications 
may lead to new avenues to design and devel-
op PPI-focused therapeutic drugs in cancer [2, 
3, 5-7, 21, 22]. In this article, we present a com-
prehensive view and perspective on the onco-
genic potential of SNRPG in PPI-focused drug 
technology. 

PPI interfaces

PPIs occur over a relatively large interfacial 
area of approximately 1000 to 4000 Å2. The 
area is relatively prodigious in comparison to 
the mean contact area obligated for inhibition 
by small molecule inhibitors (300 to 1000 Å2) 
[23, 24]. The interfacial area of PPIs harbors 
incontrovertible hydrophobic regions called 
“hot spots”. These hydrophobic regions contrib-
ute to the binding affinity and help to hold the 
two interacting proteins together [25, 26]. 

Typically, hot spot density on the protein-pro-
tein interface composes 10% of the binding 
site residues. The amount of the structurally 
conserved residues (energetic hot spots) 
increases with the expansion of the interacting 
surface area [27].

Hot spot regions usually occur in clusters and 
within each cluster tightly packed hot spots 
form a network of conserved interactions called 
hot regions (shown in Figure 1) [28]. The coop-
erative contributions of hot spots within one 
hot region stabilize PPIs. Hot regions are net-
worked; their energetic contributions can be 
additive or cooperative and contribute domi-
nantly to the stability of PPIs [29, 30]. Hot spot 
pockets for PPIs are distinguishable from the 
other regions of the protein surface owing to 
their concave topology, combined with a pat-
tern of hydrophobic and polar functionality. This 
combination of properties confers on concave 
hot regions a tendency to bind other proteins 
and small organic compounds possessing 
some polar functionality decorating a largely 
hydrophobic scaffold [31].

Hot spot regions are rich in hydrogen bonding 
and hydrophobic amino acids (Trp, Arg and Tyr), 

Figure 1. Cartoon representation of β-catenin/T-cell factor (Tcf) PPI interface showing three hot regions. Hot region 
1 (K435 and K508 of β-catenin and D16 and E17 of Tcf4), hot region 2 (K312 and K345 of β-catenin and E24 and 
E29 of Tcf4) and hot region 3 (F253, I256, F293, A295, and I296 of β-catenin and V44 and L48 of Tcf4). The coop-
erative contributions of hot spots within one hot region stabilize PPIs (Figure taken from [31]). 
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which contribute to π-interactions and the bind-
ing of free energy [32]. Systematic alanine 
scanning mutagenesis has revealed that 
exchanging amino acid residues for alanine in 
these hot spot regions reduces the binding 
affinity by at least 2 kcal/mol [32]. Further anal-
ysis observed that hot spot regions comprise a 
core and a rim region. The rim region has an 
amino acid composition similar to the whole 
interfacial area, whereas the core region con-
sists solely of aromatic residues [33, 34]. The 
core region fosters the α-helix, β-sheet and 
β-turn motifs, with the α-helix having a higher 
ratio in most of the secondary protein struc-
tures. The α-helix actively binds into the grooves 
of binding partners and modulates the func-
tioning of a large number of the disease-rele-
vant PPIs [26, 35].

Comprehensive view

SNRPG is an approximately 8.5 kDa core-splic-
ing and cancer-implicated Sm protein whose 
functions are predominantly mediated by PPIs 
[16, 36, 37]. The SNRPG protein coding gene is 

found on chromosome 2p13.3 and is made up 
of 8 exons. The gene comprises 455 nucleo-
tides with an open reading frame encoding a 
predicted protein of 76 amino acid residues. An 
important paralog of this gene is LSM7. SNRPG 
protein has a theoretical pI of 8.9 and is trans-
lated in vitro from a single SNRPG mRNA that 
migrates as a doublet on high-TEMED SDS-
PAGE [38]. The two bands represent conforma-
tional isomers of the same protein. However, 
several transcript variants encoding different 
isoforms have been found for this gene. 
Northern blot analysis revealed that the SNRPG 
gene is expressed as an approximately 0.5-kb 
mRNA in HeLa cells [39].

SNRPG is a bona fide component of survival of 
motor neurons (SMN)-Sm protein complex, U1 
snRNP, U2 snRNP, U12 type spliceosomal com-
plex, U4 snRNP, U5 snRNP, spliceosomal tri-
snRNP complex, catalytic step 2 spliceosome, 
Cytosol, methylosome, nucleoplasm, small 
nuclear ribonucleoprotein complex and spliceo-
somal complex [21]. Among its related path-
ways are the mRNA splicing-minor pathway and 

Figure 2. Antibody staining of five standard cancer tissues samples highlighting the localization of SNRPG in tumor 
cells. A. Colorectal Cancer. B. Breast Cancer. C. Prostate Cancer. D. Lung Cancer. E. Liver Cancer. Antibodies are 
labeled with DAB (3,3’-diaminobenzidine) and the resulting brown staining indicates where an antibody has bound 
to its corresponding antigen (SNRPG). Staining: Medium, Intensity: Moderate, Quantity: > 75%, Location: Nuclear, 
Magnification: 40 × (Figure taken from [18]).
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transport of the SLBP independent mature 
mRNA. The protein may also be a part of the U7 
small nuclear ribonucleoprotein (U7 snRNP) 
complex, which participates in the processing 
of the 3’ end of histone transcripts [21]. How- 
ever, it plays a yet uncharacterised role in link-
ing core pre-mRNA splicing proteins to various 
cancers.

As shown in Figure 2, varying expression levels 
of SNRPG have been reported in different types 
of cancers, which include colorectal cancer, 
breast cancer, lung cancer, prostate cancer 
and liver cancer [15-20]. According to Blijlevens 
and co-workers, increased expression levels of 
SNRPG protein in different types of cancers 
show a positive correlation with disease initia-

tion, progression and severity [40]. The varying 
expression levels of SNRPG in different types of 
cancers may be explained by the overexpres-
sion of the protein, the mislocalisation of unas-
sembled protein or the mislocalisation of mis-
assembled protein [41]. Thus, SNRPG may con-
tribute significantly to the initiation and pro-
gression of cancers [14, 16, 37, 42-46].

SNRPG, like other Sm proteins, is characterised 
by the presence of a conserved motif called the 
Sm motif. As shown in Figure 3, the Sm motif 
consists of two conserved regions that are  
separated by a non-conserved linker region, 
Sm1 and Sm2. The conserved motif comp- 
rises an antiparallel β sheet of β5↑•β1↓•β2↑• 
β3↓•β4↑ topology [39]. Several of the Sm sub-
units are decorated by additional unstructured 
C terminal extensions and secondary stru- 
cture elements. The Sm motif encodes for a 
common folding domain (Sm domain) that is 
responsible for mediating PPIs between Sm 
proteins through the antiparallel β strands [47]. 
Moreover, SNRPG possesses two solvent-
exposed hydrophobic interaction surfaces that 
are prone to nonspecific interactions under 
physiological conditions [47-52]. According to 
Stark and co-workers SNRPG has a wide inter-
action network comprising more than 138 
interactions with more than 115 identified 
interactors [21]. Its functions are mediated by 
both the specific and non-specific PPIs.

Prior to their involvement in the splicing cycle, 
SNRPG together with the other Sm proteins ini-
tially undergo translation in the cytoplasm and 
follow a hierarchical maturation pathway in 
which they interact independently of snRNA 
(shown in Figure 5) [53]. The activity is mediat-

Figure 3. Human SNRPG protein primary structure alignment showing Sm1 and Sm2 motifs. Conserved amino 
acids are highlighted as follows: Light blue (uncharged hydrophobic residues), green (acidic amino acids), purple 
(basic amino acids), dark blue (100% conserved amino acids) and turquoise (80% conserved glycine). Arrows mark 
the cross-linked amino acids in the protein sequences as identified by N-terminal sequencing, for example Phe37, 
Met38 and Asn39. The cross-linking sites are located within loop L3 of the Sm1 motif (Figure taken from [39]).

Figure 4. Stereo view of the human SNRPG (depicted 
as a cartoon trace with magenta β strands) and its 
interactions with the Sm site in U1 snRNA. Selected 
amino acids are shown as stick models and num-
bered according to their positions in the SNRPG poly-
peptide. Atomic contacts are indicated by dashed 
lines (Figure taken from [14]).
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ed predominantly by the assembly chaperone 
pICln, which inhibits the pre-mature binding of 
Sm proteins onto U snRNA and recruits all 
newly synthesized Sm proteins to the protein 
arginine methyltransferase 5 (PRMT5) complex 

forming three hetero-oligomers, D3/B, D1/D2 
and E/F/G [22, 41, 52, 54]. The PRMT5-
complex (comprising the Type II methyltransfer-
ase PRMT5, WD45 and pICln) promotes sym-
metric dimethylation of arginines on Sm pro-

Figure 5. Model of assisted assembly of U snRNPs. Sm proteins are initially translated in the cytoplasm and se-
questered by the PRMT5-complex, consisting of the Type II methyltransferase PRMT5, WD45 (also termed Mep50) 
and pICln, which promotes symmetric dimethylation of arginines on Sm proteins B/B0, D1 and D3 (step 1). Next, 
the SMN-complex interacts with the PRMT5-complex to form an SMN-PRMT5-complex in which the Sm proteins are 
transferred onto the SMN-complex (step 2). These Sm proteins are assembled onto the “Sm-site” of U snRNAs to 
form U snRNPs (step 3). Finally, the U snRNP, the SMN-complex and PRMT5-complex dissociate and the latter two 
engage in a new round of U snRNP (Figure extracted from [53]).
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teins B/B’, D1 and D3. The SMN-complex inter-
acts with the PRMT5-complex facilitating the 
assembly of Sm proteins onto the “Sm-site” of 
U snRNAs forming the U snRNPs, as shown in 
Figure 4 [41]. After additional modification and 
processing steps, the U snRNP is targeted to its 
nuclear site of function, where it ultimately 
accumulates in interchromatin region struc-
tures known as splicing speckles [22, 41, 53].

Very little is known about the manner in which 
the Sm proteins recognize and interact with the 
RNA-Sm site element. However, SNRPG has 
been highlighted to play a critical role in the 
direct recognition of the Sm site in the U 
snRNPs assembly [55]. According to Heinrichs 
and co-workers a direct contact between the 
SNRPG and the 5’ part of the Sm site element 
within HeLa U1 snRNP particles was demon-
strated by cross-linking approaches [55]. As 
indicated in Figure 2, the cross-linking sites are 
located within loop L3 of the Sm1 motif. The 
cross-linked amino acids are identified in the 
protein sequences as identified by N-terminal 
sequencing: Phe37, Met38 and Asn39 [55]. 
The cross-linking observed for the SNRPG is an 

outstanding feature and provides the first line 
of evidence that SNRPG plays a yet uncharac-
terized and pivotal role in the functional activi-
ties of Sm proteins.

In this context, cells are engineered to use a 
plethora of PPI networks to provide a therapeu-
tically tractable way of tweaking and manipulat-
ing the interplay of Sm proteins in order to 
maintain and address the normative cellular 
functions and progression of many disease 
states, including cancer [1, 56]. As shown in 
Figure 6, deficiency of pICln due to pathophysi-
ological cues and disease progression has 
been linked to mislocalization of the unassem-
bled and/or misassembled Sm proteins and 
their subsequent degradation via autophagy 
[41]. SMN deficiency has been linked to accu-
mulation of Sm proteins over the pICln [41, 51, 
57]. The reduced expression of functional SMN 
caused by genomic mutations has been linked 
to the debilitating human disorder spinal mus-
cular atrophy [58].

In case of abnormality or impairment in the 
regulation of the assembly pathway, the cell 

Figure 6. Schematic representation of the dysregulatory events in the homeostasis of U snRNPs. Dysregulation of 
Sm proteins during U snRNP assembly causes cellular proteotoxicity. Early phase plCln deficiency leads to degrada-
tion of Sm proteins via autophagy and mislocalisation of unassembled and/or misassembled Sm proteins. Late 
phase SMN deficiency leads to accumulation of Sm proteins over plCln (Figure taken from [53]).
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activates fail-safe measures, including target-
ed autophagosome-mediated Sm protein deg-
radation and exosome-processed Sm-encoding 
transcript degradation [41, 51, 57, 58]. These 
measures refine cellular quality control mecha-
nisms to prevent proteotoxicity during imbal-
ances in UsnRNP assembly [41]. Therefore, the 
regulation of Sm proteins during U snRNP 
assembly is tremendously important to prevent 
cellular proteotoxicity in disease progression 
[22, 41, 53].

Perspective view

Recent studies have shown significant evi-
dence that deregulation of spliceosomal Sm 
proteins is linked to pathophysiological cues 
and disease states, such as cancer [40, 59]. 
The interference of Sm protein expression has 
been shown to induce apoptosis in non-small-
cell lung cancer (NSCLC) cells [40]. According to 
Blijlevens and co-workers Sm proteins are fre-
quently upregulated in NSCLC and their inc- 
reased expression shows positive correlation 
with disease severity [40]. Despite their inabili-
ty to induce apoptosis in non-malignant cells, 
Sm proteins represent a particularly useful 
novel target for selective treatment of NSCLC 
[40]. However, their functional basis remains 
elusive and yet to be fully understood.

In another study, Jin and co-workers investigat-
ed the effects of silencing SNRPN expression 
on cell growth using the Daoy human medullo-
blastoma cell line in vitro [60]. The study 
observed that the knockdown of SNRPN mark-
edly reduced the proliferation and colony-form-
ing ability of Daoy medulloblastoma cells. The 
results indicate that SNRPN may be a potential 
novel target for the development of pharmaco-
logical therapeutics in human medulloblasto-
ma [60]. Variable methylation of SNRPN has 
also been linked to germ cell tumors and acute 
myeloid leukemia [61, 62]. SNRPN depletion 
inhibits the proliferation and colony formation 
of BxPC-3 pancreatic adenocarcinoma cells, 
leading to S phase cell cycle arrest and cell 
accumulation at the sub G1 phase [63]. 
However, the signalling pathway of SNRPN 
involved in the BxPC-3 cell proliferation and 
tumorigenesis remains unclear and yet to be 
fully elucidated. The results suggest that 
SNRPN may promote pancreatic adenocarcino-
ma cell growth via regulation of the cell cycle 

and apoptosis, and lentivirus mediated SNRPN 
knockdown may be a potential therapeutic 
method for the treatment of pancreatic cancer 
[60].

Using semi-quantitative RT-PCR, Anchi and co-
workers also reported the involvement of 
SNRPE in cell proliferation and progression of 
high-grade prostate cancer through the regula-
tion of androgen receptor expression [64]. 
SNRPE overexpression promoted prostate can-
cer cell proliferation in high-grade prostate can-
cer cells compared with normal prostatic epi-
thelial cells, indicating its oncogenic effects.  
Its knockdown expression by short interfering 
RNA (siRNA) resulted in the marked suppres-
sion of prostate cancer cell proliferation [64]. 
Furthermore, the study observed that the regu-
lation of androgen receptor expression by 
SNRPE is essential for cell proliferation and 
progression of high-grade prostate cancer. 
Thus, SNRPE may present a novel molecular 
target for cancer drugs [64].

SNRPG is one good example of proteins that 
have been implicated in cancer and whose 
functions are predominantly mediated by PPIs 
[16, 36, 37]. According to Johnson and co-work-
ers most cancer-implicated proteins possess 
structural domains that have a higher ratio of 
infidelity compared to non-cancer-implicated 
proteins, making them more prone to interac-
tion with a wide diversity of proteins [65]. 
Cancer-implicated proteins have a large num-
ber of interacting proteins and occupy a central 
position in cancer-cell protein networks [66-
68]. PPIs between cancer-implicated proteins 
have a higher probability of being related to the 
cancer processes than non-interacting proteins 
[1, 56, 65, 69]. The accumulative and sugges-
tive evidence of the varying expression levels in 
more than 20 different types of cancers makes 
SNRPG a promising anti-cancer therapeutic tar-
get in PPI-focused drug technology [16].

SNRPG and retinoblastoma binding protein 6 
(RBBP6)

Putative PPIs between SNRPG and RBBP6 have 
been suggested. RBBP6 is a 250 kDa splicing-
associated human protein initially known to 
bind to the retinoblastoma gene product, pRB 
[15, 17]. The RBBP6 gene is known to possess 
six different domains (shown schematically in 
Figure 7) that have been characterized and 
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linked with different types of cancer [15]. 
RBBP6 has three well-conserved N-terminal 
domains (“domain with no name” (DWNN), zinc 
knuckle and “really interesting new gene” 
(RING) finger domain) and three C-terminal 
domains (proline-rich SR domain, Rb-binding 
domain and p53-binding domain) [15, 70, 71]. 
Even though the functions of the N-terminal 
domains are not yet fully understood, it is well 
understood that RBBP6 is linked to tumorigen-
esis and tumor development, and its functions 
are predominantly mediated by PPIs [17]. 
RBBP6 has been characterized and linked with 
14 different types of cancer at varying expres-
sion levels [15, 19, 42, 44, 46, 71-75]. It inter-
acts with the two-prototypical tumor suppres-
sor proteins p53 and pRB [15, 17, 19].

Among other oncogenic functions, RBBP6 facil-
itates interaction between p53 and its negative 
regulator, MDM2, leading to enhanced p53 
ubiquitination and degradation [17, 19]. It also 
interferes with the binding of p53 to DNA and 
facilitates the ubiquitination of pRb [17]. RBBP6 
interacts directly with the pro-proliferative tran-
scription factor Y-box-binding protein-1 (YB-1). 
Its overexpression in cultured mammalian cells 
leads to suppression of the anti-apoptotic YB-1 
in a proteasome-dependent manner [71]. 
However, because it down-regulates both the 
pro-apoptotic p53 and the anti-apoptotic YB-1, 
the effect of RBBP6 on tumorigenesis is likely 
to be highly complex [45].

Accumulative evidence has shown that RBBP6 
interacts with core splicing Sm proteins, SNRPB 
[15] and SNRPG [43, 45]. Using immunoblot 
analysis, Simons and co-workers observed that 
the N-terminal domain of RBBP6 interacts with 
Sm proteins [15]. The result points to a possi-

that RBBP6 may perhaps interact with the core 
splicing SNRPG protein through its N-terminal 
domains, which is a crucial component of the 
RNA processing machinery in the cell [43]. 
These suggestions substantiate the possible 
involvement of RBBP6 in pathways linked to the 
pre-mRNA splicing machinery. However, the 
precise mechanisms involved remain elusive 
and yet to be characterised.

Furthermore, Kappo and co-workers identified 
two copies of SNRPG (conformational isomers 
of the same protein) as part of the five sub-
strates that bind to the N-terminal domain of 
RBBP6 [45]. The Y2H findings support the 
results that there might be a link between 
RBBP6 and the Sm proteins in the initiation and 
progression of cancers [15, 43]. Considering 
the critical role played by SNRPG in the forma-
tion of the hetero-oligomer E/F/G, Sm protein 
assembly and the subsequent assembly of Sm 
proteins onto the “Sm-site” of U snRNAs form-
ing the U snRNPs, the results may suggest a 
possible strong link between SNRPG, pRb/p53 
pathways and tumorigenesis [37]. Although 
many aspects of the above model remain to be 
proven and the mechanisms and functional 
basis of the links have yet to be fully under-
stood, the findings have strong and interesting 
implications that prompt further investigations 
into the oncogenic potential of the core splicing 
SNRPG protein in the initiation and progression 
of cancers. 

The possible connection between SNRPG and 
the N-terminal domains of RBBP6 relates to 
features that suggest that these proteins may 
be the “forgotten link” connecting the cellular 
pre-mRNA splicing mechanism to tumorigene-
sis and tumor development. First, the abundant 

Figure 7. The domain organisation in human RBBP6. RBBP6 has three well-
conserved N-terminal domains namely (i) “Domain with no name” (DWNN), 
(ii) Zinc knuckle and (iii) RING (really interesting new gene) finger domain, 
and three C-terminal domains, viz (i) proline-rich SR domain, (ii) Rb-binding 
domain and (iii) p53-binding domain (Figure taken from [76]).

ble connection between tu- 
mor suppressor proteins and 
the splicing machinery com-
ponents. The putative effects 
of the N-terminal domain of 
RBBP6 on Sm proteins is an 
interesting finding that may 
catapult investigations to see 
whether tumor suppressor 
proteins can directly influence 
Sm proteins in pre-mRNA 
splicing. Using a yeast 2-hy- 
brid (Y2H) technique, Chibi 
and co-workers postulated 
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localization of SNRPG and RBBP6 in the nucle-
olus and nuclear speckles in tumor cells indi-
cates a close connection between RBBP6 and 
several pre-mRNA splicing components [77]. 
Second, the association of RBBP6 with the Sm 
antigens in nuclear extracts, as shown by coim-
munoprecipitation, suggests that RBBP6 is 
associated with these splicing factors in the liv-
ing cells. Third, RBBP6 cDNA encodes an SR 
region that has biochemical properties similar 
to known SR splicing proteins, mediates the 
ubiquitination of p53 and pRb and interacts 
with SNRPB and SNRPG through its DWNN. It 
has been speculated that RBBP6 may link 
mRNA 3’-end processing to pRb/p53 pathways 
and tumorigenesis through its DWNN [37]. 
However, the question of how this happens 
remains unanswered.

The physiological relevance of the interactions 
and the functional basis of the association 
between SNRPG and DWNN still remain 
obscure. Very little is known about the putative 
PPIs between SNRPG and the N-terminal 
domains of RBBP6. The two proteins play an as 
yet uncharacterised role in linking splicing 
machinery components to tumorigenesis and 
tumor development in various cancers. Perhaps 
understanding the binding events between 
RBBP6’s N-terminal domains and SNRPG may 
lead to new knowledge on how the two proteins 
relate in regulating splicing, tumorigenesis and 
tumor development. Inhibiting these PPIs may 
present a potential drug target in cancer diag-

nostics and therapeutic studies. Thus, new 
avenues to design and develop new therapeu-
tic drugs may be established.

SNRPG and transforming acidic coiled coil 
containing protein 1 (TACC1)

The TACC1 gene is in region p12 of chromo-
some 8. Its mRNA is ubiquitously expressed 
and encodes a protein with an apparent molec-
ular mass of 125 kDa [16]. The TACC1 protein’s 
subcellular localization is within the cell cyto-
plasm and especially concentrated in the peri-
nuclear area [16]. TACC1 was first identified as 
a potential oncogene; it is sometimes included 
in the amplification of the 8p12 region in breast 
cancers and can transform fibroblasts [78]. 
Based on the differential expression assay of 
chromosome 8p11-21 genes, researchers 
identified the TACC1 gene, whose mRNA is 
reduced or absent in breast carcinomas [79]. 
TACC1 mRNA gene expression is downregulat-
ed in various types of tumors. Using immuno-
histochemistry of tumor tissue-microarrays and 
sections, the level of TACC1 protein is down-
regulated in breast cancer [16]. Furthermore, 
using the two-hybrid screen in yeast, GST pull-
downs and co-immunoprecipitations, Conte 
and co-workers identified SNRPG as one of the 
two potential binding partners for TACC1 in 
breast cancer (shown in Figure 8) [16]. The find-
ings suggested that TACC1 might play a role in 
the control of mRNA metabolism. Thus, Conte 
and co-workers speculated that down-regula-

Figure 8. Mapping of TACC1/SNRPG interactions using the two-hybrid method in yeast. A. Schematic representation 
of TACC1 protein showing its three different regions: N-terminus, central serine/proline-rich region with two SPAZ 
motifs and coiled-coil C-terminus. Below are the different fragments generated as baits. B. Results of the mapping 
showing SNRPG binding to the N-terminus region of TACC1 in yeast two-hybrid experiments (Figure taken from [16]).
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tion of TACC1 may alter the control of mRNA 
homeostasis in polarized cells and subse-
quently participate in the oncogenic processes 
[16].

To delineate the region of TACC1 that interacts 
with SNRPG, TACC1 fragment encoded proteins 
fused to the LEX binding domain were used as 
baits in two-hybrid assays against the SNRPG 
prey [80]. As shown in Figure 8, the results 
observed that the binding region of SNRPG on 
TACC1 is thus restricted to the N-terminus 
region of TACC1. GST pull-down and co-immu-
noprecipitation experiments confirmed that the 
N-terminus region of TACC1 is indeed the site of 
binding for the Sm protein [80]. Inhibiting the 
interaction between TACC1 and SNRPG, using 
small molecules or peptides may modulate 
cancer-cell networks and have therapeutic sig-
nificance. Hence investigating the binding ev- 
ents in the interactions between SNRPG and 
TACC1, and their relations in regulating splicing, 
tumorigenesis and tumor development may 
help identify new avenues to design and devel-
op PPI-focused therapeutic drugs. Currently, 
the physiological relevance of the interactions 
and the functional basis for their association 
remain elusive and uncharacterized.

SNRPG and DEAD-box helicase 20 (DDX20)

DEAD-box helicase 20 (DDX20), commonly 
known as gem-associated protein 3 (Gemin3), 
is an ATP-dependent enzyme in humans that is 
encoded by the DDX20 gene [81, 82]. It is a 
component of the SMN complex that is tremen-
dously important in the assembly and recon-
struction of different Sm protein complexes 
[83]. Cleavage of the DDX20 by the poliovirus-
encoded proteinase 2Apro has been shown to 
result in DDX20 inactivation and reduced 
snRNP assembly [84]. DDX20 may act as a 
tumor suppressor in hepatocellular carcinoma 
and as a tumor promoter in breast cancer [85]. 
According to Chen and co-workers, DDX20 defi-
ciency enhances NF-κB activity by impairing the 
NF-κB-suppressive action of microRNAs. The 
findings suggest that dysregulation of the 
microRNA machinery components may also be 
involved in pathogenesis in various human dis-
eases such as cancer [85].

One good example is miRNA-140, which acts as 
a liver tumor suppressor. Deficiency of DDX20 
leads to the impairment of miRNA-140 func-

tion. Functional impairment of miRNAs has 
been linked to hepatocarcinogenesis [85]. 
Similarly, DDX20 may promote the progression 
of prostate cancer through the NF-κB pathway 
[85]. Clinical investigations by Shin and co-
workers found that a positive DP103/NF-κB 
feedback loop promotes constitutive NF-κB 
activation in invasive breast cancers [86]. The 
activation of this pathway is linked to cancer 
progression and the acquisition of chemothera-
py resistance. It implies that DP103 has poten-
tial as a therapeutic target for breast cancer 
treatment [86].

DEAD box proteins have been found to be 
involved in many aspects of RNA metabolism, 
including Sm-Sm protein interactions, pre-
mRNA splicing, mRNA transport, mRNA degra-
dation and translation in eukaryotes and pro-
karyotes [87-92]. Using a biochemical appro- 
ach, Charroux and co-workers observed that 
anti-DDX20 mAbs immunoprecipitated the spli-
ceosomal RNPG protein, as well as several 
other unidentified Sm proteins. Gemin3 inter-
acts directly with Sm core proteins, including 
B/B’, D2, and D3 [93]. In addition, DDX20 is 
uniformly distributed in the cytoplasm, where U 
snRNP assembly takes place, and it can be 
specifically co-immunoprecipitated with the 
cytoplasmic pool of Sm proteins [93]. Taken 
together, these findings suggest that DDX20 
and SNRPG may play an important role linking 
the spliceosomal snRNP biogenesis to tumori-
genesis and tumor development. Finding small-
molecule or peptide inhibitors for the interac-
tion between DDX20 and SNRPG may help 
modulate cancer-cell networks and open up 
other avenues for the designing and develop-
ment of new PPI-focused smart drugs.

Conclusions

Despite the strong and interesting implications 
associated with SNRPG and its significant 
prowess as a potential smart-drug discovery 
target in PPI-focused diagnostics and thera-
peutic studies [14], the oncogenic potential of 
SNRPG remains to be proven. The mechanisms 
and functional basis of its operations in link- 
ing the splicing machinery to tumorigenesis 
and tumor development remain elusive and  
yet to be fully investigated. The findings pre-
sented in this study prompt further investiga-
tions. However, it is noteworthy that the foun- 
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dational basis of the views here presented in 
this article is based solely on the questiona- 
ble Y2H technique. Despite the popularity, rela-
tive methodical simplicity, diversity and high-
throughput capacity, as well as screening meth-
od for interactomics, Y2H techniques face the 
problem of false positives [94]. False positiv- 
es in Y2H are physical interactions detected in 
the screening in yeast that are not reproducible 
in an independent system. A list of recurrent 
false positives exists and often depends on the 
Y2H system used [94]. Nonetheless, in this 
study we confirm that there is no data so far 
reported to prove and support that the Y2H 
results presented in line with SNRPG are false 
positives.
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