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Abstract: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent types of upper gastrointestinal 
malignancy. Here, we used 1H nuclear magnetic resonance spectroscopy (1H-NMR) to identify potential pre- and 
post-operative serum biomarkers in patients with early stage ESCC using metabolomic fingerprint spectrum. Serum 
samples from preoperative patients with ESCC (ESCC, n = 25), postoperative patients with ESCC (PO, n = 24), and 
controls (n = 40) were analysed using 1H-NMR spectroscopy. Using orthogonal partial least squares-discriminant 
analysis, 31 altered serum metabolites were successfully identified among the three groups. These metabolites 
are indicative of the changes that occur with glycometabolism, the metabolism of fatty acids, amino acids, choline, 
ketone bodies, nucleotides, and lipids. Based on receiver operating characteristic (ROC) curve analysis and a bio-
marker panel with an area under the curve (AUC) of 0.969, six serum metabolites (α-glucose, choline, glutamine, 
glutamate, valine, and dihydrothymine) were selected as potential diagnostic biomarkers for early stage ESCC. 
Additionally, four potential PO biomarkers (α-glucose, pyruvate, glutamate, and valine) with an AUC of 0.985 were 
selected to distinguish ESCC and PO. Many metabolites trended towards normalisation in PO patients, with only 
choline remaining high with an AUC of 0.858, suggesting that it may be a valuable potential biomarker for neoplasm 
progression, recurrence, chemoradiotherapy, and prognosis. 1H-NMR spectroscopy may be a useful tumour detec-
tion approach in the early diagnosis of ESCC. These results also indicate that it is useful to differentiate pre- and 
post-operative ESCC, evaluate surgery therapeutic responses, and monitor postoperative chemoradiotherapy. 
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Introduction

Esophageal squamous cell carcinoma (ESCC), 
a major histologic type of oesophageal cancer, 
is a prevalent upper gastrointestinal malignan-
cy that affects major populations in China [1]. 
Patients diagnosed during the early stages of 
ESCC have significantly greater long-term sur-
vival rates (at least 5 years or more) than do 
those diagnosed at middle or later stages [2]. 
Most ESCC patients exhibit metastasis or lo- 
cally advanced ESCC at the time of diagnosis 
and have a five-year survival rate of only 5-15% 
[3]. Current techniques, including computed 
tomography scanning, upper gastrointestinal 
radiography, endoscopic ultrasonography, and 
chromoendoscopy with iodine staining have 

limitations or low specificities and sensitivities 
[4, 5]. These limitations highlight the need for 
accurate non-invasive screening tools to facili-
tate early ESCC detection. Thus, there is a need 
for the development of a diagnostic tool and for 
reliable biomarkers with high sensitivity and 
specificity at an early curative stage.

Metabolomics is a powerful approach for sur-
veying endogenous small molecule metabolites 
(less than 1000 Da) through the non-invasive 
analysis of cells, tissues, or biofluids [6, 7]. It 
focuses on the unique metabolomic fingerprint 
spectrum generated by metabolic processes in 
a biological system through targeted or non-
targeted strategies [8, 9]. Hence, metabolo-
mics represents a broad field for the detection 
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of useful biomarkers for disease diagnosis, 
therapy, and prognosis, and for insights into the 
pathophysiologic mechanisms of oncogenesis 
and tumour staging. 1H nuclear magnetic reso-
nance (1H-NMR) spectroscopy is a non-destruc-
tive and non-invasive technique that requires a 
small quantity of sample to screen cancer-
associated perturbations in cellular metabo-
lism. Currently, many studies are applying 
metabolomics technology to tissue, plasma, 
serum, and urine samples to reveal variation  
in the tricarboxylic acid (TCA) cycle and in the 
metabolism of choline, amino acids, fatty acids, 
and urea to identify metabolite biomarkers  
in patients with esophageal cancer [10-12]. 
However, some questions remain unanswered: 
What are the critical metabolite changes that 
occur in the early stages of ESCC? What le- 
vels of serum metabolomics sensitivity and 
specificity are required to distinguish patients 
with early ESCC from healthy groups? For 
assessment of operative results and to monitor 
postoperative chemoradiotherapy, what metab-
olite changes occur after tumour removal? 
Answering these questions may provide a 
means of improving early diagnosis, therapy, 
and prognoses for ESCC.

Therefore, we applied non-targeted (principal 
component analysis, PCA) and targeted (partial 
least squares-discriminant analysis, PLS-DA) 
methods based on 1H-NMR spectroscopy to 
identify global changes in serum metabolic pro-
files. We analysed and compared the serum 
metabolic profiles of control groups (C) and of 
patients with early stage ESCC before and after 
operation, respectively. Furthermore, orthogo-
nal partial least squares-discriminant analysis 
(OPLS-DA) was applied to visualise the meta-
bolic variation among the three serum samples. 
The general objectives of this study were to: 1) 

Materials and methods 

Study subjects and sample collection 

Serum samples (89) were collected from the 
Department of Cardiothoracic Surgery and the 
Medical Examination Center in the Second 
Affiliated Hospital of Shantou University Me- 
dical College. These samples included those 
from 40 controls (C), 25 pre-operative patients 
with ESCC (ESCC), and 24 post-operative 
patients with ESCC (PO) without chemotherapy, 
radiotherapy, or chemoradiotherapy. Patient 
information and clinical characteristics are 
summarised in Table 1. The clinical stages of 
ESCC patients (stage I/II) were diagnosed by 
esophagoscopy examination with biopsy, X-ray 
barium radiography, and chest computed to- 
mography. Tumour staging was based on the 
American Joint Committee on Cancer (AJCC)7th 
staging system. Healthy controls were matched 
with patients with ESCC based on age, gender, 
BMI, and place of residence. Fasting blood was 
collected from patients and healthy controls 
between 7 and 8 am and was centrifuged at 
3000 rpm for 10 min. Serum samples were iso-
lated and immediately stored at -80°C for fur-
ther analysis. The study was conducted in 
accordance with the Declaration of Helsinki, 
and the protocol was approved by the Ethi- 
cal Committee of the Second Affiliated Hos- 
pital of Shantou University Medical College 
(Registration No. 2016-32). The approval date 
was 21 November 2016. Informed consent was 
obtained from each subject before participa-
tion in the study.

Sample preparation and 1H-NMR spectroscopy

Frozen serum samples were thawed immedi-
ately and vortexed for 10 s at room tempera-

Table 1. Summary of clinical and demographic characteristics of preopera-
tive ESCC patients (ESCC), postoperative ESCC patients (PO), and controls 
(C)

Variable C ESCC PO
Number of subjects 40 25 24
Male/Female 31/9 19/6 19/5
Age (year, range) 60.3, 46-79 63.2, 49-81 63.5, 52-81
BMI (mean, range) 21.5, 16.2-29.9 21.7, 16.5-30.2 21.4, 16.8-30.7
Differentiation degree - Well: 23 Well: 22

Middle: 2 Middle: 2
TNM classification - I/II: 25 I/II: 24

identify potential diagnos- 
tic serum biomarkers for 
early stage pre- and post-
operative ESCC by metabo-
lomic fingerprint spectrum; 
2) identify potential bio-
markers of operative effe- 
cts and monitor posto- 
perative chemoradiothera-
py with early ESCC; and 3) 
increase our understanding 
of the underlying mecha-
nisms of ESCC.
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ture. Then, 200 μL of phosphate buffer solution 
(90 mM NaH2PO4/Na2HPO4, pH = 7.4) was 
added to 400 μL serum for NMR detection. 
After centrifugation at 10,000 rpm for 10 min 
at 4°C, approximately 550 μL of the clear 
supernatant was transferred into 5-mm NMR 
tubes (ST500, NORELL, Inc., Morganton, North 
Carolina, USA) for sampling. An NMR spectrom-
eter (600.13 MHz, Bruker Avance III, Bruker 
Corporation, Kalsruhe, Germany) was used to 
obtain 1H-NMR spectra under CPMG (Carr-
Purcell-Meboom-Gill) pulse sequence with a 
total spin relaxation delay (2 nτ) of 70 ms to 
weaken broad resonances from high molecular 
weight compounds and retain low molecular 
weight compounds and some lipids. All serum 
samples were analysed in random order at 298 
K. One-dimensional spectrum was used to 
obtain CPMG spin echo pulse sequence 
(RD-90°-(τ-180°-τ)n-ACQ) to suppress water 
signal with a relaxation delay of 5 s. The acqui-
sition parameters were: spectral width, SW = 
20 ppm; recycle delay, RD = 4.0 s; t1 = 350 μs; 
mixing time, tm = 100 ms; number of scans, NS 
= 32; number of points, TD = 32768; and acqui-
sition time, AQ = 2.73 s.

1H-NMR spectroscopy analysis

The raw data (free induction decays, FIDs) were 
input into MestReNova Version 9.0.1 (Mestrelab 
Research, Santiago de Compostela, Galicia, 
Spain, 9.0.1) for processing and complexity 
reduction to facilitate pattern recognition. To 
enhance the signal-to-noise ratio, all 1H-NMR 
spectra were multiplied by a 1.0 Hz exponential 
line broadening prior to Fourier transformation. 
The chemical shifts of serum spectra were ref-
erenced to the methyl doublet signal of lactate 
at δ 1.33 ppm. Both phase adjustment and 
baseline correction were performed manually. 
Each spectrum (9.0-0.5 ppm) was divided into 
approximately 419 segments with equal bin 
width (0.02 ppm) excluding the residual water 
(5.18-4.67 ppm) and urea (6.40-5.40 ppm) 
regions. To remove the dilution effect or bulk 
mass differences among samples due differing 
serum weights, the remaining spectra were 
internally normalised to a total spectral area of 
unity prior to pattern recognition analysis. Total 
detailed NMR rawdata is shown in Supplemen- 
tary Material.

Pattern recognition (PR) analysis 

To establish a global profile of the differential 
features of patients with ESCC and healthy con-

trols, we used multivariate analysis to identify 
consistent variations between 1H-NMR data 
sets. Serum spectra data were input into the 
SIMCA-P+ version 14.1 software package 
(Umetrics Inc., Umea, Sweden, V 14.1) for PR 
analysis. First, PCA was performed using the 
Parato-scaled normalised 1H-NMR spectra to 
discover the intrinsic trends and outliers among 
the three serum sample groups. Then, PLS-DA 
and OPLS-DA were performed to prevent over-
fitting of the statistical model and to select the 
potential biomarkers, respectively.

Model quality and reliability were assessed by 
R2X, R2Y, and Q2 values, which reflect the 
explained variance and model predictability. 
R2X represents the variation explained by the 
models and R2Y indicates the ‘goodness of fit’ 
in the data. Q2, calculated by a cross-validation 
procedure, indicates the predictability of the 
model. To avoid model overfitting, a default 
seven-round cross-validation procedure was 
performed in SIMCA-P+ 14.1 to determine the 
optimal number of principal components. 
Reliability of the models was further rigorously 
validated by a permutation analysis (n = 300 
times). The variable importance in the projec-
tion (VIP) from OPLS-DA models was identified 
as a coefficient for peak selection. These vari-
ables were considered potential biomarker 
candidates as class discriminating information, 
the higher the value, the greater the discrimina-
tory power of the metabolite. VIPs larger than 
1.0 usually represent those metabolites with 
significant group discrimination.

Data pre-processing and statistical analysis

CV-ANOVA (analysis of variance testing of cross-
validated predictive residuals) was perform- 
ed to identify significantly different features 
between groups in OPLS-DA models. Univaria- 
te statistical significance of P < 0.05 was con-
sidered to distinguish metabolites. Student’s t 
(normal distribution) or Mann-Whitney U (if 
abnormal distribution) tests were performed to 
analyse the metabolic profiles among controls, 
ESCC, and PO patients. The metabolites were 
recognised according to the Human Metabo- 
lome Database (http://www.hmdb.ca/). Hie- 
rarchical clustering analysis (HCA) of these  
biomarkers was conducted using R-3.5.0 
(www.r-project.org) software. To further evalu-
ate the diagnostic power of the potential bio-
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markers whose levels differed significantly 
among the three groups, receiver operating 
characteristic (ROC) analysis was conducted  
by SPSS 20.0 (SPSS Inc., Chicago, IL, USA) to 
verify potential biomarkers, and the area under 

groups, including amino acids, organic acids, 
energy metabolism molecules, methylguani-
dine, myo-inositol, trimethylamine N-oxide, glu-
cose components, lipids, carbohydrates, and 
nucleotides. 

Figure 1. 1H-NMR spectra (δ 0.5-9.0 ppm) of serum obtained from the controls (C), preoperative esophageal squa-
mous cell carcinoma (ESCC), and postoperative ESCC patients (PO). The region of δ6.0-9.0 ppm (in the dashed box) 
was magnified 20 times compared with corresponding region of δ0.5-6.0 ppm for the purpose of clarity. Keys: 1-MH: 
1-methylhistidene; 3-HB: 3-hydroxybutyrate; 3-MH: 3-methylhistidene; AA: acetoacetate; Ace: acetate; Ace: acetone; 
Ala: alanine; Asc: ascorbate; Cho: choline; Ci: citrate; Cn: creatinine; Cr: creatine; DHT: dihydrothymine; DMG: N, 
N-dimethylglycine; EA: ethanolamine; For: formate; G: glycerol; Gln: glutamine; Glu: glutamate; Gly: glycine; GPC: 
glycerolphosphocholine; HG: homogentisate; HOD: the residual water resonance; IB: isobutyrate; Ile: isoleucine; 
IP: isopropanol; L: lipid; Lac: lactate; LDL: low density lipoprotein; Leu: leucine; Lys: lysine; M: malonate; Met: me-
thionine; MG: methylguanidine; m-I: myo-inositol; Mol: methanol; NAS: N-acetyl glycoprotein signals; OAS: O-acetyl 
glycoprotein signals; Phe: phenylalanine; Py: pyruvate; Sar: sarcosine; Thr: threonine; TMAO: trimethylamine N-oxide; 
Tyr: tyrosine; Val: valine; VLDL: very low density lipoprotein; α-Glc: α-glucose; β-Glc: β-glucose.

Figure 2. A. 3D PCA score plots based on 1H CPMG NMR spectra of serum 
obtained from controls (C), ESCC, and PO groups. PCA score plots revealed 
separation trends and group clustering based on 1H-NMR spectra of the 
three groups (R2X = 69.0%, Q2 = 0.658). B. 3D PLS-DA score plots based on 
1H CPMG NMR spectra of serum obtained from controls (C), ESCC, and PO 
groups (R2X = 68.6%, R2Y = 0.837, Q2 = 0.814).

the ROC curve (AUROC), sp- 
ecificity, sensitivity were cal-
culated, where AUROC > 0.80 
indicated excellent diagnostic 
ability.

Results

Metabonomic profiling of 
serum samples for ESCC, PO, 
and controls

The one-dimensional 1H-NMR 
spectra of serum samples 
provide an overview of all 
metabolites from the con- 
trol, ESCC, and PO groups 
(Figure 1). Approximately 47 
metabolites were tagged in 
the spectra in the three 
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Figure 3. Orthogonal partial least squares-discriminant analysis score plots (A, E, I) derived from 1H CPMG NMR spectra of serum and corresponding coefficient 
loading plots (C, D, G, H, K, L) obtained from control (C), ESCC, and PO groups and cross validation (B, F, J) by permutation test (n = 300). The colour map shows 
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PR (PCA, PLS-DA and OPLS-DA) analysis of 
serum metabolomic profiling for ESCC, PO, 
and controls 

To obtain useful metabolomics profiles, unsu-
pervised PCA analysis of 1H-NMR results 
showed the difference between the ESCC, PO, 

and control groups. The three-dimensional (3D) 
PCA score plots (Figure 2A) revealed separa-
tion trends and group clustering based on 
1H-NMR spectra of the three groups (R2X = 
69.0%, Q2 = 0.658). However, we were unable 
to identify a clear difference between them via 
the PCA scores plot. We performed supervised 

the significance of metabolite variations between the two classes. Peaks in the positive direction indicate metabo-
lites that are more abundant in the groups in the positive direction of the first principal component. Consequently, 
metabolites that are more abundant in the groups in the negative direction of the first primary component are pre-
sented as peaks in the negative direction.

Table 2. Summary of metabolite statistical data from controls (C), preoperative ESCC (ESCC), and 
postoperative ESCC (PO) groups

Metabolites
ESCC vs C ESCC vs PO PO vs C

VIP P Value Trend VIP P Value Trend VIP P Value Trend
1-Methylhistidine 1.097 2.54×10-8 ↓ 1.006 0.0014 ↓ 1.003 1.89×10-5 ↓
3-Hydroxybutyrate 2.431 2.21×10-26 ↑ 2.462 3.71×10-7 ↑ - - -
Acetate 2.177 8.06×10-6 ↑ 1.062 0.0014 ↑ - - -
Acetoacetate - - - - - - 1.320 6.98×10-9 ↑
Acetone 2.148 0.0005 ↑ 1.429 0.003 ↑ - - -
Alanine 2.510 0.0004 ↓ 2.430 8.42×10-7 ↓ 2.273 0.024 ↓
Choline 3.319 0.0008 ↑ 3.064 1.22×10-14 ↑ 2.401 1.78×10-15 ↑
Citrate 1.134 0.031 ↑ - - - - - -
Creatinine 1.028 2.60×10-7 ↑ - - - - - -
Dihydrothymine 1.055 3.25×10-22 ↓ 1.813 0.018 ↓ - - -
Glutamate 2.837 1.33×10-10 ↑ 2.705 7.26×10-26 ↑ - - -
Glutamine 2.335 1.48×10-8 ↑ 2.532 7.88×10-15 ↑ - - -
Glycerol 1.735 2.78×10-5 ↑ - - - - - -
Glycerophosphorylcholine - - - 2.665 0.04 ↓ - - -
Isobutyrate 2.542 1.24×10-5 ↑ 1.728 0.002 ↑ - - -
Isoleucine 1.898 6.73×10-19 ↓ 1.275 6.99×10-15 ↓ - - -
Isopropanol 1.988 0.0007 ↓ 2.129 8.81×10-10 ↓ 1.403 1.34×10-13 ↓
Leucine 1.954 1.38×10-10 ↓ 1.190 1.91×10-6 ↓ - - -
Low density lipoprotein 2.091 0.017 ↑ 1.375 0.044 ↑ - - -
Lysine 2.436 7.38×10-7 ↑ 2.254 2.10×10-5 ↑ - - -
Malonate 1.197 2.48×10-7 ↓ 1.072 2.53×10-12 ↓ - - -
Methanol 2.271 1.36×10-8 ↓ 2.016 1.20×10-13 ↓ - - -
Methionine 1.318 1.69×10-5 ↓ 1.526 2.80×10-15 ↓ - - -
Methylguanidine 2.643 1.94×10-10 ↓ 2.563 1.09×10-14 ↓ - - -
myo-Inositol 1.578 0.003 ↓ - - - - - -
Pyruvate 2.154 1.54×10-9 ↓ 2.029 4.67×10-27 ↓ - - -
Trimethylamine N-oxide 1.123 6.45×10-6 ↓ 1.518 4.44×10-8 ↓ - - -
Valine 2.594 6.45×10-6 ↓ 1.289 0.003 ↓ 2.033 0.039 ↓
Very low density lipoprotein 1.944 0.014 ↓ - - - - - -
α-Glucose 4.672 0.0003 ↓ 3.661 2.33×10-5 ↓ - - -
β-Glucose 4.650 3.05×10-6 ↓ 3.449 0.0001 ↓ - - -
VIP values > 1.000 were used to indicate statistical significance. Univariate statistical significance of P < 0.05 was used to 
distinguish metabolites. “-” indicates VIP value is less than 1.000, or that the P-value is greater than 0.05. ‘↑’: up-regulated. ‘↓’: 
down-regulated.



1H-NMR exploration of pre- and post-operative biomarkers in ESCC

825 Am J Transl Res 2019;11(2):819-831

3D PLS-DA score analysis, and the resultant 
plot showed obvious metabolic perturbations 
among the three groups (R2X = 68.6%, R2Y = 
0.837, Q2 = 0.814), especially between the 
ESCC and PO patients (Figure 2B). To maximise 
the group separation and to visualise the meta-
bolic distinctions, the supervised OPLS-DA 
classification model was used to investigate 
metabolomic alterations. We used three sepa-
rate supervised OPLS-DA models to distinguish 
between ESCC patients and controls (Figure 
3A-D; R2X = 72.3%, R2Y = 0.936, Q2 = 0.921, P 
= 2.06×10-26), ESCC and PO patients (Figure 
3E-H, R2X = 64.2%, R2Y = 0.815, Q2 = 0.810, P 
= 2.27×10-11), and PO patients and controls 
(Figure 3I-L, R2X = 61.9%, R2Y = 0.954, Q2 = 
0.940, P = 2.23×10-35). Taken together, these 
results suggest that the models were robust, 
and the random permutation tests indicated 
that the models were not over-fitted. Our results 
indicate that 1H-NMR-based serum metabolo-
mics has potential applications for identifying 
early ESCC. Moreover, our results showed that 
changes in some endogenous metabolites 
were related to response to operative treat-
ment intervention.

Discovery, description, and identification of 
potential biomarkers and biomarker panel

A total of 31 differential metabolites were iden-
tified as characteristic metabolites (Table 2). 
We constructed a heat map to visualise the dis-
criminatory power of biomarkers among the 
three groups (Figure 4). Compared to controls, 
29 significant biomarkers were identified in 
ESCC patients. Based on the sensitivity and 
specificity of this approach, ROC analyses were 
performed for further prediction of potential 
biomarkers (Table 3). As neoplastic diseases 
involve systematic disturbance of metabolic 
biochemical pathways, a biomarker panel 
including multiple biomarkers, rather than a 
single biomarker, could better distinguish the 
different groups and supply useful information 
for clinicians. Therefore, we identified a panel 
of six biomarkers (glucose, choline, glutamine, 
glutamate, valine, and dihydrothymine) that 
were combined together using binary logistic 
regression to give a high AUC value of 0.969 
(Figure 5A).

To evaluate the effects of surgical treatment, 
25 serum metabolites that differed between 

patients with ESCC and PO were identified. 
Four potential biomarkers (glucose, glutamate, 
pyruvate, and valine) with an AUC value of 
0.985 for distinguishing the two groups, were 
further selected for the biomarker panel (Figure 
5B). Changes in these metabolite biomarkers 
could be related to the surgical removal of 
tumour burden and could be used to further 
evaluate postoperative effects. Six metabolites 
were identified by comparing PO patients with 
controls. In PO patients, most of these metabo-
lites tended to gradually return to levels 
observed in controls. Unfortunately, we could 
not identify a biomarker panel for differentiat-
ing between PO patients and controls, althou- 
gh the choline level decreased slowly with an 
AUC of 0.858. Therefore, choline may be a key 
potential biomarker for postoperative therapy 
and prognostics. According to the human me- 
tabolome database and the Kyoto Encyclo- 
pedia of Genes and Genomes (KEGG), a map of 
the metabolic pathways involved based on the 
metabonomic profiling of ESCC is shown in 
Figure 6. 

Discussion

Patients with ESCC have greater long-term sur-
vival when ESCC is treated in its early stages. 
Early detection may increase diagnostic accu-
racy, promote personalised treatment, and 
improve prognostic effects. However, the main 
causes of tumour occurrence remain unknown. 
Therefore, recognition of the characteristic 
metabolites of early stage ESCC would enable 
us to identify the disease and intervene earlier, 
which is more likely to prevent and/or delay the 
development of ESCC to medium-term or 
advanced stage and ultimately result in 
improved prognoses for patients. Previous 
studies found that variations in molecular and 
biochemical metabolism occur before histo-
pathological and morphological changes [13, 
14]. Here, we used 1H-NMR spectroscopy to 
identify useful metabolic ESCC biomarkers for 
early diagnosis and determination of operative 
effects, influence therapeutic prognosis, and 
explore the molecular pathogenesis of ESCC. 

We found by OPLS-DA that the metabolic pro-
files of serum could differentiate patients with 
ESCC from controls. Altered metabolite levels 
could reflect disturbed glycometabolism (gly-
colysis and the TCA cycle), and fatty acid, amino 
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Figure 4. Hierarchical cluster analysis of serum metabolic profile for distinguishing ESCC and PO from controls (C). Each column represents one serum sample, and 
each row represents a single metabolite. The expression values are represented by the color scale. The intensity increases from green (relatively down-regulated) 
to red (relatively up-regulated). 
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acid, choline, ketone body, nucleotide, and lipid 
metabolism. The potential biomarker panel, 
which reflects metabolic pathways including 
glycolysis, and choline, amino acid, and nucleo-
tide metabolism, could significantly differenti-
ate ESCC patients from controls. One glucose 
molecule can generate 36 ATP molecules via 
the TCA cycle, while glycolysis produces only 
two. The use of glucose to generate energy 
under conditions of adequate oxygen supply by 
tumour cells is called the Warburg effect [15, 
16]. A significant decrease in glucose was 
found in our study, demonstrating a metabolic 
feature of ESCC with strong aerobic glycolysis, 
which is consistent with the results observed 

for many other rapidly proliferating cancers [17-
19]. Accelerated glycolysis is a characteristic of 
all types of cancer and altered glycolysis has 
been previously examined in ESCC. The metab-
olomic pathway showed that energy metabo-
lism was the dominant factor in the pathophysi-
ologic mechanism of ESCC. It also identified 
triglycerides, glycoproteins, and acetone as 
important sources of energy. Lactate levels 
were disregarded because of the chance of gly-
colysis occurring in serum samples during the 
experiment. Choline, with higher VIP values in 
patients with ESCC, was the second most 
altered metabolite. Choline, phosphorylcholine, 
and glycerophosphorylcholine (GPC) are impor-

Table 3. Sensitivity, specificity, and AUC value of the metabolites for discrimination of controls (C), 
ESCC, and postoperative ESCC (PO) groups

Metabolites
ESCC vs C PO vs ESCC PO vs C

Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC
1-Methylhistidine 0.694 0.783 0.754 0.744 0.645 0.756 0.823 0.659 0.749
3-Hydroxybutyrate 0.712 0.754 0.712 0.738 0.670 0.717 0.520 0.855 0.686
Acetate 0.649 0.525 0.637 0.699 0.562 0.663 0.789 0.467 0.586
Acetoacetate 0.794 0.583 0.701 0.632 0.535 0.574 0.885 0.566 0.748
Acetone 0.432 0.708 0.584 0.496 0.665 0.546 0.734 0.513 0.614
Alanine 0.753 0.822 0.789 0.687 0.795 0.752 0.624 0.837 0.777
Choline 0.825 0.856 0.839 0.807 0.861 0.843 0.811 0.867 0.858
Citrate 0.587 0.682 0.633 0.625 0.489 0.587 0.784 0.651 0.763
Creatinine 0.691 0.535 0.579 0.587 0.731 0.663 0.486 0.645 0.542
Dihydrothymine 0.836 0.821 0.827 0.779 0.650 0.711 0.775 0.672 0.733
Glutamate 0.829 0.835 0.829 0.809 0.855 0.827 0.636 0.828 0.738
Glutamine 0.815 0.841 0.830 0.736 0.613 0.658 0.695 0.879 0.769
Glycerol 0.662 0.713 0.678 0.537 0.718 0.629 0.664 0.845 0.765
Glycerophosphorylcholine 0.654 0.451 0.575 0.715 0.623 0.661 0.541 0.743 0.663
Isobutyrate 0.630 0.512 0.594 0.635 0.579 0.607 0.432 0.801 0.587
Isoleucine 0.610 0.675 0.625 0.794 0.765 0.773 0.504 0.779 0.661
Isopropanol 0.723 0.641 0.662 0.791 0.621 0.775 0.653 0.792 0.725
Leucine 0.749 0.810 0.786 0.590 0.767 0.662 0.863 0.545 0.721
Low density lipoprotein 0.520 0.812 0.642 0.503 0.827 0.744 0.529 0.842 0.757
Lysine 0.707 0.556 0.634 0.834 0.587 0.785 0.837 0.628 0.778
Malonate 0.498 0.674 0.589 0.622 0.833 0.757 0.785 0.711 0.736
Methanol 0.476 0.683 0.529 0.603 0.881 0.762 0.673 0.804 0.753
Methionine 0.588 0.786 0.671 0.724 0.785 0.746 0.874 0.523 0.729
Methylguanidine 0.801 0.721 0.742 0.658 0.814 0.772 0.574 0.783 0.684
myo-Inositol 0.719 0.843 0.785/ 0.439 0.824 0.648 0.688 0.456 0.587
Pyruvate 0.723 0.810 0.773 0.816 0.857 0.835 0.653 0.828 0.782
Trimethylamine N-oxide 0.675 0.497 0.576 0.826 0.685 0.782 0.650 0.803 0.723
Valine 0.838 0.803 0.821 0.548 0.843 0.705 0.599 0.773 0.715
Very low-density lipoprotein 0.611 0.720 0.651 0.432 0.675 0.554 0.570 0.775 0.622
α-Glucose 0.840 0.881 0.862 0.827 0.868 0.855 0.762 0.654 0.705
β-Glucose 0.853 0.769 0.799 0.811 0.749 0.792 0.547 0.601 0.588
Numbers in bold italics are potential biomarkers for distinguishing between ESCC and C, ESCC and PO, and PO and C.
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Figure 5. ROC curves of the discriminatory power of the combined potential biomarker panel for ESCC and controls 
(A, AUC = 0.969), ESCC and PO patients (B, AUC = 0.985).

Figure 6. Metabolic pathways of the altered metabolites that include controls, preoperative and postoperative early 
stage ESCC metabolite biomarkers identified in this study. The bold in metabolites with histograms represents po-
tential biomarkers among three groups. Red texts mean up-regulated with respect to controls, and green texts mean 
down-regulated with respect to controsl. ‘▲▲’ means P < 0.01, ‘▲’ means P < 0.05.
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tant for the phospholipid metabolism of cell 
membranes and have been previously identi-
fied as markers of cell proliferation and growth. 
The increased choline and decreased GPC 
identified in our research were probably mem-
brane breakdown products because of acceler-
ated tumour propagation. This result is consis-
tent with those obtained for other tumour types 
[20-22], including in the high-resolution magic-
angle spinning 1H-NMR spectroscopy study of 
squamous carcinoma tissues [23]. Elevated 
glutamine, glutamate, and glucogenic amino 
acid levels were also observed playing a dis-
tinct role in proliferating and cancer cells in 
early stage ESCC. To provide for continuous 
high-energy demands for fast cell proliferation, 
even under hypoxic conditions, glutamine is 
converted to glutamate and is further trans-
formed into alpha-ketoglutarate for ATP synthe-
sis through the TCA cycle [24], similar to the 
results of other studies [25-28]. However, our 
results are inconsistent with those previously 
reported for ESCC [29, 30]. One reason for this 
is that these studies focused on the signatures 
of lymph node ESCC metastasis in which gluta-
mine/glutamate could be consumed in the TCA 
cycle, whereas we only concentrated on the 
early stage of ESCC. Another plausible reason 
for the observed discrepancies is that they 
used a different platform and different param-
eters for serum/plasma metabolomic analysis. 
Compared with controls, we found that valine 
levels were significantly reduced in patients 
with ESCC. Valine is an essential branched-
chain amino acid that serves as a nitrogen 
donor for nonessential amino acids and is 
important for energy consumption [29]. The 
decreased valine levels in ESCC patients indi-
cate the need for glutamine biosynthesis, relat-
ed to the TCA cycle, in response to higher ener-
gy requirements for tumour proliferation. We 
also observed that the dihydrothymine levels 
decreased more markedly in ESCC patients 
than in controls. Dihydrothymine is an interme-
diate decomposition product of thymine [31]. 
DNA replication in tumour cells rapidly exhausts 
thymine levels; hence, decreased dihydrothy-
mine could be a feasible new biomarker associ-
ated with tumour initiation.

The observed differences in serum metabo-
lites, including the potential biomarker panel, in 
ESCC and PO patients reflects the therapeutic 
effects of surgery. Comparison of the ESCC, PO, 

and controls showed that the PO serum metab-
olites tended toward normalisation, with the 
exception of choline, which tended to decline 
very slowly. Tumour burden could inhibit and 
lower the body’s immune function and further 
promote the development of cancer [32]. The 
results indicate that the removal of tumour bur-
den also removes the tumour micro-environ-
ment causing the reprogramming of serum 
metabolites in PO patients. ESCC is character-
ised by rapid growth and spread and lymph 
node metastases in nearly 20-60% of TI/II 
stage cases, which could account for the slow 
recovery of choline levels following surgery. 
Therefore, choline may be a valuable potential 
biomarker for neoplasm progression, recur-
rence, chemoradiotherapy, or prognosis. We 
also speculate that these metabolites may be 
helpful in diagnosis, guiding effective surgical 
treatments, and forecasting outcomes. In the 
future, a large number of independent cohorts 
of patients with different varieties of cancer, as 
well as healthy controls, should be recruited to 
screen for potential biomarkers and to verify 
the findings reported here.

Taken together, the present study demonstrat-
ed the early stage serum metabolic alterations 
of pre- and post-operative ESCC by 1H-NMR-
based metabolomics analysis. The results offer 
convincingly value in aiding diagnosis, monitor-
ing treatment effects, and affording new 
insights with regard to the pathological mecha-
nisms of ESCC. Furthermore, understanding 
the molecular pathogenesis of serum metabol-
ic changes in ESCC could offer a new avenue 
for the individualisation of cancer therapy and 
prognostics [33]. 
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