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Abstract: Epstein-Barr virus (EBV)-positive extranodal NK/T-cell lymphoma is a rare and highly aggressive disease 
with a poor prognosis and strong resistance to anti-cancer drugs. Reactive oxygen species (ROS) are closely related 
to tumorigenesis and P-glycoprotein (P-gp) is highly expressed in various cancers. However, the exact relationship 
between ROS and P-gp in EBV-positive lymphoma remains unclear. In this study, we demonstrated that EBV latent 
infection induced intracellular ROS production and increased ROS levels triggered elevated P-gp expression, which 
resulted in strong resistance to existing anti-cancer drugs in EBV-positive lymphoma cell lines and in patients’ tissue 
samples. We also verified that regulation of intracellular ROS reduced P-gp expression and function via inhibition of 
STAT1 phosphorylation. These results indicate that treatment with a ROS scavenger is a potential therapeutic strat-
egy to overcome resistance to anti-cancer drugs by downregulating the expression of P-gp in EBV-positive NK/T-cell 
lymphoma.
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Introduction

Epstein-Barr virus (EBV) is a human gamma-
herpes virus that exhibits three major laten-
cies; I, II, and III and has been implicated in vari-
ous tumors including lymphoma and gastric 
carcinoma [1-3]. Extranodal NK/T-cell lympho-
ma (ENKTCL), of which more than 95% of cases 
are EBV positive, shows a very poor prognosis 
and is characterised by distinct clinicopatho-
logical features including a low survival rate, 
metastasis [4], systemic inflammation [5] and 
drug resistance [4, 6]. It has been reported that 
various molecules are correlated with the poor 
prognosis and cell signalling pathways associ-
ated with an abnormal status in ENKTCL. EBV 
infection induces phosphorylation of molecules 
in the NF-κB, MAPK and JAK/STAT signalling 
pathways, resulting in tumor cell proliferation, 

angiogenesis and immune suppression [4, 7]. 
Patients with ENKTCL also showed mutations 
and/or methylation of, tumor suppressor genes 
including PRDM1, ATG5, AIM1 [8], FOXO3 and 
HACE1 [9]. In clinical practice, ENKTCL is highly 
resistant to the existing anti-cancer drugs 
including anthracycline-based regimens such 
as CHOP (cyclophosphamide, doxorubicin, vin-
cristine and prednisolone). NK/T-cell lymphoma 
exhibits a multidrug-resistant (MDR) phenotype 
because of highly expressed P-glycoprotein 
(P-gp) [10]. To overcome this problem, MDR-
independent drugs specifically designed for 
ENKTCL are now used. Therefore, concurrent 
chemo-radiotherapy regimens involving non-
anthracycline chemotherapy using ifosfamide 
can improve treatment outcomes in patients by 
reducing local and systemic relapse rates, as 
explained in our previous report [11]. Also, to 
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overcome the immunological limitations of 
ENKTCL, we have been investigating other ther-
apies using interferon alpha-2a [12] and EBV-
specific cytotoxic T cells [13]. However, because 
there is still no complete cure, critical needs 
remain in the clinical treatment of ENKTCL.

In EBV-associated lymphoma, it has been 
reported that high ROS levels induced by EBV 
cause poor prognosis via deregulation of en- 
zymes including catalase and peroxidase [14-
16], gene instability [17-19] and modification of 
signalling pathways involved in anti-apoptotic 
effects and cell proliferation including NF-κB, 
MAPK and JAK/STAT [20-23]. Clinically, ENKTCL 
exhibits vascular damage and necrosis, which 
are closely related to high levels of ROS.

MDR is the major obstacle in cancer chemo-
therapy. Many cancers present resistance to 
anti-cancer drugs through the expression of 
P-gp, translated from the multidrug resistance 
protein 1 (MDR1) gene, which functions in an 
energy-dependent manner [24]. In various 
organs, P-gp expression induces the efflux of 
anti-cancer drugs. It has been reported that 
high levels of ROS induce P-gp expression [25, 
26], hypoxia-inducible factor-1 (HIF-1) activa-
tion, nuclear translocation of NF-κB [27] and 
multicellular tumor spheroids [28] in various 
tumors. Patients with ENKTCL are positive for 
both P-gp and MDR1 mRNA and patients with 
high P-gp expression had poorer outcomes 
after chemotherapy alone [10]. In addition, it 
was demonstrated that EBV infection caused 
chemotherapy resistance through P-gp expres-
sion in EBV-positive T cell lymphoproliferative 
disease [29]. However, the direct mechanism of 
increased P-gp in ENKTCL remains unclear.

In this study, we examined the direct molecular 
pathological mechanisms of P-gp expression in 
EBV-positive NK/T-cell lymphoma, whether 
increased ROS induced by EBV infection upreg-
ulate the expression and function of P-gp, and 
which signalling pathways are involved in this 
process. We also investigated the possible use 
of the ROS scavenger NecroX-5 as an anti-can-
cer complement via its regulation of MDR in 
ENKTCL.

Materials and methods

Cell lines and materials

Of the cell lines used in this study, H9, Jurkat 
and Karpas-299 cells are EBV-negative T cell 

lines. NKL and KHYG-1 are EBV-negative NK 
cell lymphoma cell lines, and NK-92, NK-YS, 
KAI3, HANK-1 and SNK-6 are EBV-positive NK 
cell lymphoma cell lines. H9 cell is purchased 
from Korean Cell Line Bank (Seoul, Republic of 
Korea), KHYG-1 and KAI3 cells from the Ja- 
panese Collection of Research Bioresources 
Cell Bank (Osaka, Japan), and NK-92 cells from 
the American Type Culture Collection (Man- 
assas, VA, USA). Jurkat, Karpas-299, H9, NKL, 
KHYG-1 and KAI3 cells were grown in RPMI 
1640 medium (Gibco, Carlsbad, CA, USA) con-
taining 2 mM L-glutamine (Gibco), 1% 2-mer-
captoethanol (Gibco), 1% antibiotics (10 U/mL 
penicillin and 10 g/mL streptomycin; Gibco), 
10% heat-inactivated foetal bovine serum (FBS; 
Gibco) and 200 U/mL recombinant human IL-2 
(rhIL-2, PeproTech, London, UK) were added to 
NKL, KHYG-1 and KAI3. NK-YS cells were cul-
tured in IMDM medium (Gibco) containing 1% 
antibiotics (10 U/mL penicillin and 10 g/mL 
streptomycin), 10% heat-inactivated FBS and 
100 U/mL rhIL-2. HANK-1 and SNK-6 cells were 
grown in RPMI 1640 medium containing 1% 
2-mercaptoethanol (Gibco), 10% human serum 
(Sigma-Aldrich, St. Louis, MO, USA) and 100 U/
mL and 700 U/mL rhIL-2, respectively. NK-92 
cells were cultured in alpha-MEM medium 
(Gibco) containing 2 mM L-glutamate (Gibco), 
1.5 g/L sodium bicarbonate (Gibco), 0.2 mM 
inositol (Sigma-Aldrich), 0.1 mM 2-mercaptoe-
thnaol (Gibco), 0.02 mM folic acid (Sigma-
Aldrich), 12.5% FBS, 12.5% horse serum (Gibco) 
and 200 U/mL rhIL-2 (PeproTech). NecroX-5 
(C25H31N3O3S·2CH4O3S) was purchased from 
Enzo Life Sciences (Farmingdale, NY, USA).

ROS assay

A solution of 2’,7’-dichlorofluorescein diacetate 
(DCFDA; Sigma-Aldrich) in methanol (Bio-Lab, 
Jerusalem, Israel) was added at a final concen-
tration of 2 μM to cell lines in phosphate-buff-
ered saline (PBS). After a 40-min incubation at 
37°C in a humidified atmosphere of 5% CO2 in 
air, the cells were washed and resuspended in 
PBS.

Cell Counting Kit-8 (CCK-8) assay

Cell growth was assessed using the CCK-8 
(Dojindo, Rockville, MD, USA) assay according 
to the manufacturer’s protocol. Briefly, 5 × 104 
lymphoma cells were dispensed in 100 μL cul-
ture medium in 96-well plates, and various 
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doses of anti-cancer drugs were diluted in 100 
μL. Cultures were maintained at 37°C in a 5% 
CO2 atmosphere. After 24 or 48 h, 20 μL CCK-8 
solution were added to each well, and the plate 
was incubated for 1-4 h in a CO2 incubator. The 
optical density was measured at 450 nm using 
a microplate reader.

Flow cytometric analysis 

To investigate P-gp expression, lymphoma cells 
were immunostained with anti-human CD243 
PE (P-gp; eBioscience, San Diego, CA, USA) for 
30 min at 4°C. After staining, lymphoma cells 
were washed with staining buffer and resus-
pended in staining buffer. To investigate signal-
ling pathways, lymphoma cells were pre-treated 
with 20 µM NecroX-5 for 30 min. Cells were 
washed and cultured at 37°C for 16 h. In- 
tracellular staining with phospho-STAT1, STAT3, 
ERK1/2 and NF-κB (BioLegend, San Diego, CA, 
USA) was performed using an intracellular 
staining kit (eBioscience) according to the man-
ufacturer’s protocol. Flow cytometric analysis 
was performed on the FACS_LSR Fortessa (BD 
Pharmingen, San Diego, CA, USA) using FlowJo 
software (TreeStar, Ashland, OR, USA).

Western blot analysis

Total protein was collected from cells pre-treat-
ed with or without 20 µM NecroX-5. Cells were 
homogenized by lysis buffer with a protease/
phosphatase inhibitor cocktail (Cell signalling, 
Danvers, MA) and western blotting was per-
formed. The primary antibody used was rabbit 
antibodies to P-gp (1:1000, ERP10364-53; 
Abcam, Cambridge, UK) and β-actin (1:2000, 
Cell signalling). After overnight incubation in 
4°C, HRP-conjugated secondary antibody was 
added. After washing with Tris-buffered saline 
and Twenn 20, the hybridized bands were 
detected using an enhanced chemilumines-
cence (ECL) detection kit (Amersham Pharmacia 
Biotech, Buckinghamshire, UK).

Rhodamine 123 (Rho123) accumulation as-
say

NKL, NK-92 and NK-YS cells (5 × 105) were 
grown on 24-well plates and pre-treated with 
NecroX-5 for 1 h at 37°C. The cells were then 
washed with PBS and stimulated with 125 µM 
H2O2 for 16 h. Rho123 (0.5 µg/mL) was added, 
and cells were incubated at 37°C for an addi-

tional 1 h in the presence or absence of H2O2. 
The cells were harvested, and the concentra-
tion of Rho123 was measured by flow cytomet-
ric analysis.

EBV-encoded small RNA (EBER) in situ hybridi-
zation and immunohistochemistry (IHC)

Patient biopsied lymphoma tissues were for-
malin-fixed, paraffin-embedded and sectioned 
at a thickness of 4 μm. Staining for EBERs was 
performed using the INFORM EBERs probe 
(Ventana, Tucson, AZ, USA) according to the 
manufacturer’s protocol. For IHC, slides were 
dehydrated using xylene and ethanol, and anti-
gen retrieval and blocking were performed. 
Antibodies targeting P-gp (Abcam) was diluted 
1:50 and then incubated with the slides at 4°C 
overnight. Anti-rabbit IgG-HRP (Santa Cruz Bio- 
technology) was used as the secondary anti-
body, and the slides were incubated at room 
temperature for 2 h. Signals were detected 
using the REAL EnVision detection system, per-
oxidase/DAB+ (Dako, Santa Clara, CA, USA). 
Counterstaining was performed using Mayer’s 
haematoxylin (Dako) for 1 min at room tem- 
perature.

Real-time reverse transcription PCR (RT-PCR)

Total RNA was extracted using TRIzol-LS rea-
gent (Invitrogen). Total RNA was reverse tran-
scribed using ReverTra Ace qPCR RT master 
mix (Toyobo, Osaka, Japan) according to the 
manufacturer’s protocol. RT-PCR was per-
formed using the IQ SYBR Green Super Mix and 
CFX 96 real-time system (Bio-Rad, Hercules, 
CA, USA) under the following conditions: dena-
turation at 95°C for 3 min, annealing at 58°C 
for 30 s, followed by extension at 72°C for 30 s. 
For quantification, relative mRNA expression of 
specific genes was calculated using the 2-ΔΔCt 
method, after normalization to β-actin expres-
sion. The following gene-specific primers were 
used: β-actin (forward: 5’-GAA ATC GTG CGT 
GAC ATCAAA G-3’; reverse: 5’-TGT AGT TTC ATG 
GAT GCC ACA G-3’) and MDR1 (forward: 5’-CAG 
GAA CCT GTA TTG TTT GCC ACC AC-3’; reverse: 
5’-TGC TTC TGC CCA CCA CTC AAC TG-3’).

Statistical analysis

All statistical analysis was performed using 
SPSS statistical software package (SPSS, 
Chicago, IL, USA). Statistical significance was 
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determined using student’s two-tailed t-test 
and one-way analysis of variance (ANOVA) with 
Bonferroni correction for multiple comparisons. 
In all analysis, data are presented as means ± 
SD and P-values < 0.05 were considered to 
indicate significance.

Results

P-gp expression and ROS levels are elevated in 
EBV-positive NK/T-cell lymphoma

To determine the association between EBV and 
P-gp, EBV infection and P-gp expression were 
measured in lymphoma tissues from ENKTL 
patients using EBER in situ hybridization and 
IHC, respectively. Patients with negative for 
EBV infection showed low expression of P-gp 
(Figure 1A, UPN01). Interestingly, P-gp was 
highly expressed in the tissue areas with strong 
EBER expression (Figure 1A, UPN02, 03 and 
04). Therefore, to examine the association 
between EBV and P-gp, firstly we investigated 
P-gp expression in various EBV-associated 

NK/T-cell lymphoma cell lines using flow cytom-
etry analysis. EBV-negative T cell lymphoma 
cell lines (H9), EBV-negative NK cell lymphoma 
cell lines (KHYG-1 and NKL) and EBV-positive 
NK cell lymphoma cell lines (HANK-1 KAI3, 
NK-YS, NK-92 and SNK-6) were used. In- 
terestingly, compared with EBV-negative cells, 
EBV-positive cells showed higher P-gp expres-
sion. In NK-YS and NK-92 cells, P-gp expression 
was more than 10 times higher than that in 
KHYG-1 and NKL cells (Figure 1B). The MDR1 
mRNA level was also detected to confirm P-gp 
expression. As with P-gp expression, EBV-po- 
sitive lymphoma cell lines, including NK-92 and 
NK-YS cells, showed higher MDR1 mRNA ex- 
pression (Figure 1C). Although KHYG-1 showed 
higher MDR1 mRNA levels compared to two 
EBV-positive cell lines; KAI3 and HANK-1, P-gp 
expression was lower compared to EBV-positive 
cells.

Next, to investigate the relationships among 
EBV, ROS and P-gp, ROS levels in EBV-ass- 
ociated cell lines were measured by flow cytom-

Figure 1. Expression of P-gp in EBV-associated lymphoma patients’ tissues and cell lines. A. Patients with ENKTCL 
weakly expressing EBERs showed low expression level of P-gp (UPN01), however, patients’ tissues with strong EBER 
expression exhibited P-gp (ERP10364-53; UPN02, 03 and 04) analysed by in situ hybridization (ISH) and immu-
nohistochemistry (IHC). B. P-gp expression in various T- or NK-cell lymphoma cell lines analysed by flow cytometry. 
C. mRNA expression level of MDR1 in lymphoma cell lines analysed by real-time PCR. Compared to EBV-negative, 
EBV-positive lymphoma cells showed high expression of P-gp protein and MDR1 gene. White and black bars indicate 
EBV-negative and EBV-positive cells, respectively. *P < 0.05, **P < 0.01, ***P < 0.001 vs. indicated group.
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etry using DCFDA. As shown in the histogram, 
compared with EBV-negative cells (Jurkat and 
Karpas-299; T cells and NKL; NK cells), EBV-
positive NK-YS and NK-92 cells had higher ROS 
levels (Figure 2A). The mean fluorescence 
index (MFI) of DCFDA in the cell lines was also 
examined. Compared with EBV-negative cells, 
EBV-positive cells showed significantly higher 
ROS levels. Particularly, NK-YS and NK-92 cells 
had more than twofold higher ROS levels than 
those of EBV-negative cells (Figure 2B). These 
data indicate that although there are differenc-
es in cell lines, EBV infection induced hypoxic 
conditions and increased intracellular ROS lev-
els up-regulated P-gp expression.

Inhibition of intracellular ROS levels downregu-
lates P-gp expression

To investigate the direct relationship between 
ROS and P-gp, both EBV-negative and -positive 
NK cell lymphoma cell lines were treated with 
NecroX-5, a free radical scavenger. This indole 
backbone-based synthetic compound exhibit-
ed antioxidant effects in various disease mod-
els [30, 31] including graft versus host disease 
in our previous studies [32]. Cells were treated 
with 0, 10, 20 and 40 μM NecroX-5 for 2 hours, 
then washed and cultured for 16 hours. As 
shown in Figure 3A, ROS levels tended to 
decrease after treatment with NecroX-5, in a 
dose-dependent manner. Interestingly, Necrox- 
5 regulated ROS levels more significantly in 
EBV-positive lymphoma cell lines. After 16 
hours, P-gp expression was detected by flow 
cytometry. In EBV-negative cell lines, NecroX-5 

1.66%, even at the lowest dose of NecroX-5 
used. P-gp expression was also regulated by 
NecroX-5 in HANK-1 cells; however, because 
P-gp expression in NecroX-5-untreated cells 
was already low, the changes were not signifi-
cant and it seems that the most effective dose 
of NecroX-5 appeared to differ from cell to cell. 
In NK-92 and NK-YS cells, 40 μM was the most 
effective dose for both ROS regulation and P-gp 
downregulation. In addition to these data, we 
confirmed that NecroX-5 was able to decrease 
P-gp expression analysed by western blot anal-
ysis in NKL, NK-92, NK-YS and HANK-1 cells 
(Figure S1). Similar to flow cytometry data, cell 
lines with high expression of P-gp; NK-92 and 
NK-YS showed decreased P-gp level after 
NecroX-5 treatment and in NKL, P-gp expres-
sion was rarely detected both in NecroX-5 un-
treated and pre-treated group. These results 
suggest that NecroX-5 decreased P-gp expres-
sion by regulating ROS.

P-gp function is attenuated by the regulation of 
intracellular ROS 

To investigate whether ROS regulation directly 
affects P-gp function in EBV-positive lympho-
ma, we assessed accumulation of Rho123, the 
substrate of P-gp located in the mitochondria, 
after NecroX-5 treatment. In the case of low 
expression of P-gp, Rho123 was accumulated 
in intracellular space and in the case of high 
expression of P-gp, P-gp pumped out Rho123, 
therefore, Rho123 accumulation was reduced 
resulted in decreased fluorescence analysed 
by flow cytometry. We pre-treated lymphoma 

Figure 2. ROS levels in EBV-associated lymphoma cell lines. A. Intracellular 
ROS levels shown by the histogram using flow cytometry. B. Graph of MFI lev-
els. Compared with EBV-negative cell lines, most EBV-positive T and NK cell 
lines showed higher MFI values. In some EBV-positive cell lines, intracellular 
ROS levels were more than threefold higher than those in EBV-negative cells. 
*P < 0.05, **P < 0.01, ***P < 0.001 vs. indicated group.

downregulated P-gp expres-
sion to some degree (Figure 
3B). Although P-gp expression 
was reduced in NKL cells, 
NecroX-5 had less effect on 
P-gp regulation, because of 
the low P-gp expression in 
controls. In all EBV-positive 
cell lines, all doses of NecroX-5 
downregulated P-gp expres-
sion (Figure 3B). NecroX-5 at 
40 μM decreased P-gp from 
7.62% to 3.51% and from 
19.2% to 6.69% in SNK-6 and 
NK-92 cell lines, respectively. 
Interestingly, P-gp expression 
was dramatically decreased in 
NK-YS cells, from 18.9% to 
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Figure 3. The effects of ROS inhibition in P-gp expression. A. In EBV-negative cell lines, NecroX-5 did not affect intracellular ROS levels, whereas in EBV-positive 
cells, NecroX-5 regulated intracellular ROS in a dose-dependent manner. B. EBV-negative KHYG-1 and NKL cells were treated with various doses of NecroX-5 for 2 
h. After 16 h of culture, P-gp expression was measured by flow cytometry. NecroX-5 regulated P-gp expression in NKL cells only. C. Compared to EBV-negative cell 
lines, dramatic regulation was shown at all doses of NecroX-5 in EBV-positive NK cell lymphoma cell lines including SNK-6, NK-92, NK-YS and HANK-1. *P < 0.05, 
**P < 0.01, ***P < 0.001 vs. control group.
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cells with NecroX-5 and incubated at 37°C with 
Rho123. In EBV-negative cells, Rho123 showed 
high intracellular accumulation regardless of 
NecroX-5 treatment (Figure 4, upper panel) 
because of the lower expression of P-gp. In con-
trast, as shown in the lower panel of Figure 4, 
Rho123 showed high intracellular accumula-
tion in EBV-positive NK cells. In NK-92 cells, the 
MFI for intracellular Rho123 was more than 
fourfold higher after NecroX-5 treatment. Ne- 
croX-5 also increased intracellular Rho123 
accumulation in NK-YS cells, but not as dramat-
ically as in NK-92 cells. The MFI of Rho123 was 
approximately threefold higher after NecroX-5 
treatment. These results suggest that NecroX-5 
directly reduced P-gp function.

Regulation of ROS promotes the cytotoxicity of 
anti-cancer drugs

Patients with EBV-positive NK/T-cell lymphoma 
are refractory to conventional anti-cancer drugs 
including P-gp-dependent drugs such as doxo-
rubicin and cisplatin and P-gp-independent 
drugs including cyclophosphamide and metho-
trexate. To evaluate whether NecroX-5 increas-
es the sensitivity to anti-cancer drugs, we treat-
ed EBV-negative and -positive lymphoma cell 
lines with various doses of NecroX-5. In EBV-
negative cell lines, intracellular ROS inhibition 
affected cell viability in a dose-dependent man-
ner (Figure 5A). A dose of 40 μM was sufficient 

to kill 50% of lymphoma cells. However, EBV-
positive cell lines showed varying cytotoxicities 
toward NecroX-5. HANK-1 and SNK-6 cells 
showed similar patterns to those of EBV-ne- 
gative cells. However, interestingly, two EBV-
positive NK cell lines, NK-92 and NK-YS, which 
showed high expression of P-gp and ROS in pre-
vious experiments, were not significantly affect-
ed by NecroX-5 treatment. Next, we investigat-
ed the cytotoxic effects of anti-cancer drugs 
combined with NecroX-5 in EBV-positive cells 
(Figure 5B). In EBV-negative NKL cells, which 
showed low P-gp expression, four anti-cancer 
drugs (P-gp-dependent drugs doxorubicin and 
cisplatin and P-gp-independent drugs cyclo-
phosphamide and methotrexate) showed high 
dose-dependent cytotoxic effects and even at 
the 1 μM dose of doxorubicin and methotrex-
ate, half of the NKL cells were killed. However, 
there were no differences between NecroX-5-
treated and -untreated cells. Interestingly, in 
EBV-positive NK-92 cells, P-gp-dependent cis-
platin and two P-gp-independent drugs, cyclo-
phosphamide and methotrexate, were ineffec-
tive regardless of NecroX-5 co-treatment. How- 
ever, the cytotoxic effects of doxorubicin were 
significantly increased in NecroX-5-pre-treated 
cells even at low doses. Additionally, NecroX-5 
pre-treated NK-YS cells were sensitive to doxo-
rubicin, whereas they were dose-dependently 
sensitive to cisplatin regardless of NecroX-5 
treatment. Cyclophosphamide and methotrex-

Figure 4. The effects of intracellular ROS inhibition on 
P-gp function. Rhodamine 123 (Rho123) accumula-
tion assays were performed to investigate the effects 
of NecroX-5 on P-gp function. In EBV-negative cells, 
high intracellular accumulation of Rho123, even in 
NecroX-5 untreated cells, was observed. In both NK-
92 and NK-YS EBV-positive cell lines, NecroX-5 in-
duced mitochondrial accumulation of Rho123 by re-
ducing P-gp function. White histograms with grey lines 
show untreated cells, and grey histograms with black 
dotted lines show NecroX-5-treated cells. *P < 0.05, 
***P < 0.001 vs. control group.
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Figure 5. The cytotoxic effects of NecroX-5 alone or with anti-cancer drugs. CCK-8 assay measuring cell viability for investigating the cytotoxic effects of NecroX-5. 
A. Although the cytotoxic effects of NecroX-5 varied by cell line, all EBV-negative cells were sensitive to NecroX-5 alone. However, in most EBV-positive cell lines, 
NecroX-5 alone was not sufficient to kill lymphoma cells. B. Lymphoma cell lines pre-treated with 40 μM NecroX-5 for 1 hour were cultured with four anti-cancer 
drugs for 48 h. In EBV-positive NK cell lymphoma cells, NecroX-5 enhanced the cytotoxic effects of the P-gp-dependent anti-cancer drugs doxorubicin and cisplatin. 
Dotted lines with empty circles indicate untreated cells, and dark lines with full squares indicate cells pre-treated with NecroX-5. *P < 0.05, **P < 0.01, ***P < 
0.001 vs. NecroX-5 non-treated group.
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Figure 6. The involvement of STAT1 phosphorylation after inhibition of intracellular ROS. A. In NKL cells, phosphorylation of NF-κB, but not STAT1, STAT3 or ERK1/2, 
was inhibited by NecroX-5. B. In NK-92 cells, NecroX-5 downregulated STAT1, STAT3, ERK1/2 and NF-κB expression. In NK-YS, only the STAT1 signalling pathway was 
regulated and NecroX-5 upregulated NF-κB phosphorylation. C. Under hypoxic conditions induced by H2O2 stimulation, STAT1 signalling was inhibited by NecroX-5. 
Grey histograms show untreated cells, and white histograms with dotted lines show NecroX-5-treated cells. *P < 0.05, **P < 0.01, ***P < 0.001 vs. NecroX-5 
non-treated group.
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ate were less effective in both the NecroX-5 
pre-treated and untreated groups. Interestingly, 
HANK-1 cells pre-treated with NecroX-5 showed 
dramatically increased sensitivity to the P-gp-
dependent drugs doxorubicin and cisplatin. 
From these data, we concluded that NecroX-5 
induced sensitivity to conventional anti-cancer 
drugs especially in the case of P-gp-dependent 
drugs and it may provide a novel anti-cancer 
drug complement.

Inhibition of STAT1 phosphorylation downregu-
lates P-gp expression

To investigate which signalling pathways are 
involved in regulating P-gp expression via Ne- 
croX-5 and whether there is a difference be- 
tween EBV-negative and EBV-positive cell lines, 
NKL, NK-92 and NK-YS cells were pre-treated 
with various doses of NecroX-5 and stained for 
phospho-STAT1, STAT3, ERK1/2 and NF-κB. As 
shown in Figure 6A, there were no significant 

differences in STAT1, STAT3 or ERK1/2 phos-
phorylation after NecroX-5 treatment. Inter- 
estingly, NecroX-5 inhibited the phosphoryla-
tion of NF-κB (p65) in EBV-negative cells. In 
EBV-positive NK-92 cells, STAT1, STAT3, ERK1/ 
2 and NF-κB phosphorylation were downregu-
lated by NecroX-5 (Figure 6B, upper level). Both 
STAT1 and STAT3 phosphorylation were signifi-
cantly decreased; the MFI of p-STAT1 decreased 
from 3073.5 to 1849.5 and that of STAT3 
decreased from 1958.5 to 1323.5 following 
NecroX-5 treatment. The MFI of ERK1/2 phos-
phorylation was also downregulated from 1374 
to 1055. Although NecroX-5 also inhibited NF- 
κB phosphorylation, this effect was not signifi-
cant. In NK-YS cells, NecroX-5 did not affect the 
phosphorylation of STAT3 or ERK1/2 (Figure 
6B, lower level). However, STAT1 phosphoryla-
tion was downregulated and NF-κB phosphory-
lation upregulated after NecrX-5 treatment. 
Therefore, we confirmed that NecroX-5 regulat-
ed STAT1 phosphorylation only in EBV-positive 

Figure 7. The effects of STAT1-specific inhibition using fludarabine on P-gp expression in EBV-positive NK cell lym-
phoma cells. To inhibit STAT1 directly, lymphoma cells were treated with various doses of fludarabine, and P-gp 
expression was subsequently measured by flow cytometry. Regardless of the EBV infection status, STAT1 inhibition 
downregulated P-gp expression in a fludarabine dose-dependent manner. However, the effects of P-gp downregula-
tion were more significant in EBV-positive cells than EBV-negative because of the basal expression of P-gp. *P < 
0.05 vs. NecroX-5 non-treated group.
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lymphoma cells. To clarify whether NecroX-5 
regulates the STAT1 signalling pathway under 
hypoxic conditions in EBV-positive lymphoma, 
we pre-treated cells with 20 μM NecroX-5 and 
stimulated them with H2O2 to establish hypoxic 
conditions. Interestingly, NecroX-5 significantly 
reduced STAT1 phosphorylation under hypoxic 
conditions in EBV-positive cells (Figure 6C). 
From these data, we determined that NecroX-5 
regulated P-gp expression via the STAT1 signal-
ling pathway. 

Therefore, to clarify the relationship between 
STAT1 phosphorylation and P-gp expression, 
we used the STAT1-specific inhibitor fludara-
bine. Lymphoma cells were treated with various 
doses of fludarabine for 2 h. After inhibiting 
STAT1 phosphorylation with fludarabine, P-gp 
expression was reduced not only in EBV-
positive but also EBV-negative cells (Figure 7). 
Although P-gp expression was decreased from 
1.79% to 0.31% after treatment with 25 μM 
fludarabine, the effect was not significant, 
because the basal level of P-gp was low in EBV-
negative NKL. In NK-92 cells, P-gp was down-
regulated by fludarabine in a dose-dependent 

manner. P-gp expression was 25% in the rest-
ing state and was decreased to 21.7%, 19.9% 
and 18.1% following treatment with 5, 12.5 and 
25 μM fludarabine, respectively. However, the 
effect was not statistically significant. Addi- 
tionally, in NK-YS cells, another EBV-positive 
cell line, inhibition of STAT1 signalling via fluda-
rabine treatment decreased P-gp expression 
from 29.1% to 14.9% (P < 0.05). Altogether, we 
concluded that STAT1 phosphorylation has a 
close relationship with high P-gp expression 
and NecroX-5 downregulated P-gp expression 
through inhibition of the STAT1 signalling path-
way more effective compared to fludarabine. 

Discussion

In this study, we first evaluated the direct rela-
tionships among EBV, ROS and P-gp. EBV infec-
tion caused hypoxic conditions, which in turn 
induced high levels of intracellular ROS. In- 
creased intracellular ROS activated the STAT1 
signalling pathway and phosphorylated STAT1 
promoted P-gp expression resulting from MDR1 
gene translation (Figure 8). P-gp-induced drug 
efflux resulted in reduced chemosensitivity. 

Figure 8. Schematic diagram of the relationships among EBV, ROS and P-gp, and the effects of NecroX-5 on P-gp 
regulation. After EBV infection, elevated ROS levels induce STAT1 phosphorylation, and phosphorylated STAT1 in-
duces MDR1 expression, resulting in production of P-gp. NecroX-5 decreases P-gp expression by regulating intracel-
lular ROS level.
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Interestingly, NecroX-5 regulated the expres-
sion and function of P-gp via intracellular ROS 
regulation and therefore increased chemosen-
sitivity to the P-gp-dependent anti-cancer drugs 
doxorubicin and cisplatin.

Whether high levels of ROS aggravate tumor 
conditions is a subject of controversy [33-35]. 
It has been reported that EBV-induced ROS 
lead to a poor prognosis via signalling pathway 
modifications, gene instability and deregulation 
of enzymatic functions. Cerimele and col-
leagues first reported that high ROS levels 
aggravated EBV-positive Burkitt’s lymphoma 
via VEGF production induced by MAPK phos-
phorylation [23]. EBNA1 promoted NF-κB acti-
vation by activating other viral genomes such 
as latent membrane protein 1 (LMP1), which is 
affected by highly expressed ROS levels [36] or 
ROS-induced EBV lytic gene expression via 
NF-κB and AP-1 signalling activation [22]. 
Additionally, there have been some reports that 
increased ROS levels after EBV infection pro-
moted gene instability by DNA damage, inhibi-
tion of DNA repair [19] and telomere dysfunc-
tion [18]. Impairment of enzymes involved in 
intracellular ROS regulation, including malondi-
aldehyde, catalase and superoxide dismutase, 
was reported in B cell lymphoma [15, 16] and in 
epithelial cells resulting in nasopharyngeal car-
cinomas [37-39]. In contrast, there are reports 
that upregulation of ROS induced tumor apop-
tosis and inhibited tumorigenesis in EBV-
positive cancer. In EBV-infected B cells, high 
ROS expression induced apoptosis via centro-
cyte/centroblast marker 1 ligation [40] and Fas 
ligand upregulation by B7-H4 [41] and B7-H1 
[42]. It has also been reported that intracellular 
ROS attenuated tumorigenesis via various sig-
nalling pathways, including the MAPK and JNK 
pathways [43-47], and activation of RhoA and 
Ras [48] and Tap73 and XAF1 [49]. Here, we 
demonstrated that high levels of intracellular 
ROS after EBV infection result in more aggres-
sive tumor microenvironments.

In this study, we evaluated changes in various 
signalling pathway molecules including NF-κB, 
STAT and MAPK after NecroX-5 treatment to 
determine which signalling pathways are 
involved in the downregulation of P-gp by inhib-
iting intracellular ROS. As shown in Figures 6 
and 7, we confirmed that inhibition of high 
phosphorylated STAT1 levels by NecroX-5 
decreased P-gp expression, and STAT1 inhibi-

tion by the STAT1-specific inhibitor fludarabine 
downregulated P-gp in vitro. However, the 
mechanism about explaining why NecroX-5 is 
more effective than fludarabine remains to be 
studied. It has been reported that STAT1 phos-
phorylation is closely related to P-gp expres-
sion. Fryknas and colleagues first observed a 
higher level of phosphorylated STAT1 in doxoru-
bicin-resistant myeloma cells [50]. In addition, 
in lung cancer, etoposide resistance was 
induced by P-gp expression regulated by his-
tone deacetylase 4 at the transcriptional level 
and by STAT1 at the post-transcriptional level 
[51]. Therefore, NecroX-5 may also be effective 
against lung cancer, as ROS have been linked 
to oxidation and nuclear efflux of histone dea-
cetylase 4. Although the role of STAT1 phospho-
rylation in cancer has recently proven contro-
versial, as it can act as both a tumor suppres-
sor and tumor promoter [52], our study is 
meaningful in confirming that STAT1 phospho-
rylation induced by ROS aggravated EBV-
positive lymphoma via P-gp overexpression and 
NecroX-5 may serve as a new anti-cancer com-
plement. However, in NK-YS cells, after treat-
ment of NecroX-5, the phosphorylation of NF-κB 
was increased, we hypothesized that this 
seemed to be due to the changes of intracellu-
lar ROS environment, however, more research 
is needed to understand.

In conclusion, based on this study, EBV latent 
infection induced high levels of intracellular 
ROS and highly-induced ROS upregulated P-gp 
via the STAT1 signalling pathway. Interestingly, 
we confirmed that the ROS scavenger NecroX-5 
regulated the expression and function of P-gp 
and pre-treatment of NecroX-5 to ENKTCL 
patients with hypoxic condition could increase 
therapeutic effects of existing P-gp-dependent 
anti-cancer drugs; therefore, NecroX-5 may be 
a novel anti-cancer drug complement to over-
come resistance to anti-cancer drugs in EBV-
positive NK cell lymphoma.
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Figure S1. Reduction of P-gp expression after down-regulation of intracellular ROS using NecroX-5. Lymphoma cell 
lines were pre-treated with 20 μM NecroX-5 and cultured for protein expression. Total proteins were collected and 
western blot analyses for P-gp and β-actin were performed. In NK-92 and NK-YS cell lines, NecroX-5 was able to 
decrease P-gp expression significantly and in HANK-1 cell, P-gp expression was slightly reduced. 


