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Abstract: Despite great efforts made in recent years, globally cardiovascular disease (CVD) remains the most com-
mon and devastating disease. Pharmacological, interventional and surgical treatments have proved to be only 
partly satisfactory for the majority of patients. A major underlying cause of poor prognosis is a high comorbidity 
rate between CVD and mental illness, which calls for the approaches of psychocardiology. As psychiatric disorders 
and CVD can influence each other bidirectionally, it is necessary to develop novel therapies targeting both systems 
simultaneously. Therefore, innovative stem cell (SC) therapy has become the most promising treatment strategy in 
psychocardiology. Bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs), among all different types of 
SCs, have drawn the most attention due to unique advantages in terms of ethical considerations, low immunogenic-
ity and simplicity of preparation. In this review, we survey recent publications and clinical trials to summarize the 
knowledge and progress gained so far. Moreover, we discuss the feasibility of the clinical application of BM-MSCs 
in the area of psychocardiology.
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Introduction

Epidemiology and concepts addressed by psy-
chocardiology

Cardiovascular disease (CVD) is the leading 
global cause of mortality accounting for at least 
16 million deaths annually [1]. In the USA alone, 
the financial burden on hospitals reached 196 
billion USD in 2015 and is expected to exceed 
one trillion USD by 2030 [2]. Although signifi-
cant advances in pharmacological, interven-
tional and surgical treatments have been made 
during the last two decades, the population 
affected and mortality caused by CVD are still 
increasing with poor long-term prognosis for 
sufferers [2]. This is mainly caused by the com-
plexity of CVD which involves multiple syste- 
mic dysfunctions. Among these, mental illness 
exhibits exceptionally high comorbidity rates 
with CVD. The concept of psychocardiology has 
been proposed as a new medical specialty  
aiming to unravel the entangled relationships 

between “heart” and “mind”, and so eventually 
improve the prognosis of those patients suf-
fered from both CVD and psychiatric disorders 
[3].

Major depressive disorder (MDD), or depres-
sion, is one of the mental health disorders 
which draws particular attention because of its 
high comorbidity with CVD. It is reported that 
15.9% of the patients who had experienced 
atrial fibrillation (AF) suffered from comorbid 
depression which resulted in a significantly 
increased incidence of intracranial bleeding  
[4]. For patients with unstable angina and isch-
emic heart disease (IHD), the occurrence rate 
of depression is as high as 41.4% and 45% 
respectively [5]. Recent meta-analysis has fur-
ther revealed that several mental disorders 
including MDD (OR=2.52, P<0.0001), anxiety 
(OR=1.41, P<0.001), schizophrenia (OR=1.52, 
P<0.001) and post-traumatic stress disorder 
(PTSD) (OR=1.27, P<0.05) significantly increase 
the incidence of CVD [6].
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The consequences of this comorbidity are se- 
vere. Mental health disorders not only decrease 
the quality of life in CVD patients, but also lead 
to significant increases in both short-term and 
long-term mortality [7-9]. Therefore, the need to 
develop novel therapies in psychocardiology is 
still tremendous and urgent.

Bone marrow-derived mesenchymal stem/stro-
mal cells (BM-MSCs)

The use of Stem Cells (SCs) has drawn much 
attention in the area of regenerative medicine 
because of its ability to regenerate damaged 
cardiac tissues and among all different types of 
SCs, BM-MSCs have already been well studied 
in animal and clinical research. In comparison 
with other SCs such as Embryonic Stem Cells 
(ESCs) and induced Pluripotent Stem Cells 
(iPSCs), BM-MSCs have several advantages 
including fewer ethical considerations, a minor 
risk of tumorigenicity and lower immunogenici-
ty [10]. 

BM-MSCs are a subtype of non-hematopoietic 
stem cells localized in the bone marrow. They 
were first identified in 1976 and have proven to 
be capable of differentiating into adipocytes,  
chondrocytes, osteocytes and cardiomyocytes. 
Although they occupy only 0.001%-0.01% of 
the total monocytes in the bone marrow, they 
can be expanded over a million folds or 6 gen-
erations in vitro [11]. Since Friedenstein et al  
established the first method for isolating 
BM-MSCs, several techniques have been de- 
veloped including a wholes defined by The 
International Society for Cellular Therapy (ISCT), 
all mesenchymal stem cells (MSCs) should be 
positive for CD105, CD73 and CD90 while  
being negative for CD34, CD45, CD11b/14 and 
CD19/79a [12]. Researchers also suggest that  
MSCs, especially BM-MSCs, also express sev-
eral other surface markers such as CD13, 
CD26, CD29, CD105 and Stro-1 [13, 14]. 

In 2002, Shake et al first observed the benefi-
cial effects of BM-MSC transplantation in a 
swine Myocardial Infarct (MI) model where they 
discovered a significant increase in end dias- 
tolic/systolic wall thickness after autologous 
BM-MSCs transplantation [15]. Two years later, 
the first clinical trial was completed in 69 
patients with Acute Myocardial Infarct (AMI). At 
the end of the 6 months follow-up period, 
patients receiving BM-MSCs transplantation 

showed compelling changes in terms of their 
cardiac functions. The Left Ventricular Ejection 
Fraction (LVEF) of patients was 67±3% in the 
BM-MSCs group and 54±5% in the control 
group [16]. Since then, BM-MSC therapy has 
been widely discussed in terms of the treat-
ment for a broad range of cardiovascular dis-
eases (see previous reviews for details [17, 
18]). However, none ever considered the poten-
tial applications of BM-MSC in psychocardiolo-
gy. In this review, we discuss the feasibility of 
BM-MSC therapy in patients with both CVD and 
mental disorders by comprehensively summa-
rizing possible effects of BM-MSC transplanta-
tion on underlying mechanisms of psychocar-
diological disease.

Mechanisms underlying the therapeutic ef-
fects of BM-MSCs in psychocardiology

Tissue regeneration

It is widely acknowledged that cell apoptosis 
and tissue necrosis are associated with the 
pathology of both CVD and psychiatric illness. 
Thus, the ability of BM-MSC to regenerate func-
tional cardiomyocytes, endothelial cells, neu-
rons and astrocytes is of great importance for 
its therapeutic effects in psychocardiological 
disorders (Figure 1).

In 1999, a research team from Keio University 
successfully generated cardiomyocytes from 
marrow stromal cells by 5-azacytidine (5-aza) 
treatment in vitro [19]. By now, several method-
ologies have been established to induce ex 
vivo/in vitro differentiation of BM-MSC into  
cardiomyocyte-like cells. These methodologies 
include aggregate co-culture, treatment with 
demethylating agents, incubation with growth 
factors and treatments with rehmannia glutino-
sa oligosaccharide [20-23]. Moreover, several 
research teams report that they have observed 
in vivo differentiation of BM-MSC into cardiac 
cells expressing multiple cardiac markers, such 
as desmin, β-MHC, β-actin, CTn-T and phos-
pholamban, at almost the same levels seen  
in endogenous cardiomyocytes [24]. Molecular 
mechanisms underlying this differentiation in- 
volve the up-regulation of nuclear membrane 
proteins and transcription factors [25, 26] whi- 
ch eventually activate downstream signal path-
ways such as Notch1 and WNT [27, 28].

Besides cardiomyocytes, BM-MSCs were also 
shown to be able to differentiate into vessel 
smooth muscle (SM) cells and vascular endo-
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thelial cells. SM-like cells induced from BM- 
MSCs express SM proteins, including α-SM 
actin, PDGF-β receptor, SM myosin light chain 
and SM myosin heavy chain, at similar levels to 
those in freshly isolated SM cells. In addition, 
SM-like cells also exhibit identical electrophysi-
ological features compared to SM cells [24]. On 
the other hand, expression of endothelial mark-
ers (vWF, Flk-1 and TIT1) can also be detected 
after, but not before, endothelial induction in 
BM-MSCs [24]. In vivo differentiation of BM- 
MSC into SM and endothelial cells was also 
observed, and more recent publications reveal 
that the inhibition of MAPK and WNT pathways 
result in differentiation into SM cells [29] while 
the activation of FOXC1/2 and ERK1/2 path-
ways contribute to the differentiation into endo-
thelial cells [30, 31].

Finally, BM-MSCs also show potential to differ-
entiate into neuron-like cells which are able to 
express neural markers (Nestin, GFAP and  
DCX) and secrete multiple neurotrophic factors 
(BDNF, IGF-1 and FGF-2) in vitro [32]. Recently, 
different procedures have been established to 

Although differentiation into cardiomyocytes 
and neural cells was confirmed both in vitro 
and in vivo, whether the differentiation is dir- 
ectly leading the tissue regeneration is still in 
debate. Dai et al suggested that beneficial 
effects of BM-MSC transplantation in MI rats 
are caused by paracrine effects but not direct 
differentiation of introduced SCs [38]. Similar- 
ly, nerve regeneration following BM-MSC trans-
plantation in a gastric denervation rat model 
was also demonstrated to result from secretion 
of neurotrophic factors but not direct diffe- 
rentiation of grafted BM-MSC [39]. Therefore, 
understanding these paracrine effects is of 
particular importance for the future application 
of BM-MSC in psychocardiological illness.

BM-MSCs secrete various growth factors and 
cytokines under certain conditions such as 
hypoxia, TNF stimulation and formation of cell-
cell contacts [39-41]. These cytokines not only 
participate in angiogenesis and neurogenesis 
but also contribute to anti-apoptosis properti- 
es and endogenous regenerative activities. The 

Figure 1. Regenerative abilities contribute to the application of BM-MSC in 
psychocardiological disease. Under different stimulations, BM-MSC can 
differentiate into cardiomyocytes via activation of Notch-1 and Wnt signaling 
pathways; into smooth muscle cells via inhibition of MAPK and Wnt signaling 
pathways; into endothelial cells via activation of FoxC and ERK signaling 
pathways; or into neural cells via inhibition of Notch-1 signaling pathway. The 
differentiated cells can express related biomarkers. Abbreviations: BM-MSC, 
bone marrow-derived mesenchymal stem cell.

generate specific subtypes  
of neural cells, such as Sch- 
wann cells and GABAergic 
neurons. Differentiated Sch- 
wann cells not only express 
neural markers (Nestin, GFAP 
and p75NTR), but also exhi- 
bit myelinating functions in 
vitro [33]. A culture medium 
consisting of retinoic acid 
(RA), ciliary neurotrophic fac-
tor (CNTF), and creatine was 
shown to be able to induce in 
vitro differentiation of GABA- 
ergic neurons from BM-MSC 
with enhanced expression of 
GAD1/2, VGAT, GABA and sy-
naptophysin [34]. In addition, 
BM-MSC differentiation into 
neural cells was also detect-
ed in vivo both with and wi- 
thout chemical stimulations 
[35, 36]. The mechanism re- 
gulating neural differentiati- 
on largely remains unknown, 
but it is believed to be associ-
ated with inhibition of Notch-
1 signaling pathway [37].
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detailed functions of each cytokine can be 
found in Figure 2 [42-67] as well as another 
review studying SC promoted angiogenesis 
[68]. Overall, the regenerative activity of BM- 
MSCs is one of the most fundamental predic-
tors of their future application in psychocar- 
diology.

Immunosuppressive effects

Elevated inflammatory responses are detected 
in patients with CVD as well as patients with 
mental illness [69]. A recent meta-analysis indi-
cated that depression is associated with signifi-

in psychocardiology can also be corroborated 
by the fact that several widely used drugs in  
the treatment of CVD and mental illness exhibit 
anti-inflammatory properties. Metoprolol, a rep-
resentative of β-blockers, were shown to inhibit 
the activation of neutrophils, and thereby res-
cue cardiac function in MI mice and patients 
[76]. Similarly, fluoxetine, a selective serotonin 
reuptake inhibitor (SSRI) commonly used as an 
antidepressant, has been shown to be able to 
inhibit the activation of microglia, the innate 
immune cells of the central nervous system 
(CNS) [77]. In a recent meta-analysis reduced 
serum levels of IL-6, TNF-α and IL-1β were also 

Figure 2. Functions of major cytokines and soluble factors secreted by BM-MSC. 
The growth factors and cytokines secreted by BM-MSC can act on both BM-
MSC itself (autocrine) and other target cells (paracrine) which play essential 
roles during the development of psychocardiological disease. Figure legends: 
① Anti-apoptosis; ② Activate endogenous BM-MSC; ③ Increase homing; ④ 
Promote proliferation; ⑤ Induce differentiation; ⑥ Increase neural plasticity; 
⑦ Increase stability and integrity; ⑧ Inhibit over-proliferation of smooth muscle 
cells; ⑨ Anti-fibrosis; ⑩ Inhibition of migration; ⑪ Promote cell adherent; ⑫ 
Anti-oxidation; ⑬ Inhibit ventricular remodeling. Abbreviations: BM-MSC, bone 
marrow-derived mesenchymal stem cell; VEGF, Vascular Endothelial Growth Fac-
tor; EPC, Endothelial Progenitor Cell; IGF-1, Insulin-like Growth Factor 1; BDNF, 
Brain-Derived Neurotrophic Factor; FGF-2, Fibroblast Growth Factor 2; PDGF, 
Platelet-Derived Growth Factor; SCDF-1, Stromal Cell-Derived Factor 1; TGF-β, 
Transforming Growth Factor beta; HGF, Hepatocyte Growth Factor; MMP, Matrix 
Metalloproteinase.

cant increases in levels of 
multiple cytokines includ-
ing interleukin 6 (IL-6), tu- 
mor necrosis factor-α (TNF- 
α) and C-reactive protein 
(CRP) [70]. Higher concen-
trations of such pro-inflam-
matory markers not only 
suggest an increased in- 
flammatory state which is 
known to participate in  
the development of CVD 
[71-73], but also forebo- 
de increased risks of ma- 
jor cardiovascular adverse 
events (MCAE) and even 
cardiac death. For exam-
ple, a higher serum level of 
IL-6 (range from 2.08 pg/
mL to 3.9 pg/mL) results in 
risk ratios (RR) of all-cause 
mortality and cardiovascu-
lar mortality at 1.49 (95% 
CI 1.33-1.67) and 1.69 
(95% CI 1.27-2.25) respec-
tively. On the other hand, 
higher levels of CRP are 
associated with a RR of 
2.03 (95% CI 1.65-2.50) 
for cardiovascular mortali-
ty, and 1.75 (95% CI 1.55-
1.98) for all-cause mortali-
ty [74]. Meanwhile, elevat-
ed baseline levels of CRP 
and IL-6 are also positive- 
ly associated with cogni-
tive symptoms of depres-
sion after full adjustments 
[75]. The importance of 
inflammation management 
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observed after SSRI treatment in patients wi- 
th MDD [78]. Although which cytokines are 
involved in SSRIs induced anti-inflammatory 
responses are still under debate [79], there 
seems no doubt that immunoregulation by 
SSRIs plays an essential role in their modula-
tion of neurobehavioral functions. Nowadays, 
increasing interest is being focused on develop-
ing therapeutics targeting the immune system 
and related signaling pathways in both cardiol-
ogy and psychology [80-83].

Although the exact molecular mechanisms 
underlying the interaction of CVD, mental he- 
alth disorders and inflammation are not com-
pletely understood, it is widely accepted that 
5-hydroxytryptamine (5-HT), which is also 
known as serotonin, is one of the most impor-
tant mediators (Figure 3). As a neurotransmit-
ter in the CNS, 5-HT regulates a wide range  
of neurological activities including happiness, 
cognition, learning and memory. Abnormal lev-
els of 5-HT, 5-HT transporter (SERT) and 5-HT 
receptors are believed to be a major cause of 
mental health disorders and are considered to 
be the main targets for the treatment [84-87]. 
Meanwhile, 5-HT also acts as a vasoconstrictor 
or a vasodilator under pathological or physio-
logical circumstances in the peripheral circula-

such as Interferon-γ (IFN-γ) and TNF-α, can 
induce increased activity of indoleamine 2,3- 
dioxygenase (IDO), which degrades tryptophan 
into kynurenine [96]. This inflammation-driven 
kynurenine metabolism is considered to be a 
primary pathologic pathway leading to depres-
sion. Degradation of tryptophan not only in- 
creases the formation of neurotoxic metabo-
lites, but also contributes directly to a decline in 
the level of 5-HT, which can only be synthesized 
from tryptophan, and thereby promotes depres-
sive symptoms [97-99].

The immunoregulatory effects of BM-MSCs 
can’t be overemphasized when considering 
their applications in psychocardiology. Firstly, 
BM-MSC can inhibit the activation of lympho-
cytes and B cells through direct cell-cell inter-
action mainly mediated by integration of pro-
grammed cell death protein 1 (PD-1) and 
Programmed cell death 1 ligand 1 (PD-L1). 
Transplantation of BM-MSCs results in incre- 
ased proliferation of Th2 and Treg with a 
decrease in numbers of Th1 and Th17 cells, 
which suggests down-regulation of immune 
responses. Silencing PD-L1 in BM-MSCs sig- 
nificantly attenuated the above immunosup-
pressive effects [100]. Similarly, the PD1/PDL1 

Figure 3. Brief introduction of the importance of 5-HT in the central nerve 
system (CNS) and peripheral blood system (PBS). The 5-HT is synthesized by 
Tph2 and Tph1 in the CNS and PBS respectively. In addition, the 5-HT can also 
be released from platelet. Inside the CNS, 5-HT functions as a neurotransmitter 
during the physiological process in happiness, cognition and learning. In the 
circulatory blood, 5-HT is a hormone which can regulate vascular tone, induce 
platelet aggregation and trigger immunological responses. Abbreviations: 
BM-MSC, bone marrow-derived mesenchymal stem cell; 5-HT, 5-hydroxytryp- 
tamine, TPH, tryptophan hydroxylase; SERT, serotonin transporter.

tory system [88]. In particu-
lar, its vasoconstrictive ability 
is believed to be a major con-
tributor to the development 
of several cardiovascular dis-
eases including hypertension 
[89], heart failure (HF) [90] 
and atherosclerosis [91]. Rol- 
es for 5-HT in the immune 
system have been thoroughly 
presented in other reviews 
[92, 93]. Briefly, 5-HT can be 
synthesized by tryptophan 
hydroxylase 1 (TPH 1) in mul-
tiple immune cells including 
mast cells [94] and T helper 
(Th) cells [95]. The release of 
5-HT from platelets and oth- 
er cells can further exert 
immunostimulatory functions 
through the activation of vari-
ous 5-HT receptors while the 
blockage of such receptors 
results in immunosuppres-
sion [92]. On the other hand, 
pro-inflammatory cytokines, 
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pathway is also important for inhibitory effects 
on B cells which lead to dramatic reductions in 
secretion of IgM and IgG [101]. Interestingly, 
recent studies also show that BM-MSCs are 
able to secret PDL1 and thereby inhibit CD4+ T 
cells through the AKT-FOXO3 signaling pathway 
[102]. 

Although there is no doubt that PD-1/PD-L1 
induced reticence plays essential roles in 
BM-MSC effects, most research has still been 
focused on their paracrine activities. Soluble 
factors from BM-MSCs or BM-MSC extracellu-
lar vesicles can act on both innate and adaptive 
immune cells. Prostaglandin E2 (PGE2), IL-6 
and granulocyte macrophage colony stimulat-
ing factor (GM-CSF) released by BM-MSCs can 
suppress the differentiation of macrophage 
subtype 1 (M1) from immature macrophages 
and promotes differentiation towards an immu-
nosuppressive phenotype (macrophage sub-
type 2, M2) [103, 104]. This polarization from 
M1 to M2 is associated with increased expres-
sion of CD206 and decreased expression of 
CD86 on the cell membrane [105], as well as 
elevated secretion of anti-inflammatory cyto-
kines (IL-10) and reduced secretion of pro- 
inflammatory cytokines (TNF-α) [106]. In addi-
tion to macrophages, IL-6 also inhibits apopto-
sis of neutrophils, and prevents the respiratory 
burst which generates reactive oxygen species 
(ROS) [107]. Moreover, mast cells, which pro-
duce histamine and heparin during infection 
and allergy, are also under the control of 
BM-MSC secreted PGE2. Activation of pros-
tanoid receptor EP4 results in decreased levels 
of degranulation and reduced release of TNF-α 
from mast cells [108]. Nature killer (NK) cells, 
as a major element of innate immunity, are tar-
gets of BM-MSC secreted factors as well. 
Evidence suggested that indoleamine 2,3-diox-
ygenase (IDO) [109], PGE2 [109], TGF-β [110] 
together with human leucocyte antigen-G5 
(HLA-G5) [111] contribute to suppress cytotoxic 
effects of NK cells. On the other hand, dendritic 
cells (DCs) can also be regulated by IL-6 and 
PGE2 [112], finally resulting in down-regulation 
of DC markers (CD40&CD83), reduced expres-
sion levels of pro-inflammatory markers (TNF-α, 
IFN-γ, IL-12p70 and MIP-1) [113, 114], enhan- 
ced expression of immunoregulatory factors 
(IL-6&IL-10) [115], and the inhibition of migra-
tion of DCs [116]. Furthermore, similarly solu-
ble PD-L1, IDO [109], PGE2 [109, 117] and 
HLA-G5 [111] also exhibit anti-inflammatory 

functions through the polarization from Th1 
and Th17 to Treg. In addition to the proteins 
and metabolites mentioned above, at least 49 
micro-RNAs were identified as being enriched 
in exosomes secreted from BM-MSC inclu- 
ding miR21-5p, miR142-3p, miR223-3p, and 
miR126-3p [118]. Some of these micro-RNAs 
work together and regulate target immune 
cells. For example, miR21-5p down-regulates 
CCR7 expression on DC cells and limits their 
migratory ability [118]. MiR146a-5p targets  
the gene IRAK1 which plays a crucial part in 
Toll-like Receptors (TLR) mediated inflammato-
ry reactions [119]. Overall, BM-MSCs display 
remarkable anti-inflammatory effects which 
give great promise for their future application in 
psychocardiology (Figure 4).

It should also be acknowledged that BM-MSCs 
also show the potential to regulate levels of 
5-HT in the CNS and the peripheral circulatory 
system, through mechanisms that are not ful- 
ly recognized. Ali et al have suggested that 
BM-MSC transplantation increases concentra-
tions of 5-HT in the cortex and midbrain in a 
rodent brain injury model [120]. An avian model 
also revealed increased 5-HTR1A expression 
and decreased TPH-1 expression after the 
transplantation of BM-MSC [121]. Additionally, 
IDO released from BM-MSCs may also be 
involved in the modulation of the 5-HT system 
via altered tryptophan metabolism.

Antiplatelet properties

Thrombogenesis induced by platelet activation 
and aggregation, as is well-known, is the lead-
ing cause of the development of multiple CVD 
and major adverse cardiovascular events 
(MACE) [122]. Markers of platelet activation 
usually include the increased synthesis of the 
αIIb-β3 complex, P-selectin, Annexin V, CD62p 
and platelet factor 4 (PF4). Compared to heal- 
thy controls, patients with MDD were shown to 
have increased levels of PF4 whilst total pla- 
telet counts were unchanged [123]. Other re- 
search illustrates that subjects with depressive 
symptoms have a higher percentage of circu- 
lating CD62p positive platelets [123]. Similar 
results were consistently reported by different 
groups [124, 125]. A more recent study which 
included 26 CAD patients discovered a positive 
correlation between depressive symptom se- 
verity and platelet factor abundance [126]. 
Therefore, platelet activation can be consid-
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ered to be a link between cardiovascular dis-
ease and major depression [127]. Besides this, 
activated platelets can recruit and mobilize 
multiple immune cells, including neutrophils 
[128] and macrophages [129, 130], which fur-
ther damage the blood vessels and so contrib-
ute to worsen prognosis [131].

In addition, the activation of platelets is also 
associated with the release of 5-HT and the 
activation of the 5-HTR2A in the platelet mem-
brane. It is well known that 5-HT leads to plate-
let aggregation [132], and can be used as a 
predictor for cardiac events [133] for dozens of 
years. On the other hand, recent studies have 
further confirmed the role of platelets in psy-
chocardiology. For example, Peitl et al found 
that patients with depression had impaired 
5-HT storage [134] while Williams et al con-
firmed increased 5-HTR2A levels in platelets in 
such patients [135]. Multiple SSRIs, on the 

We speculate that therapeutic effects of 
BM-MSC transplantation on platelet activity 
may occur through the inflammatory and sero-
tonergic pathways mentioned before. More- 
over, the ability of BM-MSC transplantation to 
regenerate endotheliocytes can also contribute 
to its anti-platelet outcome as damaged vessel 
endothelium is a major contributor to 5-HT in- 
duced platelet aggregation. Furthermore, em- 
erging evidence suggests a direct inhibitory 
effect via interaction between CD73 and CD39 
which are expressed on the membranes of 
BM-MSCs and platelets respectively [141]. This 
cell-cell interaction based inhibitory effect is  
of great importance as BM-MSCs, unlike MSCs 
from other origins, do not express podoplanin, 
which is a ligand of the C-type lectin-like recep-
tor (CLEC-2). The tissue-specific expression of 
adhesions molecules results in tissue-specific 
hematoblastic reactions whereby BM-MSCs 
decrease platelet aggregation while umbilical 
cord MSCs promote platelet aggregation [142]. 

Figure 4. BM-MSC regulates the immune system. By PD-1 mediated cell-
cell contact, BM-MSC can inhibit the activation of adaptive immune cells. 
By secreting PGE2, HLA-G5, TGF-β, IL-6 and GM-CSF, BM-MSC can inhibit 
the activation of almost every type of immune cells. The regulatory effects 
can be observed by a pro-inflammatory to anti-inflammatory cell polarization 
(such as M1 macrophage to M2 macrophage). Meanwhile, IDO secreted 
from BM-MSC can down-regulate the biosynthesis of 5-HT. Arrows in red 
indicate stimulative effects while arrows in blue show inhibitory effects. 
Abbreviations: BM-MSC, bone marrow-derived mesenchymal stem cell; PD-
L1, programmed death ligand 1; PD-1, programmed death 1; DC, dendritic 
cells; NK, natural killer; PGE2, prostaglandin E2; HLA-G5, human leucocyte 
antigen G5; TGF-β, transforming growth factor-β; IL-6, interleukin 6; IDO, 
indoleamine 2,3-dioxygenase; TPH, tryptophan hydroxylase; 5-HT, 5-hydroxy- 
tryptamine; GM-CSF, granulocyte macrophage colony stimulating factor.

other hand, show anti-plate- 
let functions. In ADP induced 
aggregation tests, impedance 
was reduced by 23% and 29% 
on treatment with escitalo-
pram and nortriptyline res- 
pectively [136]. However the 
latest publications evaluating 
the anti-platelet capacity of  
all types of SSRIs, have drawn 
opposing conclusions [137, 
138] indicating that more re- 
search with enlarged sample 
size may be required. Further- 
more, even should their anti-
platelet effects be confirmed, 
whether SSRIs are able to 
reduce the incidence rates of 
MACE would still be conten-
tious. For instance, after ana-
lyzing the data from 238,963 
patients with depression, Cou- 
pland et al expressed the 
opinion that a reduced risk of 
MI can be detected in SSRIs 
users [139]. Opposing conclu-
sions were reached by Iasella 
et al who claimed that SSRI 
patients shared higher MACE 
risk than patients on placebo 
treatments (HR 1.21, 95% CI 
1.02-1.43, P=0.030) [140].
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Regulation of autonomic nervous system (ANS)

The balance of sympathetic and vagal activity 
controls a wide range of cardiovascular out- 
puts including heart rate and blood pressure. 
Abnormal increases in sympathetic activity ca- 
use many adverse cardiovascular events [143, 
144]. Recent studies even suggest that elect- 
rocardiographic indicators of elevated sympa-
thetic activity can predict sudden cardiac dea- 
th in patients with MI and HF [145, 146]. 
Catecholamines (epinephrine and norepineph-
rine), used as molecular markers for sympa-
thetic activity, were also shown to be raised in 
patients with CVD [147] as well as patients with 
mental disorders [69]. The over-accumulation 
of epinephrine and norepinephrine may also be 
seen as a consequence of the activation of  
the hypothalamic-pituitary-adrenal (HPA) axis, 
which is also dominated by the ANS. Importantly, 
other biomarkers of stimulation of the HPA axis, 
such as aldosterone and cortisol/corticoste-
rone, are found to be higher in the serum of 
patients with depressive symptoms [148-150]. 
On the other hand, an increase in cortisol is 
associated with significantly increased mortali-
ty [151]. Alternately, imbalances in the ANS can 
raise the potential to develop other indepen-
dent cardiovascular risk factors such as hyper-
lipidemia, obesity and insulin tolerance.

Besides the ANS, the activity of the HPA-axis is 
also associated with 5-HT signaling pathways. 
In vivo animal experiments suggest that tr- 
ansduction of HPA-axis responses relies on 
5-HTR1A and 5-HTR2A, but is independent of 
5-HTR2C [152, 153]. By using a social isolation 
rhesus macaque model, Sorenson et al demon-
strated that short allele (ss) SERT genotype is 
linked to impair HPA-axis function and finally 
results in elevated levels of cortisol [154]. 
Accordingly, effects of SERT and its methylation 
on cortisol release were further confirmed in 
humans [155, 156]. These discoveries answer- 
ed the question regarding the involvement of 
5-HT in the regulation of the HPA-axis raised 20 
years ago when scientists, for the first time, 
observed an effect of the SSRI-citalopram on 
HPA-axis regulation in rats [157]. Additionally, 
superexcitation of the HPA-axis normally leads 
to pro-inflammatory responses. This can be 
verified by positive correlations between levels 
of cortisol/norepinephrine and levels of multi-
ple inflammatory markers including TNF-α, IL-6, 
IL-10 and CRP [158-160]. Interestingly, although 

5-HT is also a primary mediator of inflamma-
tion, it seems that this HPA-axis-induced im- 
mune response is not associated with 5-HT 
metabolism [161], but is affected by glucocor- 
ticoid receptor pathways [162], adrenergic 
receptor signaling [163] and the status of ATP-
sensitive potassium channels [164]. This may 
partly explain why high concentrations of corti-
sol do not directly cause abnormal platelet 
functions in hypercortisolaemic patients [165].

Apart from the HPA-axis, a decrease in heart 
rate viability (HRV), another marker of a dis-
abled ANS, is also detected in psychocardio-
logical disease. HRV, which consists of a series 
of parameters including SDNN, SDANN, RM- 
SSD, PLVAR10 and LF/HF, is considered to 
reflect the ability of the heart to deal with physi-
ological drives, a decreased HRV indicates an 
excessive enhancement of sympathetic activi-
ty. It has been observed that MDD patients 
have significantly reduced RMSSD compared 
with healthy controls [166]. Similar results were 
observed in patients with other mental illness 
such as schizophrenia [167], bipolar disorder 
[167] and anxiety [168]. A decline in HRV is a 
well-known predictor for poor prognosis of CVD, 
development of MACE and even cardiac death 
[169, 170]. Notably, when compared to MI 
patients without depression, depressed MI pa- 
tients seem to have more significantly decre- 
ased HRV [171]. Strong links have also been 
suggested between HRV and inflammation. In 
patients with juvenile dermatomyositis, SDNN, 
pNN50 and RMSSD are all negatively correlat-
ed to levels of hsCRP [172]. In the CARLA study 
which included 1671 participants from the gen-
eral population, multiple HRV parameters were 
shown to be negatively associated with levels 
of hsCRP, sTNF-R1 and IL-6 [170]. Besides this, 
the observed effect of SSRIs on HRV also indi-
cates a potential engagement of 5-HT metabo-
lism [173].

Tissue regenerative, anti-inflammatory and 
anti-platelet properties may all contribute to 
the therapeutic effects of BM-MSC in terms of 
ANS modulation in animal models with ANS 
dysfunctions [174]. Moreover, BM-MSC trans-
plantation has been shown to decrease the lev-
els of norepinephrine and corticosterone in a 
rat brain injury model [120] and a diabetic rat 
model [175] respectively. Similar effects were 
also detected in cardiomyopathy rats where the 
expression of CYP11B2, the aldosterone syn-
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thase, was significantly inhibited at the mRNA 
level after the transplantation [176]. In addition 
to modulation of the HPA-axis, BM-MSCs also 
appeared able to boost HRV both in animal 
experiments [177] and clinical trials [178]. 
Overall, we conclude that the modulatory 
effects of BM-MSC transplantation on the ANS 
considerably contribute to its potential applica-
tions in psychocardiology.

Other factors

Many other factors may also participate in the 
development of psychocardiological illness and 
can be regard as targets of BM-MSC therapy. 
Lower level of BDNF is proved to be associated 
with multiple metal disorders [179-182] and it 
shows direct regulatory effects on 5-HT meta-
bolic genes SERT and TPH-1 [183]. As well as 
neurological activities, such as neurogenesis 
and neural plasticity, BDNF also plays essential 
roles within the cardiovascular system. It not 
only promotes the development of cardiovas- 
cular organs during embryogenesis, but also 
exhibits anti-apoptotic, anti-fibrosis and anti-
inflammatory properties on endotheliocytes 
and cardiomyocytes [184]. Therefore, the abili-
ty to secret BDNF, as mentioned above and 
shown in Figure 2, may further increase the 
utility of BM-MSC transplantation in psychocar-
diological disease. Besides this, BM-MSCs are 
capable of managing oxidative stress, which is 
actively involved in the development of mental 
illness [185] and CVD [186, 187], through dif-
ferent signaling pathways [188, 189].

In addition to above physiological and patho-
logical mechanisms, recent studies suggest 
that genetic and epigenetic changes also con-
tribute significantly to the link between mental 
illness and CVD. So far, at least eight single 
nucleotide polymorphisms (SNPs) have been 

identified as being associated with both psychi-
atric disorders and CVD [190-194] (Table 1). 
While these changes can’t be reversed by phar-
macological and surgical treatments, they may 
be alleviated by the introduction of BM-MSCs 
carrying other polymorphic forms.

Evidence from pre-clinical and clinical trials

A tremendous number of research articles have 
extensively discussed the usefulness of BM- 
MSC transplantation in treatments of CVDs 
(please find details in previous reviews [17, 
195, 196]). In this review, we have briefly sum-
marized the main outcomes of 7 clinical trials 
reported since 2015 which can be found in 
Table 2 [197-203]. Generally, recent promising 
results indicate potential applications for BM- 
MSC transplantation in several cardiac diseas-
es. However, its utility in psychocardiological 
disease is not fully understood as none of the 
above trials considered the impact of trans-
plantation on mental health status, such as 
depressive and anxiety-like behaviours.

Although a regulatory effect on mental status 
can’t be observed directly in CVD patients, it 
can be implied in animals with other conditions. 
Tsyb et al first described anti-depressive effects 
of BM-MSCs in a brain trauma rat model 
through use of plus maze tests [204]. More- 
over, in a Flinders sensitive line (FSL) depres-
sion rat model, left lateral ventricle injection of 
BM-MSCs significantly improved performance 
in forced swim tests (FST) and dominant-sub-
missive relationship (DSR) tests [32]. Similar 
results were also generated in a subarachnoid 
hemorrhage (SAH) rat model where depressive 
behaviors, which were assessed by sucrose 
preference test (SPT), were reversed by BM- 
MSC [205]. Additionally, anti-depressive effects 

Table 1. Single nucleotide polymorphisms in psychocardiology
SNP  
Access No. Genes Alleles Functions related to psychocardiology

rs3917010 VCAM1 A>C Increased risk of MI; predict depressive symptoms in CVD patients

rs1324072 CR1 C>G Predict depressive symptoms in CVD patients

rs1424386 CHRM2 G>A

rs2239106 CACNA1C A>T

rs216856 vWF T>C

rs216873 T>C

rs3125 HTR2A C>G/T Predict depressive symptoms in CVD patients; increase in suicidal ideation; risk of bipolar disorder; risk of MDD

rs6265 BDNF C>T Increase incidence of cardiovascular events; increase anxiety; increase suicidality
Abbreviations: VCAM1, Vascular Cell Adhesion Molecule 1; CR1, Cannabinoid Receptor 1; CHRM2, Vholinergic Receptor Muscarinic 2; CACNA1C, Calcium Voltage-gated 
Channel subunit alpha1 C; vWF, von Willebrand Factor; HTR2A, 2-HT receptor 2A; BDNF, Brain-Derived Neurotrophic Factor.
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of BM-MSCs were further confirmed in traumat-
ic brain injury (TBI) rodent models by two sepa-
rate research groups [206, 207]. However, it 
should be particularly noticed that the anti-
depressive effects of BM-MSC may rely heavily 
on the methodology adopted. Coquery et al 
have demonstrated that although intrahippo-
campal transplantation of BM-MSCs promoted 
neural plasticity, it failed to rescue depressive 
behaviours in a rat depression model [208]. 
Overall, we suggest that an effect on mental 
health is reliably observed with appropriate 
transplantation methods, but it is still too early 
to compel its clinical application in psychiatric 
disorders at this point.

ctivity has also been shown to be an indepen-
dent predictor of cardiac death [211, 212]. In 
return, CVD patients are more susceptible to 
mental illness as a result of economic stress. 
Biologically, the development of psychocardio-
logical disease is associated with dysfunctions 
of multiple systems, including the immune sys-
tem, 5-HT metabolisms, platelet aggregation, 
the ANS, etc.

In this review, we summarize the ability of 
BM-MSC transplantation to control almost all 
biological aspects of psychocardiological ill-
ness (Figure 5). Pre-clinical and clinical results 
also suggest the effectiveness of BM-MSC 
transplantation in treating both CVD and men-

Figure 5. Overview of BM-MSC transplantation in the treatment of psychocar- 
diological disease. BM-MSC exerts therapeutic effects by regenerating tissues, 
repressing immunological responses, regulating 5-HT biosynthesis, inhibiting 
platelet aggregation, balancing ANS. Abbreviations: BM-MSC, bone marrow-
derived mesenchymal stem cell; 5-HT, 5-hydroxytryptamine; ANS, autonomic 
nervous system.

Conclusion

CVD and mental health dis-
orders are two types of dis-
ease that worldwide affect 
the largest populations. 
Comorbidity of these dis-
eases leads to a significant-
ly worse prognosis which 
calls for the concept of psy-
chocardiology. From a soci-
ological perspective, men-
tal disorders can increase 
the incidence of CVD by 
influencing daily activities. 
Depressed patients are le- 
ss involved in regular exer-
cise [209], and regularly 
adopt unbalanced diets 
[210]. Besides the well-
known cardiovascular risk 
factor, obesity, physical ina- 

Table 2. Clinical trials using BM-MSC in cardiac diseases

Disease Sample 
size*

Injection 
method Source Cell 

number
Follow-up 

time Main outcomes Reference 

IHF 37/18 Myocardial Autologous 107-108 6 months Reduced LVESV; Improved LVEF, stroke 
volume of and myocardial mass.

[198]

ICM 30/0 Myocardial Allogeneic 2*107/108 1 year Reduced scar size; Improved LVEF in 108 
group; Improved NYHA class.

[200]

CHF 120/231 Myocardial Autologous 6*108 1 year Reduced LVESV and LVEDV. [202]

ICM 10/0 Myocardial Autologous 6*107 1 year Improvements in LVEF, LVESV, 6-min 
walk test and NYHA functional class.

[199]

AMI 8/8 Intravenous Allogeneic 6*107 2 years No significant differences. [197]

DCM 37/0 Myocardial Allogeneic & Autologous 9*107 1 year Increased EF, 6-min walk distance and 
decreased MLHFQ score in Allo-group.

[201]

DCM 17/20 Intracoronary Autologous 5*108 1 year Improved LVEF, NYHA class and myocar-
dial perfusion.

[203]

*Sample size was shown as: numbers in experimental group/numbers in control group. Abbreviations: AMI, Acute Myocardial Infarction; IHF, Ischaemic Heart Failure; 
LVESV, LV end-systolic volume; LVEDV, LV end-diastolic volume; ICM, Ischemic Cardiomyopathy; NYHA, New York Heart Association; CHF, Congestive Heart Failure; DCM, 
Dilated Cardiomyopathy; MLHFQ, Minnesota Living With Heart Failure Questionnaire.



Use of BMMSC in psychocardiology

6727	 Am J Transl Res 2019;11(11):6717-6738

tal disorders. All together, we propose that 
BM-MSC therapy is the most promising meth-
odology for treatment of these interwined dis-
orders. However, future research and trials are 
urgently needed as our current understanding 
does not match the requirements to apply 
BM-MSC transplantation clinically. We suggest 
that future research should be conducted fo- 
cusing on at least 3 questions: 1) What are the 
effects of BM-MSCs in psychocardiological dis-
ease animal models (such as a post-MI depres-
sion model) [213]? 2) What exact mechanisms 
underlie the therapeutic effects seen in the 
above models? 3) What effects of BM-MSCs 
are seen in patients with CVD and mental ill-
ness in terms of both cardiovascular and be- 
havioural performance?
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