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Abstract: 5-hydroxytryptamine receptors 2A and 1A (5-HT2A and 5-HT1A receptors) are most closely related to 
anxiety-like behavior in post-traumatic stress disorder. This study was aimed at determining how 5-HT2A and 5-HT1A 
receptors mediate stress-induced anxiety-like behavior. C57BL/6 mice were exposed to conditioned fear stress 
combined with single-prolonged stress and injected with corresponding antagonists of 5-HT2A or 5-HT1A recep-
tors or DMSO. The established mouse model was used in conjunction with open-field test, freezing behavioral test 
and elevated plus maze test. Protein expression levels of 5-HT2A and 5-HT1A receptors, ERK1 and ERK2, pERK1, 
pERK2 and c-Myc in mice hippocampus were evaluated by Western blot analysis and immunofluorescence label-
ing. Relative mRNA expression levels of 5-HT2A and 5-HT1A receptors, ERK1, ERK2 and c-Myc were analyzed with 
RT-qRCR. 5-HT2A receptor plays a significant role in anxiety-like behavior by inhibiting 5-HT1A receptor expression. 
Effect of 5-HT2A and 5-HT1A receptors on stress-related anxiety-like behavior was elicited via ERK1 and ERK2 
phosphorylation. On the basis of our experimental results, we hypothesize interaction between 5-HT2A and 5-HT1A 
receptors in mouse hippocampus to mediate anxiety-like behavior via ERK pathway.

Keywords: 5-HT2A and 5-HT1A receptors, anxiety-like behavior, ERK pathway, hippocampus, post-traumatic stress 
disorder

Introduction

Anxiety-like behavior in post-traumatic stress 
disorder (PTSD) is a debilitating condition 
induced in individuals exposed to severe trau-
matic events, such as natural disasters and 
wars. This behavior is characterized by re-expe-
riencing trauma with intrusive memories (flash-
back), stimulus avoidance symptoms, distress-
ing recollections and hyper-arousal symptoms 
[1-6]. 84.8% of survivors of the 512 Wenchuan 
earthquakes in China exhibited anxiety-like 
behavior between 1 and 2 months following the 
earthquake event [7]. In United States, lifetime 
prevalence of traumatic event induced anxiety-
like behavior is 8% [7-9]. With increasing inci-
dence of severe traumatic events such as natu-
ral and humanitarian disasters, anxiety-like 
behavior related traumatic stress have signifi-
cant effect on mental health state of the gen-
eral population [6, 10, 11]. Nonetheless, the 

underlying mechanism of PTSD remains un- 
clear.

Previous studies have suggested serotonergic, 
GABAergic, glutamatergic and dopaminergic 
pathways to play a significant role in stress-
related mental disorders such as anxiety-like 
behavior [4, 12]. In serotonergic pathways, the 
5-hydroxytryptamine (5-HT) receptor family can 
be classified into 7 major families of receptors 
(such as 5-HT1-5-HT7) and 14 different sub-
types (such as 5-HT2A, 5-HT2B, and 5-HT2C) 
based on their pharmacological profile and sig-
nal transduction mechanism [13]. Whereas 5- 
HT2A activation promotes or increases anxiety-
like behavior, 5-HT1A activation inhibits anxi-
ety-like behavior [14, 15].

Does serotonin receptors 2A and 1A have any 
connection to anxiety-like behavior? By what 
mechanism if a connection does exist? In this 
study, conditioned fear (CF) stress and single-
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prolonged stress (SPS) were implemented in 
mice; open-field, freezing behavior and elevat-
ed plus maze tests were carried out [5, 16, 17]. 
Protein expression levels of 5-HT2A and 5- 
HT1A receptors were evaluated through Wes- 
tern blot analysis and immunofluorescence 
labeling [18]. mRNA expression levels of 5- 
HT2A and 5-HT1A receptors, ERK1, ERK2 and 
c-Myc were examined through RT-qRCR [19]. 

Materials and methods

Animals

Pathogen-free 6-week old male C57BL/6 mice, 
provided by the Academy of Life of Medical 
Sciences in Zhejiang University, were used in 
this project. Animal feeding was in accordance 
with National Institutes of Health Guide for 
Care and Use of Laboratory Animals guidelines 
and approved by Ethics Committee for Use of 
Experimental Animals in Zhejiang University. 
C57BL/6 mice were housed under the following 
conditions: 12 hour/12 hour light/dark cycle, 
21°C ± 1°C, 55% ± 5% humidity and free access 
to food and water in ventilated racks with plas-
tic housing cages lined with chipped or shaved 
wood bedding, and with 5 C57BL/6 mice per 
cage [7, 18, 20].

Experimental groups and drug administration

Thirty-two C57BL/6 mice were randomly dis-
tributed into four groups, each group compris-
ing of eight mice: DMSO (sham) group, CF stre- 
ss combined with SPS (PTSD) group, CF+SPS+ 
ketanserin (PTSD+K) group and CF+SPS+WAY- 
100635 (PTSD+W) group. Mice were housed 

DMSO via same approach as in ketanserin. 
DMSO was diluted to 10% by 0.9% normal 
saline [19]. 

Mouse model establishment

Mouse model was established in accordance 
with CF+SPS model with slight modifications  
[5] (Figure 1). Following the respective inject- 
ion of Ketanserin, WAY100635 and DMSO, 
mice in PTSD+K, PTSD+W and PTSD groups 
were exposed to CF. After 5 successive days  
of conditioned fear stress, mice were subject- 
ed to single-prolonged stress. Mice were ex- 
posed to foot electric shock on the first day. 
One mouse was placed in a foot electric shock 
chamber. After a 60-second adaptation period, 
bright light was turned on for 10 seconds in the 
chamber, with the mouse receiving 1 mA shock 
for 4 seconds. Injection and electric shock were 
repeated for 5 successive days. On 6th day, 
mice were subjected to SPS. First, they were 
individually immobilized for 2 hours in a 50- 
mL conical tube. Afterwards, mice were sub-
jected to 20 minutes forced swimming arranged 
in a plastic bucket (40 cm D × 80 cm H, 25°C 
water temperature, water depth of 30 cm) with 
one mouse every time. After 15 minutes of  
rest, mice were anesthetized with isoflurane  
for 0.5 minutes. Following recuperation, they 
were housed under the previously described 
conditions. Sham group was not subjected to 
CF+SPS.

Open field test

Following CF+SPS procedure, mice were sub-
jected to behavior-sensitized fear test on 13th 
day. Mice were allowed to adapt in testing room 

Figure 1. Experimental schedule for mouse model establishment and behav-
ioral test. Following the respective injection of Ketanserin, WAY100635 and 
DMSO, the mice of PTSD+K group, PTSD+W group, and PTSD group were 
exposed to CF for 5 consecutive days (started on the 1st day and ended on 
the 5th day) and progressive single-prolonged stress (SPS) on the 6th day. 
After CF+SPS was completed, the mice in PTSD+K group, PTSD+W group, 
PTSD group and sham group were housed for 7 days and subjected to open 
field [63], freezing behavior (FB) and elevated plus maze (EPM) tests, n = 8 
per group.

for 7 days after being exposed 
to stress.

5-HT2A-receptor antagonist 
(Ketanserin) and 5-HT1A-re- 
ceptor antagonist (WAY100- 
63), were both dissolved in 
DMSO (Selleck, Selleckchem, 
Houston, USA). Ketanserin 
was intraperitoneally inject- 
ed at a dosage of 0.3 mg/ 
kg [21], and WAY100635 was 
subcutaneously injected at a 
dosage of 3 mg/kg [22]. Mice 
in control group were treated 
with an equivalent dose of 
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for 1 hour prior to test. In the open-field test, a 
white acrylic plastic cubic chamber (45 cm × 45 
cm × 45 cm) was placed in a soundproof room, 
which was dimly illuminated with a switchable 
bright light. During test, each mouse was ini-
tially placed in the center of open field arena. 
Time taken by each mouse to explore center or 
edges of arena was recorded for 5 minutes 
using an automatic analyzing system (Video- 
Track, Viewpoint Inc., France). Each mouse was 
tested only once, with the next mouse exam-
ined after chamber had been thoroughly clean- 
ed [5, 6, 14, 23, 24].

Freezing behavior test

Freezing behavior test was performed in the 
same set of apparatus as the open field test. 
Freezing behavior was defined as an immobi- 
lity of all body movement including head with 
the exception of respiratory movement. Free- 
zing behavior was scored by observing animals 
every 10 seconds for 5 minutes using an auto-
matic analyzing system (VideoTrack, Viewpoint 
Inc., France). Total seconds spent in freezing 
behavior during each measurement period we- 
re recorded and evaluated as a percentage of 
total time. Each mouse was tested only once, 
with the next mouse examined after chamber 
had been thoroughly cleaned with 75% alcohol 
to avoid carry-over of olfactory cues [16, 17, 
25-27]. 

Elevated plus maze test

Following completion of open-field test, mice 
were allowed to rest for 30 minutes and sub- 
sequently subjected to elevated plus maze 
test. Elevated plus maze apparatus consisted 
of two opposite-facing closed arms (30 cm × 5 
cm × 15 cm), two opposite-facing open arms 
(30 cm × 5 cm) and a central area (5 cm × 5 
cm), which were composed of gray plexiglas 
and raised 50 cm above ground by a base. 
During test, closed arm was adjoined to wall, 
with mouse arranged in central area facing 
open arms. Location was recorded for 5 min-
utes. Frequency and time a mouse entered or 
stayed in open and closed arms were recorded 
using an automatic analyzing system (ANY-
maze, Stoelting Inc., USA). The following param-
eters were scored: number of entries into open 
arms or closed arms and time spent in open 
arms or closed arms. An entry was counted 
only when all paws of mouse entered same  
arm [5].

Western blot

Mice were killed via overdose of 10% chloral 
hydrate. Brains were quickly removed, placed 
immediately in a 10 mL Eppendorf tube at 
-20°C for 2 hours and stored at -80°C. Hip- 
pocampus from one hemisphere of all experi-
mental groups was dissected and separately 
homogenized in RIPA buffer containing inhibi-
tors (1 mM PMSF, 10 mg·mL-1 aprotinin, 10 
mg·mL-1 leupetin, 10 mg·mL-1 pepstatin A, 10 
mg·mL-1 antipain, 10 mg·mL-1 chymostatin, and 
5 mg·mL-1 trypsin inhibitor; Beyotime Biotech- 
nology, China) and centrifuged at 12,000 rpm 
4°C for 20 minutes. Supernatant was pre-
served at -80°C. Protein concentration was 
measured by BCA kit (KeyGEN, Nanjing, China) 
and adjusted to 3 μg/μL prior to conducting 
Western blot. 10 μL boiled proteins per well 
with 5 × loading buffer (Beyotime Biotechno- 
logy, China) were separated in 12% SDS-PAGE 
at 70 V for 20 minutes and 100 V for 100 min-
utes. Samples were then transferred to PVDF 
membranes (Millipore, Bedford, MA, USA) at 
350 mA for 105 minutes. Membranes were 
blocked with 5% skimmed milk 2 hours at room 
temperature and incubated with primary anti-
bodies (anti-5-HT1A receptor, rabbit polyclonal 
antibody, Abcam, 5 μg/mL; anti-5-HT2A re- 
ceptor, goat polyclonal antibody, Santa Cruz, 
1:200; anti-ERK12, rabbit polyclonal antibody, 
CST, 1:100; anti-pERK12, rabbit polyclonal 
antibody, CST, 1:2000; anti-c-Myc, mouse poly-
clonal antibody, Santa Cruz, 1:100; anti-β-actin, 
rabbit polyclonal antibody, CST, 1:2000) over-
night at 4°C, and secondary antibodies (HRP-
labeled goat anti-rabbit IgG, HRP-labeled don-
key anti-goat IgG, HRP-labeled rabbit anti-
mouse IgG, Boster Biological Technology Ltd., 
1:8000) for 2 hours at room temperature. Pro- 
tein samples were visualized using enhanced 
chemiluminescence detection kits (ECL-Plus, 
Beyotime Biotechnology, China) in a gel ima- 
ge analysis system (Tanon 2500R, Shanghai, 
China) [18, 19, 28-30].

RT-qRCR

Total RNA was isolated using a Trizol kit (Invitro- 
gen, USA). Total RNA was reversely transcribed 
into cDNA by using the Bestar qPCR RT kit (DBI 
Bioscience, Germany). Total RNA concentration 
was adjusted to 100 ng/μL, and reverse tran-
scription procedure was as follows: 15 minutes 
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at 37°C and 5 minutes at 98°C. Specific prim-
ers were obtained from Invitrogen (USA; Table 
1). cDNA (1 μL) and specific primers (1 μL) were 
separately added to SYBR Green Mix (DBI 
Bioscience, Germany). RT Q-PCR (Bio-Rad CFX, 
USA) was performed for 5 minutes at 95°C, 45 
cycles for 10 seconds at 95°C, and 10 seconds 
at 60°C, 10 seconds at 72°C. mRNA of β-actin 
was used as an internal control. Relative 
expression level of target gene was determined 
by 2-ΔΔCt method: relative expression level of tar-
get gene = 2-ΔΔCt, where ΔΔCt = (Ct, X-Ct, β-actin) 
sample - (Ct, X-Ct, β-actin) control, and X was 
the target gene [14, 19, 29, 31].

Immunofluorescence labeling

Mice were anaesthetized with 10% chloral 
hydrate, perfused with 0.9% saline and 4% 
paraformaldehyde. Brains were removed and 
soaked in a 4% paraformaldehyde solution  
for 48 hours, transferred to 30% sucrose solu-
tion for 72 hours, embedded in O.C.T (Optimal 
Cutting Temperature) compound (Sakura Fine- 
tek, USA) and stored at -80°C. Slices were 16 
μm thick. Sections were dried for 40 minutes at 
37°C and blocked with 5% normal goat serum 
for 1 hour at room temperature. Primary anti-
bodies (anti-5-HT1A receptor, rabbit polyclonal 
antibody, Abcam, 5 μg/mL; anti-5-HT2A recep-
tor, goat polyclonal antibody, Santa Cruz, 1:100; 
anti-ERK12, rabbit polyclonal antibody, CST, 
1:100) and negative control sections were incu-
bated with 0.01 M PBS at 4°C overnight. The 
next day, slices were washed with 0.01 M PBS 
for five times and separately incubated with a 
second antibody (FITC-labeled goat anti-rabbit 
IgG, FITC-labeled rabbit anti-goat IgG, 1:500, 
Boster, wuhan, China) for 3 hours at room  
temperature. Sections were then washed six 
times, each wash lasting 5 minutes, and then 
examined through fluorescence detection. 
Slices were observed by using fluorescence 
microscope (Olympus BX51, NIKON, Japan) at 

excitation/emission wavelengths of 550/570 
nm (Cy3, red), 492/520 nm (FITC, Green), and 
360/460 nm (FITC, blue) [4, 5, 18, 32]. 

Statistical analysis 

Histograms were analyzed by using GraphPad 
Prism 5. Data are presented as mean ± SEM. 
Statistical significance was determined throu- 
gh one-way ANOVA with post-hoc Bonferroni’s 
tests in SPSS 17.0. P < 0.05 was considered 
statistically significant.

Results

Validation of PTSD mice model

Established animal model was examined by 
conducting open-field, freezing behavior and 
elevated plus maze tests. Times through the 
central grille and total distance of PTSD group 
significantly decreased compared to sham 
group (Figure 2A, 2B). Also, Middle dist/Total 
dist of PTSD group significantly increased com-
pared to sham group (Figure 2C). Times through 
the central grille and total distance of PTSD+W 
and Middle dist/Total dist of PTSD+W and 
PTSD+K groups significantly decreased when 
compared to PTSD group (Figure 2A-C). These 
results indicated that anxiety-like behavior was 
increased after subjected to CF+SPS and block-
age of 5-HT1AR.

Percentage of freezing behavior for PTSD group 
was enhanced compared to sham group (Figure 
2D). The freezing behavior of PTSD+W group 
was increased in comparison with PTSD group 
after antagonism of 5-HT1AR (Figure 2D). In 
elevated plus maze test, percentages of open 
arms entries and time spent in open arms of 
PTSD group were significantly decreased when 
compared to those of sham group (Figure 2E, 
2F). Percent of open arms entries and time 
spent in open arms of PTSD+W group was nota-
bly lower than PTSD+K group (Figure 2E, 2F). 

Table 1. Mouse primer sequences
Name Upstream Primer Downstream Primer
5-HTR1A 5’-TCGCTCACTTGGCTCATTGGCTTT-3’ 5’-TTCCAACTTCTTGACCGTCTTGCG-3’
5-HTR2A 5’-CTGGACCGCTACGTGGCTAT-3’ 5’-TATGGTCCACACCGCAATGA-3’
ERK1 5’-TGGCTTTCTGACGGAGTATG-3’ 5’-GGTCCAGGTAGTGCTTGC-3’
ERK2 5’-CCTCAAGCCTTCCAACCTC-3’ 5’-GCCCACAGACCAAATATCAATG-3’
c-Myc 5’-GCTTCCCACCCCGCCCCTGTC-3’ 5’-CCACCGCCGCCGTCATCGTCTT-3’
β-actin 5’-GAGACCTTCAACACCCCAGC-3’ 5’-ATGTCACGCACGATTTCCC-3’
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Protein expression levels

Western blot analysis was performed to quan-
tify expressional levels of 5-HT2A and 5-HT1A 
receptors, ERK1, ERK2, pERK1, pERK2 and c- 
Myc (Figure 3A). Blots were quantified and nor-
malized to corresponding internal control. After 
CF+SPS procedure, expressions of 5-HT2AR 
and 5-HT1AR both augmented in PTSD group 
(Figure 3B, 3C). 5-HT1AR antagonist WAY100- 
635 promoted, whereas 5-HT2AR antagonist 

els of 5-HT2AR in PTSD+K group may attribute 
to increased degradation (Figures 3B, 4A). As 
shown in Figure 4C and 4E, mRNA levels of 
ERK1 and c-Myc were notably enhanced by the 
stress procedure, while 5-HT2AR antagonist 
significantly reduced this effect. Also, mRNA 
levels of ERK1 and c-Myc were significantly 
higher in PTSD+W group compared with PTSD+ 
K group (Figure 4C, 4E). There was no signifi-
cant difference of ERK2 between these four 
groups in mRNA levels (Figure 4D).

Figure 2. Behavioral experiments in the established mouse model. A. Times 
through the central grille of the Open-field test (OFT). B. Total distance trav-
eled in the OFT. C. Middle dist/Total dist of the OFT. Middle dist = smldist/
lardist, Total dist = smldist + lardist. Lardist denoted the total distance (in 
cm) covered by the animal in large movements. Smldist denoted the total 
distance covered by the animal in small movement. D. Freezing behavior 
test. The percentage of freezing behavior was the time spent in freezing be-
havior/the total time during each measurement period. E and F. Elevated 
plus maze test. “Percent of open arms entries” denoted the numbers of 
entries into the open arms/(the numbers of entries into the open arms + 
closed arms); “Percent of time spent in open arms” indicated the time spent 
in the open arms/(the time spent in the open arms + closed arms). Data 
were presented as mean ± SEM through ANOVA. Groups were compared by 
conducting Bonferroni’s test, n = 8. *P < 0.05, ***P < 0.001 vs. the sham 
group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. the PTSD group; sP < 0.05, ssP 
< 0.01, sssP < 0.001 vs. the PTSD+K group. 

ketanserin decreased 5-HT2- 
AR protein levels in mouse 
hippocampus (Figure 3B). As 
for 5-HT1AR, WAY100635 
suppressed its expression 
although 5-HT2AR antagonist 
ketanserin had no significant 
effect on it (Figure 3C). 5-HT1- 
AR antagonist WAY100635 
remarkably increased expres-
sion of ERK1/2, pERK1/2 and 
c-Myc, which might suggest 
that the inhibited 5-HT1AR by 
its antagonist WAY100635 
may somehow activated the 
5-HT2AR and its downstream 
ERK and c-Myc pathway (Fig- 
ure 3D-H). However, inhibition 
of 5-HT2AR did not affect the 
expressions of either ERK1/2 
or pERK1/2 (Figure 3D-G).

mRNA expression levels 

Relative mRNA expression lev-
els of 5-HT2AR and 5-HT1AR, 
ERK1, ERK2, and c-Myc were 
analyzed through RT Q-PCR. 
In line with the Western blot 
results, the relative mRNA ex- 
pression levels of 5-HT2A and 
5-HT1A receptors were incre- 
ased and decreased respec-
tively by 5-HT1AR antagonist 
compared to PTSD group (Fig- 
ure 4A, 4B). It is intriguing that 
5-HT2AR antagonist ketanse-
rin has a similar effect on the 
mRNA expression levels of 5- 
HT2A and 5-HT1A receptors 
as WAY100635 (Figure 4A, 
4B). However, inconsistent re- 
sults of protein and mRNA lev-
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Figure 3. Western blot indicated the protein expression level in the mouse 
hippocampus. A. Lane 1, 2, 3, and 4 represent the protein expression levels 
in the sham group, PTSD group, PTSD+K group and PTSD+W group, respec-
tively. B-H denotes the relative protein expression levels of 5-HT2A receptor, 
5HT1A receptor, ERK1, ERK2, pERK1, pERK2, and c-Myc in the four experi-
mental groups. Data were presented as mean ± SEM through ANOVA. Groups 
were compared by performing Bonferroni’s test, n = 4. *P < 0.05 vs. the 
sham group; #P < 0.05, ##P < 0.01 vs. the PTSD group; sP < 0.05, ssP < 0.01, 
sssP < 0.001 vs. the PTSD+K group.

Immunofluorescence analy-
sis 

Immunofluorescence staining 
was applied to investigate ex- 
pression patterns of 5-HT2A 
and 5-HT1A receptors as  
well as ERK1/2 in the sub-
fields of the hippocampus. 
Fluorescence images of 5- 
HT2AR, 5-HT1AR, and ERK1/ 
2 (green channel) are respec-
tively shown in Figure 5A1, 
5B1 and 5C1. Quantification 
of positive cell number was 
carried out in five random 
fields per slice using Image-
Pro Plus image analysis soft-
ware (Media Cybernetics) 
(Figure 5A2, 5B2, 5C2). The 
stress procedure markedly 
increased 5-HT2AR and 5- 
HT1AR expressions in PTSD 
group compared to sham 
group (Figure 5A2, 5B2). Both 
5-HT1AR and 5-HT2AR an- 
tagonist significantly revers- 
ed the increase of 5-HT1AR 
caused by stress procedure 
(Figure 5A2). Also, 5-HT2AR 
expression in hippocampus 
was significantly increased by 
5-HT1AR antagonist in com-
parison to PTSD and PTSD+K 
groups (Figure 5B2). PTSD 
can increase ERK1/2 expre- 
ssion compared to sham gro- 
up, while inhibition of 5-HT2- 
AR suppressed, whereas 5- 
HT1AR antagonist promoted, 
the expression of ERK1/2 
(Figure 5C2).

Discussion

When exposed to severe trau-
matic stress, individuals are 
likely to display behavioral 
alterations, including anxiety-
like behavior, which is related 
to serotonin (5-HT) [33-35]. 
5-HT2A and 5-HT1A recep-
tors involved in behavioral 
responses are expressed in 
the raphe nuclei, the frontal 
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cortex and the hippocampus [34]. On the basis 
of the contribution of serotonin to emotional 
behavior, at least 13 different subtypes of  
serotonin receptors, including 5-HT2A and 5- 
HT1A receptors, which are closely associated 
with anxiety-like behaviors have been reported 
[36-39]. In PTSD-related animal models, 5- 
HT2A and 5-HT1A receptors are expressed in 
cerebral cortex, hippocampus, amygdala and 
brain stem. 5-HT2A and 5-HT1A receptors have 
been reported to be involved in the occurrence 
of stress-induced psychiatric symptoms such 
as anxiety-like and depressive behaviors [28, 
40]. In the hippocampus, 5-HT1A receptors 
play an important role in anti-depressant me- 
chanism of individuals affected by traumatic 
stress [41-43]. In a study on lipopolysaccha-
ride-induced shock in mice, 5-HT2A receptor 
elicited its effect via ERK pathway [44]. Pali- 
peridone stimulates 5-HT2A receptor to induce 
ERK sensitization [45]. In non-neuronal cells, 
5-HT1A receptors activate ERK through phos-

[49]. By combining SPS with CF, we can com- 
prehensively assess the psychological and 
behavioral changes of PTSD. 

Thus, our animal model of PTSD was estab-
lished by CF stress combined with SPS [5].  
We applied two antagonists, ketanserin and 
WAY100635, to determine the effect of the 
5-HT2A and 5-HT1A receptors on anxiety-like 
behavior [22, 50]. After the CF+SPS procedure, 
the mice of PTSD group showed significantly 
increased anxiety-like behavior, indicated by 
decreased times through the central grille and 
total distance of open field test (Figure 2A, 2B), 
decreased open arms entries as well as time 
spent in open arms of elevated plus maze test 
(Figure 2E, 2F), increased freezing behavior 
(Figure 2D) and Middle dist/Total dist (Figure 
2C). After inhibition of 5-HT1AR, the anxiety-like 
behavior notably increased in PTSD+W group 
compared with PTSD group (Figure 2A, 2B, and 
2D). However, after inhibition of 5-HT2AR, the 

Figure 4. RT-qPCR showed the mouse 
hippocampus comparison regarding 
the relative mRNA expression levels 
of the 5-HT2A receptor (A), 5-HT1A 
receptor (B), ERK1 (C), ERK2 (D), and 
c-Myc (E) to those in the control group. 
Data were presented as mean ± SEM 
through ANOVA. Groups were com-
pared by performing Bonferroni’s test, 
n = 4. ***P < 0.001 vs. the sham group; 
##P < 0.01, ###P < 0.001 vs. the PTSD 
group; sP < 0.05, sssP < 0.001 vs. the 
PTSD+K group.

phorylation [46]. In this stu- 
dy, our results demonstrated 
that the 5-HT2A and 5-HT1A 
receptors in the mouse hippo-
campus were related to anxi-
ety-like behavior via ERK pa- 
thway.

Post-traumatic stress disorder 
(PTSD) is a common psycho-
somatic disorder that is char-
acterized by its delayed onset 
and persistence of symptoms 
after a traumatic experience. 
In order to better understand 
this disorder, several animal 
models have been proposed, 
including single-prolonged st- 
ress, foot shock, and social 
stress [47]. Although some 
symptoms of these animal 
models closely mimic those of 
PTSD, it is difficult to compre-
hensively assess the behav-
ioral and physiological chang-
es of PTSD. SPS can cause 
enhanced inhibition of the 
hypothalamic-pituitary-adrenal 
(HPA) axis, which can be ob- 
served in most PTSD patients 
[48]. However, it’s difficult to 
apply this model to study the 
exaggerated fear responses 
caused by persistent trauma 
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mice of PTSD+K group showed no statistical 
difference in most tests compared with PTSD 
group (Figure 2A, 2B, 2D and 2E). The elevated 
plus maze and open-field tests exhibit a differ-
ent sensitivity on anxiety, as such, these tests 
fail to yield similar results [52]. On the basis of 
these results, we concluded that PTSD mouse 
model was successfully established via CF+ 
SPS procedures, and the anxiety-like behavior 
was aggravated by 5-HT1AR antagonist WAY- 
100635, but 5-HT2AR antagonist ketanserin 
was incapable of changing the anxiety-like 
behavior caused by CF+SPS.

Western blot and immunofluorescence labeling 
results demonstrated a remarkable elevation 
in 5-HT2AR and 5-HT1AR protein expressions 
in PTSD group when compared to that of sham 
group (Figures 3A-C, 5A1, 5A2, 5B1, 5B2). 
However, the mRNA of 5-HT2AR and 5-HT1AR 
in PTSD group showed no statistical change 
compared with sham group (Figure 4A, 4B). 
These results indicated that the overexpres-

sion of 5-HT2AR and 5-HT1AR after stress pro-
cedure may be due to increased translation 
efficiency and mRNA stability. When compared 
to PTSD group, the inhibition of 5-HT1AR result-
ed in a significant decrease in 5-HT1AR and 
increase in 5-HT2AR in both protein and mRNA 
levels (Figures 3A-C, 4A, 4B, 5A1, 5B1, 5A2, 
5B2). Nevertheless, inhibition of 5-HT2AR only 
significantly decreased its protein level but 
didn’t influence the expression of 5-HT1AR 
(Figure 3A-C). The inconsistent results of west-
ern blot and immunofluorescence might be due 
to the following reason: the fluorescence imag-
es were taken from the dentate gyrus of hippo-
campus, while the protein was isolated from 
the whole hippocampus. Thus, ketanserin mig- 
ht have different effects on 5-HT1AR expres-
sion of different hippocampus regions (Figures 
3C, 5A2). These results confirmed that 5-HT2A 
receptor plays a significant role in anxiety-like 
behavior by inhibiting 5-HT1A receptor expres-
sion. Similar findings have been described by 
Leonard [33]. 

Figure 5. Immunofluorescence labeling revealed the comparative protein expression levels of 5-HT2A receptor, 
5-HT1A receptor, ERK1, and ERK2 in the dentate gyrus of the mouse hippocampus. A1, B1, and C1 showed im-
munofluorescence images of 5-HT1AR, 5-HT2AR and ERK1/2, respectively. A2, B2, and C2 showed quantification 
analysis of 5-HT1AR, 5-HT2AR and ERK1/2 positive cells, respectively. Positive cells were indicated by white arrows. 
Bar = 50, 100 μm. Data were presented as mean ± SEM through ANOVA. Groups were compared by performing 
Bonferroni’s test. n = 4. *P < 0.05, ***P < 0.001 vs. the sham group; #P < 0.05, ##P < 0.01 vs. the PTSD group; sssP 
< 0.001 vs. the PTSD+K group.
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Previous studies have demonstrated in differ-
ent cell lines that ERK is an important down-
stream molecular of 5-HT2AR [57-59]. Also, the 
phosphorylation of ERK1/2 is essential for 5- 
HT2AR downstream signal transduction both in 
vivo and in vitro [44, 57, 60, 61]. In our study, 
both western blot and immunofluorescence re- 
sults revealed dramatically increased expres-
sions of ERK1/2, pERK1/2 and c-Myc in PTSD+ 
W group compared to PTSD group (Figures 3D- 
H, 5C2). These results evinced that 5-HT2A 
receptor affected stress-related anxiety-like 
behavior by activating the ERK-cMyc pathway 
via the phosphorylation of both ERK1 and 
ERK2.

On the basis of our experiments, we hypothe-
size that 5-HT1AR antagonist (WAY100635) 
can increase the anxiety-like behavior of PTSD 
mice. The function of WAY100635 is mediated 
by inhibiting 5-HT1AR expression and promot-
ing 5-HT2AR expression. Increase of 5-HT2AR 
further mediates the phosphorylation of ERK 
and activates ERK-cMyc pathway. Further stud-
ies are however needed as our study had some 
limitations. For instance, the role of 5-HT2AR 
antagonist in PTSD mouse model is still not 
clear. Moreover, 5-HT2A and 5-HT1A receptors 
can potentially be involved in other signaling 
pathways that can affect anxiety-like behavior. 
To elucidate the temporal effect of the related 
protein levels, we discussed in another paper 
that experiments was conducted 21 days after 
the model was established [62]. We do intend 
to probe the mRNA and protein expression lev-
els of Bax, Bcl-2, Caspase-3, Beclin-1, and LC-3 
and hope to determine other mechanisms 
underlying 5-HT2A and 5-HT1A receptors medi-
ated anxiety-like behaviors.
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