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Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems with 
diverse presentation, primarily affecting women of reproductive age. Various genetic and environmental risk factors 
are involved in the pathogenesis of SLE, and many SLE susceptibility genes have been identified recently; however, 
gene therapy is not a viable clinical option at this time. Thus, environmental risks factors, particularly regional 
characteristics that can be controlled, need to be further investigated. Here, we systematically explored these risk 
factors, including ultraviolet radiation, seasonal distribution, geographical distribution, and climate factors, and also 
summarized the mechanisms related to these risk factors. Probable mechanisms were explicated in at least four 
aspects including inflammatory mediators, apoptosis and autophagy in keratinocytes, epigenetic factors, and gene-
environment interactions. This information is expected to provide practical insights into these risk factors in order to 
benefit patients with SLE and facilitate the development of potential therapeutic strategies.
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Introduction

Systemic lupus erythematosus (SLE) is an au- 
toimmune disease involving multiple organ sy- 
stems with diverse presentation, primarily af- 
fecting women of reproductive age. SLE can 
persist throughout the entire life of the patient, 
exhibiting possible frequent relapses. The eti- 
ology of SLE is not well understood, although 
the disease is known to be caused by genet- 
ic and environmental interactions. A study by 
Deapen et al. showed that the SLE concord- 
ance rate in monozygous twins was 24%, whi- 
ch was substantially lower than a prior estim- 
ation [1], indicating that environmental risk fac-
tors cannot be neglected. Environmental fac-
tors can work together to cause epigenetic 
changes, resulting in immune dysregulation, 
loss of tolerance, and autoimmunity and lead-
ing to onset or recurrence of SLE. Although 
many studies have evaluated susceptibility-
related genes, research on environmental risk 

factors and the mechanisms through which 
these risk factors contribute to the develop-
ment of SLE remains limited. Moreover, com-
pared with the complexity and technical difficul-
ties of genetherapy, changing environmental 
factors is much more practical.

In this review, we discuss environmental risk 
factors, including ultraviolet radiation (UVR), cli-
mate factors, and geographical distribution, in 
the pathogenesis of SLE and illustrate the 
underlying mechanisms with the goal of facili-
tating the development of new therapeutic 
strategies for the management of SLE.

Environmental risk factors for SLE

UVR is the most important environmental factor 
inducing SLE, as demonstrated in various stud-
ies of human populations and experimental 
studies [2-7]. UVR includes UVA, UVB, and UVC.
UVA (wavelength range: 320-400 nm) is abun-
dant in terrestrial sunlight, but is not strongly 
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absorbed by proteins and nucleic acids and 
induces erythema; UVB (wavelength range: 
290-320 nm) strongly induces erythema and  
is present in the terrestrial solar spectrum;  
and UVC (wavelength range: 200-290 nm) is 
absorbed by the earth’s ozone layer and is ge- 
rmicidal, although its effects on the develop-
ment of SLE appear negligible [8]. UVA expo-
sure induces cutaneous lupus skin lesions, but 
requires nearly 1000 times more energy th- 
an UVB to induce erythema [8]. The role of UVA 
in the development of SLE remains controver-
sial. McGrath showed that in a New Zealand 
White/New Zealand Black mouse model of 
lupus, low-dose UVA markedly decreased mor-
tality, prolonged survival, improved immune 
function, and had significant therapeutic ef- 
fects [9]. In a follow-up human study, McGrath 
et al. found that low-dose UVA with long-term 
therapy significantly decreased clinical disease 
activity in SLE, such as remission of joint pain 
and rashes, reversal of brain dysfunction, elimi-
nation of anticardiolipin antibodies, and cessa-
tion of cognitive decline [10-15].

In contrast, UVB is known to be involved in the 
pathogenesis of SLE development. UVB expo-
sure is responsible for photosensitivity, skin 
rashes, and recurrence in patients with pre-
existing SLE. Additionally, Cheng et al. found 
that annual sunshine duration is related to dis-
ease activity [16]. Indeed, SLE has been shown 
to have seasonal variation, with higher inci-
dence in the summer, during which UVR is the 
strongest [17]. However, a counter-season phe-
nomenon has also been observed with regard 
to the seasonal distribution of SLE disease 
activity. For example, some studies have de- 
monstrated that there are more cases of new 
onset and recurrence of SLE in winter and 
spring than in summer and autumn [18-25]. 
Moreover, different organs were shown to ex- 
hibit changes in seasonal variation patterns in 

stranded DNA levels were observed during 
October and November [26]. Additionally, some 
geographical environment factors, such as cli-
mate factors (temperature, atmospheric pres-
sure, mean humidity, wind speed, and precipi-
tation) and geographical distribution (latitude, 
longitude and altitudes), are also closely asso-
ciated with UVR and have been studied in the 
context of susceptibility to SLE.

Based on hypotheses drawn from epidemiolog-
ical or experimental animal studies, climate 
factors and geographical distribution maybe 
risk factors for the development of SLE [18, 
22-25, 27, 28]. Climate factors, as an important 
part of the geographical environment, have 
been shown to be correlated with autoimmune 
diseases and may influence the progression of 
SLE. Several studies have reported that the 
activity and incidence of SLE are correlated 
with temperature, atmospheric pressure, mean 
humidity, wind speed, and precipitation [16, 
18, 22-25]. In addition, Pan et al. showed that 
the proportion of lupus nephritis increased sig-
nificantly with the decreasing geographic lati-
tude from the northern to the southern part of 
China, although no significant correlation was 
found with the change in geographic longitude, 
potentially because most studies were per-
formed within a particular longitudinal band in 
China [27]. Cheng et al. also showed that living 
in the southern part of China is a risk for dis-
ease activity in SLE [16]. This epidemiology of 
the geographical distribution of SLE suggests 
that latitude may be an important environmen-
tal factor contributing to the development of 
SLE. In contrast, Deng et al. found that there 
was no significant correlation between SLE 
activity and altitude; Generally speaking, in 
patients with active or inactive SLE, clinical fea-
tures and organ activities had different pat-
terns of altitudinal variations. The development 
of SLE can also be affected by specific environ-

Table 1. Association between natural factors and SLE
Definite Probable
UVR Season distribution Climate factors Geographical distribution
UVB Winter and spring Temperature Latitude
UVA Atmospheric pressure Longitude

Mean humidity Altitude
Precipitation
Wind speed

Abbreviation: UVR: ultraviolet radiation, UVB: ultraviolet B, UVA: ultraviolet A.

a prospective longitudinal 
cohort study of 2102 pa- 
tients with SLE; significa- 
ntly more photosensitive 
rash and arthritis activity 
were observed in spring 
and summer, decrease in 
renal activity was found in 
the summer, higher ser- 
ositis activity was found 
from August to October, 
and higher anti-double-
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mental factors at high altitudes [28]. These 
findings are summarized in Table 1. Further 
studies on the season distribution (temporal 
distribution) and geographical distribution (spa-
tial distribution) patterns in SLE will improve our 
understanding of these SLE-related climate 
factors and geographical distributions in order 
to establish seasonal treatment programs for 
vulnerable groups.

Pathogenic mechanisms

Inflammatory mediators

Inflammatory mediators regulated by UVR and 
climate factors may propagate inflammatory 
responses, recruit immune cells, suppress im- 
mune system tolerance, and promote B- and T- 

in the pathogenesis of lupus by inducing a pro-
inflammatory environment and leading to ab- 
normal long-lasting photoreactivity via infla- 
mmatory mediators, such as pro-inflammatory 
cytokines, chemokines, and adhesion mole-
cules (Table 2). UVR exposure upregulates pro-
inflammatory cytokines expression, such as 
interferon (IFN)-α, interleukin (IL)-1, IL-6, and 
tumor necrosis factor (TNF)-α [4, 5, 29-35]. In 
particular, IFNs, which have important roles in 
the early activation of the immune system, are 
involved in the development of UVB-induced 
inflammatory skin lesions in patients with SLE 
[36].

UVR and neutrophil extracellular traps induce 
oxidative modifications in DNA, which can 
result in resistance to degradation by the intra-

Figure 1. The role of UVR in the development of SLE. Abbreviation: SLE, systemic lupus erythematosus; UVR, ultra-
violet radiation; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; CXCL, chemokine (C-X-C motif) ligand; 
CCL, chemokine (C-C motif) ligand; ICAM-1, intercellular adhesion molecule 1; HMGB1, high-mobility group protein 
B1; LFA-1, lymphocyte function-associated antigen; DNA methyl transferase 1, DNMT1.

Table 2. Inflammatory mediators in the development of SLE
Classification Details of Inflammatory mediators
Cytokines IFN-α, IL-1, IL-6, TNF-α, IL-12.
Chemokines CXCL9, CXCL10, CXCL11, IL-8, CCL 5, CCL20, CCL22, chemerin.
Adhesion molecules ICAM-1, LFA-1, e-selectin, vascular cell adhesion molecule-1.
Proteins HMGB1.
Abbreviation: IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; CXCL: chemokine (C-X-C 
motif) ligand; CCL, chemokine (C-C motif) ligand; ICAM-1, intercellular adhesion molecule 1; 
HMGB1, high-mobility group protein B1; LFA-1, lymphocyte function-associated antigen.

cell activation, givi- 
ng rise to the deve- 
lopment of SLE (Fi- 
gure 1).

UVR

In genetically pred- 
isposed individuals, 
UVR, as a predisp- 
osing factor of SLE, 
has important roles 
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cellular nuclease three prime repair exonucle-
ase 1. Subsequently, oxidized DNA produces 
various type I IFNs, which are involve in the 
pathogenesis of SLE [37, 38]. Additionally, type 
I/III IFNs increase the expression of pro-inflam-
matory chemokines, including chemokine (C-X-
C motif) ligand (CXCL) 9, CXCL10, and CXCL11, 
which recruit chemokine (C-X-C motif) recept- 
or 3 effector cells and induce keratinocyte 
apoptosis [5, 39, 40]. However, another study 
in IFN-α receptor-knockout mouse considered 
type I IFNs protective against skin inflammation 
induced by UVB irradiation [41].

UVR also upregulates intracellular adhesion 
molecules, such as intercellular adhesion mol-
ecule 1 (ICAM-1) and lymphocyte function-
associated antigen 1 [32, 36, 42-44], and 
increase the secretion of chemokines, includ-
ing IL-8, chemokine (C-C motif) ligand (CCL) 5, 
CCL20, CCL22, and chemerin [3, 34, 45], which 
are important for recruiting immune cells to 
areas of inflammation. Yin et al. reported that 
chemerin, which was found to be elevated in 
UVB-irradiated skin, was chemotactic for plas-
macytoid dendritic cells (pDCs) via its function-
al receptor chemR23 and recruited PDCs to 
areas of inflammation [45]. PDCs contribute to 
the pathogenesis of SLE by producing type I 
IFNs. Additionally, Abdulahad et al. revealed 
that UVB exposure induced high-mobility group 
protein B1 (HMGB1) release, which is related to 
the number of apoptotic cells in patients with 
SLE. HMGB1 released from apoptotic keratino-
cytes exerts inflammatory effects through bind-
ing to its receptors, resulting in the develop-
ment of inflammatory lesions in the skin of 
patients with SLE upon UVB exposure [46].

Low temperature

Low temperature also plays an important role 
in the occurrence, development and recurrence 
of SLE. Pro-inflammatory cytokines, such as 
TNF-α, IL-6, and IL-12, which are produced by 
monocytes, can be upregulated by low temp- 
erature. The proportions of pro-inflammatory 
cytokines (IL-12/IL-10 and TNF-α/IL-10) may 
then increase [47-50]. In parallel, cold stimula-
tion induces the expression of the inflammato-
ry adhesion molecules e-selectin, ICAM-1, and 
vascular cell adhesion molecule-1 [51], and 
complement is activated at low temperature 
[52-54]. Also, cold exposure can induce cell 

apoptosis [55, 56]. These factors may lead to 
the development of SLE.

Pressure

Extracellular pressure may alter some aspec- 
ts of macrophage and monocyte functions. 
Singhal et al. showed that pressure increases 
monocytes migration in a dose-dependent 
manner when compared with normal atmo-
spheric pressure [57], and Hironosuke et al. 
revealed that pressure enhances the expres-
sion of scavenger receptors in macrophages 
[58]. Interestingly, extracellular pressure regu-
lates the production of TNF-α and IL-1β, which 
are involved in the development of SLE, by regu-
lating monocytes and macrophages [59].

Humidity

Ye et al. demonstrated that humidity may be a 
risk factor for SLE and may decrease the body’s 
resistance to bacterial infections [60]. Zhang et 
al. also showed that a damp environment may 
reduce cellular immune function and alter 
some aspects of the ultra structure, resulting in 
pathological changes in the joints, lungs, and 
kidneys and causing function damage to multi-
ple systems and organs in rats [61]. In particu-
lar, they also demonstrated that dampness and 
wind may increase the production of TNF-α and 
IL-6, resulting in organ damage in rats [62].

Apoptosis and autophagy in keratinocytes

Apoptosis

UVR, particularly UVB, is a strong inducer of 
apoptosis [6] and has dose-dependent effects 
on the rate of apoptosis in keratinocytes. Low 
doses induce apoptosis without inflammation, 
intermediate doses induce apoptosis and IL-1α 
production, and high doses induced necrosis 
and dramatic increases in IL-α production [63]. 
The DNA of keratinocytes absorbs UVR, leading 
to strand breaks or cyclobutan pyrimidine dim-
mers [64]. Pro-inflammatory mediators and 
DNA damage, which are influenced by UVR, 
jointly results inkeratinocyte death [65]. 
Moreover, UVR can upregulate the Fas antigen 
on peripheral T cells in patients with SLE, result-
ing in apoptosis in T cells [66]. Furthermore, 
decreased clearance of apoptotic cells has 
been observed. Some studies have shown that 
UV exposure can induce accumulation of ap- 
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optotic cells due to impaired clearance of ap- 
optotic cells in the skin of patients with cuta- 
neous lupus [6, 67-69]. In contrast, Reefman  
et al. reported that UVB exposure did not in- 
duce apoptosis in the skin of patients with  
SLE compared with that in controls [70], and in 
vivo, there were no significant differences in 
clearance rates of apoptotic cells after UVB 
irradiation between patients with SLE and co- 
ntrols [71]. However, the skin of patients with 
SLE after UVB irradiation can induce infiltrates 
and inflammatory lesions due to an altered, 
inflammatory clearance of apoptotic cells; this 
may have a crucial role in the development of 
lupus-related skin lesions [71]. Many studies 
have also shown that UVB radiation can lead to 
a redistribution of nuclear antigens, including 
Ro, La, nuclear RNP, and Sm, which are related 
to cutaneous forms of lupus, to the cell surface 
in human keratinocytes [72-74]. Additionally, 
UVB radiation upregulates Ro52 expression in 
keratinocytes in inflammatory skin, which may 
generate auto-antibodies for Ro52 and disrupt-
tolerance [75, 76]. Also, UVB irradiation can 
generate novel auto-antigen structures in apop-
totic keratinocytes after UVB irradiation, e.g., 
covalent RNA-protein complexes involved in 
antigen capture and processing [77]. Overall, 
these effects, which promote an autoimmune 
state, are thought to be involved in SLE 
pathogenesis.

Autophagy

Studies of receiver biases have suggested th- 
at autophagy is involved in UVR-induced dam-
age. Moreover, exposure to UVA, UVB, and UVC 
induces autophagy, which may be a protective 
response to UVR [78-84]. Exposure to UVA  
and UVA-oxidized phospholipids, which leads  
to oxidative stress, such as accumulation of 
protein aggregates and elevated levels of re- 
active oxidized phospholipids, induce autop- 
hagy to promote the removal of oxidized ph- 
ospholipids and protein aggregates in epider-
mal keratinocytes [82]. Additionally, autophagy 
reduces reactive oxygen species and maintains 
the redox balance upon UVA-induced oxidative 
damage in limbal stem cells [84]. Chronic UVA 
has also been shown to inhibit the enzymatic 
activities of cathepsin B (CB) and cathepsin L 
(CL) and to impair autophagic flux; downstream 
CB and CL inactivation results in UVA-induced 
lysosomal impairment in human skin fibrob- 

lasts, consequently causing skin damage in 
patients with SLE [85, 86]. Notably, however, 
UVB exposure activates autophagy, which may 
be a protective response to UVB-induced da- 
mage, such as DNA damage and apoptosis, in 
epidermal cells. Studies have also shown th- 
at UVB-induced autophagy is mediated by in- 
hibition of glycogen synthase kinase 3β and 
activation of AMP-activated protein kinase (AM- 
PK) [79]. UVC exposure induces irreparable 
mitochondrial DNA (mtDNA) damage, and mi- 
tochondrial autophagy, which is increased aft- 
er UVC exposure, can remove mtDNA damage 
in primary human fibroblasts [78, 81]. Overall, 
autophagy may play a protective role in UVR-
induced damage, and autophagy defects may 
promote the development of SLE.

Epigenetic factors

DNA methylation

Previously evidence has shown that DNA hypo-
methylation is implicated in the pathogenesis 
of SLE. Normal CD4+ T cells develop auto-reac-
tivity when inhibiting DNA methylation, and 
these auto-reactive cells promote autoantibody 
production [43, 87-90]. Recent studies have 
shown that UVB exacerbates the development 
of SLE by decreasing the levels of DNA methyla-
tion in CD4+ T cells in a dose-dependent man-
ner [91-94]. Additionally, methylation‑related 
molecules, such as DNA methyl transferase 1 
(DNMT1) and methyl CpG binding domain pro-
tein 2 (MBD2), which maintain methylation and 
demethylation, respectively, may be involved in 
UVB-induced DNA hypomethylation in CD4+ T 
cells [95]. Zhu et al. demonstrated that UVB 
exposure decreases the levels of DNMT1 mRNA 
at higher dosages in patients with active SLE 
and but not affect MBD2 mRNA expression 
[92]. Wu et al. also found that UVB can inhibit 
DNMT1 activity in CD4+ T cells from patients 
with SLE [96]. However, Wang et al. and Wu et 
al. found that UVB exposure did not affect 
mRNA and protein expression of DNMT1 in 
CD4+ T cells from patients with SLE [91, 93]. 
Moreover, Wu et al. suggested that UVB 
enhances global DNA hypomethylation in CD4+ 
T cells by inhibiting DNMT1 catalytic activity in 
patients with SLE [93]. Another study conclud-
ed that loss of DNMT1 catalytic activity result-
ed in aberrant DNA methylation [97]. However, 
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the exact roles of DNMT1 in the pathogenesis 
of SLE are still unclear.

Overall, these findings demonstrated that the 
process through which DNA hypomethylation 
occurs in patients with SLE is complicated and 
that further studies are needed to evaluate the 
multiple factors involved in DNA methylation 
and demethylation.

MicroRNAs

UVB exposure induces microRNA-mediated 
gene regulation earlier than most transcription-
al responses [98] and can cause variations in 
the expression of microRNAs (Table 3) [99, 
100], which modulate the UVR-induced DNA-
damage response [101]. These deregulated 
microRNAs may be potentially involved in the 
pathogenesis of SLE. Xu et al. found that miR-
146a and miR-125a-5p were downregulated 
after UVB exposure in mouse skin [102]. When 
miR-146a, which negatively regulates the IFN 
pathway, is expressed at low levels, the expres-
sion of type I IFNs is increased by targeting key 
signaling proteins in patients with lupus [103]. 
Indeed, miR-146a expression is negatively cor-
related with SLE activity [104]. Moreover, over-
expression of miR-125a markedly reduces the 
levels of its target gene kruppel-like factor 13 
(KLF 13) [105] and may induce CCL5 expres-
sion in late-activated T cells [106]. The level of 
CCL5 [105] modulates the recruitment of T 
cells to inflammatory sites, leading to tissue 
and organ inf﻿﻿lammation [107-109]. In contrast, 
UVB exposure decreases the level of miR-125a, 
which can result in elevated levels of inflamma-
tory chemokines, such as CCL5, and promote 
the development of SLE [105]. Dong et al. 
showed that miR-145 is overexpressed and 
contributes to IL-6-induced increases insensi-
tivity to UVB irradiation by decreasing the levels 
of MyD88 [110].

In a study of UVB-mediated microRNA expres-
sion in peripheral blood T cells from patients 
with SLE, UVB was found to induce significant 
upregulation of miR-106b-5p and miR-125b-5p 

SLE. Additionally, downregulation of miR-125b 
regulates the expression of ETS1 and STAT3 
genes, triggering the development of SLE [112]. 
Gao et al. also demonstrated that the level of 
miR-125b-5p is decreased in peripheral blood 
mononuclear cells from patients with SLE and 
that miR-125b inhibits autophagy in Jurkat 
cells by targeting UVR resistance-associated 
gene protein, indicating that miR-125b maybe a 
therapeutic target for SLE [113]. Further stud-
ies are needed to determine the complex pro-
cesses through which microRNAs are deregu-
lated in patients with SLE.

Gene-environmental interactions

As external factors, climate factors, which ha- 
ve been shown to affect various polymorphic 
loci related to the immune response, can influ-
ence the roles of these polymorphic loci in dis-
ease processes by altering the allele frequen- 
cy distribution. Many studies have shown that 
multiple polymorphic loci are strongly correl- 
ated with climate factors, such as UVR, humid-
ity, temperature, and latitude [114, 115]. For 
example, two human-specific polymorphisms, 
p53 codon 72 (rs1042522) and MDM2 single 
nucleotide polymorphism (SNP) 309 (rs2279- 
744), which influence the activities of p53, have 
strong correlations with minimum winter tem-
perature, latitude, and summer downward solar 
radiation [114]. Some findings of the gene-envi-
ronment interaction hypothesis have shown 
that climate factors may alter the allele fre-
quency distributions of multiple polymorphic 
loci involved the development of SLE [114, 
115]. Interestingly, a study in a Korean popula-
tion showed an association of the p53 codon 
72 polymorphism with SLE susceptibility, and 
individuals with the Pro allele were found to be 
more susceptible to SLE than those carrying 
the Arg allele [116]. Furthermore, two case-
control studies from Anhui province in China 
and Shiraz in Iran also revealed that p53 codon 
72 (rs1042522) may be associated with sus-
ceptibility of SLE in Chinese and Iranian popula-
tions [117, 118].

Table 3. Expression levels of MicroRNAs in SLE patients
Expression levels Details of Micro RNA
Upregulation miR-145, miR-106b-5p, miR-125b-5p.
Downregulation miR-146a, miR-125a-5p, miR-125a, miR-125b.

[111]. However, few studies have 
evaluated the associations of miR-
106b-5p and miR-125b-5p with SLE. 
Luo et al. reported that miR-125b lev-
els were reduced, showing a nega-
tive association with lupus nephritis, 
in T cells from patients with active 
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Recent findings have shown that p53 may be a 
crucial factor in the pathogenesis of SLE. The 
tumor suppressor p53 has been shown to play 
central roles in apoptosis, cell proliferation, and 
DNA repair [119-121]. In addition, p53 sup-
presses autoimmunity. Indeed, overexpression 
of p53 and the presence of autoantibodies to 
the C-terminal domain of p53 inhibit the func-
tions of p53 in patients with SLE and murine 
lupus [122-127]. Moreover, mutations in the 
TP53 tumor-suppressor gene are prognostic 
factors for the development of lymph prolifera-
tive disorders in patients with autoimmune dis-
eases, including rheumatoid arthritis, SLE, der-
matomyositis, progressive systemic sclerosis, 
and autoimmune hemolytic anemia [128]. p53 
reduces regulatory T cells, consequently sup-
pressing the development of autoimmunity 
[129, 130]. However, the roles of genetic poly-
morphisms in p53 in SLE remain unclear. The 
p53 codon 72 polymorphism was not associat-
ed with SLE in Spanish and Polish populations 
[131, 132]. Moreover, a study in Caucasian, 
African American, and Asian children and adults 
also demonstrated a lack of association of the 
TP53 Arg72Pro SNP and the MDM2 SNP309 
with SLE [133]. However, a meta-analysis of 
associations between p53 codon 72 polymor-
phisms and SLE demonstrated that p53 codon 
72 may explain why Asians but not Europeans 
are susceptible to SLE [134]. In contrast, MDM2 
SNP309 may promote the expression of the 
MDM2 gene by increasing the affinity of tran-
scriptional activator of nuclear hormone recep-
tors (Sp1), leading to the higher levels of MDM2 
RNA and protein and attenuating the p53 path-
way [135, 136]. The SNP309 may also affect 
the roles of hormones, such as estrogen, in 
tumorigenesis because the G-allele of SNP309 
increases the affinity of the protein for Sp1 
[137]. Activation of MDM2 may also reduce the 
numbers of plasma cells and CD3+CD4-CD8- T 
cells, leading to the production of autoantibod-
ies and immune complexes and aggravating 
the development of SLE and lupus nephritis in 
a mouse model of lupus [138].

Taken together, these findings demonstrate 
that polymorphisms in both p53 codon 72 
(rs1042522) and MDM2 SNP309 (rs2279744) 
are involved in the pathogenesis of SLE and 
that climate factors, such as minimum winter 
temperature, latitude, and summer downward 
solar radiation, may affect SLE by modulating 

the allele frequency distributions of p53 codon 
72 and MDM2 SNP309.

Hancock et al. showed that the SNP rs2313132, 
located in the upstream promoter region of 
PCDH18, was strongly correlated with summer 
UVR from a worldwide analysis. Additionally, 
the SNP rs2187668, located in the region of 
the first intron of HLA-DQA1, was strongly co- 
rrelated with relative humidity in Africa and 
Western Eurasia. Both polymorphic loci were 
confirmed to be related to SLE genetic suscep-
tibility [115]. However, a case-control study 
from Anhui province in China found a lack of 
association of PCDH18 (SNP rs2313132), 
HLA-C (SNP rs10484554), and TLR6 (SNP 
rs5743810) with susceptibility to SLE in Asians, 
although these polymorphic loci were strongly 
correlated with climate factors [117]. Despite 
these findings, these SNPs were found to be 
correlated with the clinical symptoms of 
patients with SLE. For example, PCDH18 (SNPs 
rs2313132), which was strongly correlated 
with summer UVR, was correlated with leuco- 
penia; TP53 (rs1042522), which was strongly 
correlated with minimum winter temperature, 
latitude, and summer shortwave radiation, was 
correlated with discoid erythema; HLA-C (rs- 
10484554), which was strongly correlated wi- 
th summer precipitation rate, was correlated 
with leucopenia, alopecia, and fever; and TLR6 
(rs5743810), which was strongly correlated 
with winter UVR, was correlated with pericardi-
tis, oral ulcers, and photosensitivity. These 
SNPs may be associated with the geographical 
distribution of patients with SLE in China [117].

Sun et al. suggested that the SNP rs11868- 
112 in the RPTOR gene was strongly correla- 
ted with latitude and winter temperature and 
hypothesized that the frequency of the deriv- 
ed T allele may increase with decreasing te- 
mperature and increasing latitude. These ch- 
anges may promote regulation of the immune 
response through mammalian target of rapa- 
mycincomplex 1, consequently reducing the 
expression of RPTOR to maintain the balance 
between pathogen pressure and immune re- 
sponse. Conversely, low latitudes and high te- 
mperatures, under which conditions pathog- 
en diversity is increased [139], induce the  
production of RPTOR to enhance the immune 
response; this can result in increased risk of 
susceptibility to autoimmune diseases, such as 
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SLE [140]. Further studies of the association  
of RPTOR (SNP rs11868112) with SLE are 
required.

Overall, differentiation between polymorphic 
loci and ethnic groups may explain why diff- 
erent populations exhibit differences in racial 
compositions when exposed to distinct envi- 
ronmental factors, such as UVR, temperature, 
and latitude (Table 4). These factors can affe- 
ct the roles of these polymorphic loci in the 
development of SLE by changing the allele  
frequency distribution.

Conclusion

In this review, we summarized environmental 
risk factors, including UVR, season distribution, 
climate factors, and geographical distributions, 
affecting the development of SLE. The probable 
mechanism was assessed based on inflamma-
tory mediators, apoptosis, autophagy in kerati-
nocytes, epigenetic factors, and gene-environ-
ment interactions. This information is expected 
to facilitate the development of new strategies 
for preventing the occurrence and progression 
of SLE. Susceptible individuals should avoid 
environmental risk factors if possible. However, 
the effects of some environmental factors, par-
ticularly seasonal distribution, climate factors, 
and geographical distributions, on SLE are still 
controversial, and the information is limited. 
Accordingly, further studies are required to clar-
ify the environmental determinants of SLE.
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