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Abstract: Mechanical tension force directs the lineage commitment of periodontal ligament cells (PDLCs) to osteo-
genesis; however, the underlying mechanisms, especially those at the post-transcriptional level, remain unclear. In 
the present study, we developed an in vitro force-loading model for PDLCs. Then, high-throughput sequencing was 
used to identify the expression profile of microRNAs (miRNAs) for stretched PDLCs. The candidate target genes of 
differentially expressed miRNAs were predicted by bioinformatics analysis. A total of 47 miRNAs were found to be 
differentially expressed in stretched and non-stretched PDLCs; of these, 31 were upregulated and 16 were down-
regulated. Further, 9 osteogenesis-related miRNAs (miR-221-3p, miR-138-5p, miR-132-3p, miR-218-5p, miR-133a-
3p, miR-145-3p, miR-143-5p, miR-486-3p, and miR-21-3p) were validated by quantitative reverse transcription-
polymerase chain reaction (RT-qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) 
pathway analysis were then carried out to reveal the potential functions of predicted target genes. Among the top 
20 enriched pathways, the Hippo signaling pathway was selected for further functional analysis. Several important 
components of the Hippo signaling pathway, including YAP1, WWTR1, TEAD2, CTGF, DVL2, GDF5, GLI2, LIMD1, 
WTIP, LATS1, and TEAD1, were predicted to be target genes of differentially expressed miRNAs and were determined 
to be upregulated in stretched PDLCs. Among them, YAP1, WWTR1, TEAD2, CTGF, DVL2, and GDF5 were positive 
regulators of osteogenesis. These findings may provide a reliable reference for future studies to elucidate the bio-
logical mechanisms of orthodontic tooth movement (OTM).
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Introduction

Orthodontic tooth movement (OTM) relies on 
coordinated tissue resorption and formation in 
the surrounding bone and periodontal liga-
ment. The periodontal ligament (PDL) is a de- 
nse fibrous connective tissue structure consist-
ing of collagenous fiber bundles, cells, neural 
and vascular components, and tissue fluids [1]. 
Its primary function is to support the teeth in 
their sockets while allowing the teeth to with-
stand considerable chewing forces. The PDL 
acts as an important medium, transducing the 
mechanical force from the teeth to the alveolar 
bone, and then transferring it into biochemical 

signals [2, 3]. Bone formation and resorption 
happens at the tension side and compressive 
side, respectively [4]. To date, the underlying 
mechanisms by which the PDL perceives me- 
chanical loading and initiates the process of 
bone remodeling have not yet been fully elu- 
cidated.  

PDL cells (PDLCs), a heterogeneous cell popula-
tion within the PDL, are considered to be the 
first cellular recipients of mechanical stimuli. 
Previous studies have demonstrated that PD- 
LCs possess a portion of mesenchymal stem 
cells, which can further differentiate to an os- 
teoblastic and cementoblastic phenotype and 
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involve in the alveolar bone and root cement- 
um remodeling process during the orthodontic 
tooth treatment [5-7]. Besides, it was shown 
that multiple regulators, including cytokines, 
growth factors, cytoskeleton proteins, and sig-
naling pathways (e.g., ERK1/2, p38 mitogen-
activated protein kinases (MAPK) signaling 
pathway, ephrin B2/EphB4 signaling) are in- 
volved in the modulation of the osteogenic 
activities of PDLCs under mechanical stimuli 
[8-10]. Recently, another regulatory mecha-
nism involved in osteoblastic/cementoblastic 
differentiation of PDLCs after mechanical force 
loading have been reported to be post-tran-
scriptional modulation of gene expression by 
microRNAs (miRNAs).

miRNAs are short non-coding RNAs composed 
of approximately 22 nucleotides; they regulate 
gene expression by selectively binding to the 3’ 
untranslated regions (3’-UTR) of target mRNAs, 
resulting in mRNA degradation or protein trans-
lation repression [11, 12]. In recent years, 
increasing evidence has indicated that miRNAs 
are involved in the cellular response to various 
mechanical stimuli in diverse organs and cells. 
Among them, miR-33-5p was identified as a 
novel mechano-sensitive miRNA that positively 
regulates osteoblast differentiation by repress-
ing the expression of high mobility group 
AT-hook 2 (Hmga2) [13]. Additionally, miR-503-
5p is reported to function as a mechano-res- 
ponsive miRNA which can inhibit osteogenic 
differentiation of bone marrow-derived mesen-
chymal stem cells (BMSCs) subjected to me- 
chanical stretch and bone formation in OTM 
tension sides [14]. Under tensile stress, miR-
154-5p was found to negatively regulate osteo-
genic differentiation of adipose tissue-derived 
stem cells (ADSCs) through the Wnt/planar cell 
polarity (PCP) signaling pathway by directly tar-
geting Wnt11 [15]. In addition, miRNAs also 
participate in osteogenesis of PDLCs under 
mechanical loading. Previous studies have 
shown that miR-132 regulates the osteogenic 
differentiation of PDLCs after fluid shear stress 
treatment through the mTOR signaling pathway 
[16]. Of note, miR-21 has been reported to play 
a role in osteogenic differentiation of PDLSCs 
exposed to stretch in vitro, and can modulate 
OTM and alveolar bone remolding in the pres-
ence of both normal and inflammatory microen-
vironments in vivo [17, 18]. Further, miR-195-
5p was found to be downregulated and nega-

tively correlated with osteogenic differentiation 
of PDLCs under cyclic tension straining for 72 
hours [19]. Although several miRNAs have been 
identified to play a role in stretch-induced os- 
teogenic differentiation of PDLCs, the function-
al roles and regulatory mechanisms of miRNAs 
during osteogenesis and bone formation under 
force-loading have not been fully explored.

High-throughput sequencing techniques have 
been successfully used to identify miRNAs in a 
variety of organisms. Compared with microar-
ray assay, next-generation sequencing allows 
deep sequencing in a short period of time, and 
has been able to identify new, previously unre-
ported miRNAs [20]. In the present study, to 
further clarify the regulatory effect of miRNAs 
in osteoblastic/cementoblastic differentiation 
of stretched PDLCs, we examined differentially 
expressed miRNAs in stretched PDLCs and 
non-stretched PDLCs using high-throughput 
sequencing. Relative target genes of differen-
tially expressed miRNAs were also predicted 
using bioinformatics analysis. Then, these 
putative target genes were analyzed by Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses. Addi- 
tionally, the interaction between osteogenesis-
related transcription factors and changed miR-
NAs was predicted using bioinformatics tools in 
order to investigate osteoblastic/cementoblas-
tic mechanisms of PDLCs under force loading.

Materials and methods

Cell culture

Healthy third molar teeth were collected in a 
clinical setting from individuals aged 14-25 
years. Informed consent was obtained from all 
participants and the study protocol was 
approved by the Ethics Committee, School of 
Stomatology, Wuhan University, Wuhan, China. 
Human PDLCs were obtained from human tis-
sue scraped from the roots of the extracted 
teeth. In brief, extracted teeth were rinsed 
three times with phosphate-buffered saline 
(PBS) containing 10% penicillin and streptomy-
cin. Tissue was obtained from the middle one-
third of the roots, and was placed into a 25 cm2 
tissue culture flask containing α-modified 
essential medium (α-MEM; HyClone, Logan,  
UT, USA) supplemented with 20% fetal bovine 
serum (FBS; HyClone, Logan, UT, USA), 100 U/
mL penicillin G, and 100 μg/mL streptomycin. 
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The explants were incubated at 37°C with 5% 
CO2. When sub-confluence was reached, PDLCs 
were passaged; cells at passages 3-6 were 
used for the following experiments.

Flow cytometry analysis

To identify the phenotype of PDLCs, cell surface 
markers were evaluated by flow cytometry. 
Briefly, a total of 1 × 106 cells were collected 
and incubated with FITC-labeled anti-CD146 
antibodies (Biolegend, San Diego, California), 
anti-CD90 antibodies (Biolegend, San Diego, 
California), or anti-CD45 antibodies (Biolegend, 
San Diego, California) for 30 min at 4°C. Then, 
cells were washed three times with PBS and 
analyzed by flow cytometry analysis. The results 
were analyzed with FlowJo software (Tree Star, 
Ashland, OR, USA).

Osteoblast and adipocyte differentiation

PDLCs were seeded in six-well plates at a den-
sity of 1 × 105 per well. After reaching 70-80% 
confluence, cells were incubated with osteo-
genic medium containing 50 μg/ml ascorbic 
acid, 10 mmol/L β-glycerophosphate, and 10 
nmol/L dexamethasone. The medium was 
changed every three days. After osteogenic 
induction for 7 days and 21 days, extracellular 
matrix calcification was investigated with alka-
line phosphatase (ALP) staining with a BCIP/
NBT kit (Beyotime, China) and Alizarin red stain-
ing, respectively.

For adipocyte differentiation, PDLCs were cul-
tured in adipogenic medium, according to the 
manufacturer’s instructions (Cyagen, Suzhou, 
China). Two weeks later, Oil Red O staining was 
used to detect lipid formation.

Application of tension force system

External mechanical stimulation was achieved 
with a Flexcell FX-5000TM tension system (Fle- 
xcell International Corp., Burlington, NC, USA). 
PDLCs were plated onto six-well Bioflex plates 
coated with type I collagen (Flexcell International 
Corp., Burlington, NC, USA) at a density of 
approximately 1 × 105 cells/well. When the cul-
ture reached 70%-80% confluence, they were 
stretched with 10% equibiaxial strain at 0.1 Hz 
for 24 h in a Flexcell FX-5000TM tension system 
(Flexcell International Corp., Burlington, NC, 
USA). The control cells were cultured without 
stretching.

Western blot analysis

For Western blot analysis, cell lysates were pre-
pared with radio-immunoprecipitation assay 
(RIPA) lysis buffer supplemented with phenyl-
methylsulfonyl fluoride (PMSF) (Roche, Ger- 
many) and phosphatase inhibitor (Roche, Ger- 
many). The samples were separated on a 10% 
sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE), and transferred 
onto 0.22 μm polyvinylidene difluoride (PVDF) 
membranes. The membranes were blocked 
with 5% non-fat milk for 1 h at room tempera-
ture. Subsequently, these membranes were 
incubated with primary antibodies, including 
rabbit anti-runt-related transcription 2 (RUNX2) 
(1:500; Abclonal, Boston, MA), rabbit anti-
secreted phosphoprotein 1 (SPP1) (1:1000; 
Abclonal, Boston, MA), rabbit anti-cemento-
blastoma-derived protein 1 (CEMP1) (1:500; 
Abcam, Cambridge, UK), and mouse anti-glyc-
eraldehyde 3-phosphate dehydrogenase (GAP- 
DH) (1:5000; Abcam, Cambridge, UK) monoclo-
nal antibody, overnight at 4°C. Membranes 
were then washed three times with TBST and 
incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody for 1 h at room 
temperature. Immuno-reactive bands were 
detected using an enhanced chemilumines-
cence (ECL) kit, and were quantitatively ana-
lyzed with Image J software. GAPDH was used 
as the internal control.

DNA library construction and high-throughput 
sequencing

Total RNA was isolated from the two groups of 
cells (normal PDLCs and PDLCs stretched for 
24 h), according to the manufacturer’s instruc-
tions. RNA molecules sized 18-30 nt were 
enriched by PAGE. Then, the 3’ and 5’ adapters 
were ligated to the RNAs. The ligation products 
were constructed by reverse transcription poly-
merase chain reaction (RT-PCR), and PCR prod-
ucts sized 140-160 bp were enriched to gener-
ate a cDNA library and sequence using Illumina 
HiSeqTM2500 (Illumina, Inc., San Diego, CA, 
USA).

Alignment and identification of miRNAs

Reads obtained from the sequencing machines 
were further filtered to achieve clean tags. All 
the clean tags were aligned with small RNAs 
using the GenBank 209 and Rfam11.0 data-
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bases to identify and remove rRNA, scRNA, 
snoRNA, snRNA, and tRNA. Meanwhile, the 
clean tags were aligned with the reference 
genome, and those mapped to exons, introns, 
and repeat sequences were also removed. 
Then, the clean tags were searched against 
miRBase21 to identify known miRNAs. All unan-
notated tags were aligned with the reference 
genome. Novel miRNA candidates were identi-
fied according to their genome positions and 
hairpin structures as predicted by Mireap v0.2 
software.

Analysis of differentially expressed miRNAs

miRNAs with a fold change ≥ 2 and a P-value < 
0.05 were considered to be significantly differ-
entially expressed.

Prediction of miRNA target genes and func-
tional enrichment analysis

Based on the differential expression profile of 
miRNAs, the candidate target genes were pre-
dicted using three software programs (RNA- 
hybrid v. 2.1.2 + svm-light v. 6.01, Miranda v. 
3.3a, and TargetScan v. 7.0). The intersection 
of the results was chosen as the predicted 

sis, according to the manufacturer’s instruc-
tions. The relative expression of mRNA or 
miRNA was calculated using the 2-ΔΔCt method 
and normalized to the expression of GAPDH or 
U6, respectively. All PCRs were performed in 
triplicate. The miRNA primer sets were pur-
chased from GenePharma (Suzhou, China). And 
the primer pairs of the relative genes are shown 
in Table 1.

OTM

Twelve eight-week-old male Wistar rats weigh-
ing 180 to 220 g were used in this study. All 
procedures involving animals were performed 
in accordance with the ethical standards of our 
institution, and were approved by the Insti- 
tutional Animal Care and Use Committee of 
Wuhan University. In brief, we used a 0.2 mm 
nickel-titanium coil spring (TOMY International 
Inc., Tokyo, Japan) to connect the maxillary left 
first molar to the incisors. A tension gauge was 
utilized to calculate the force magnitude in the 
stretch direction. The non-stretched right upper 
first molars with no appliance acted as the cor-
responding control. For each condition in our 
experiment, six animals were used at each time 
point. After 3 days, the PDL tissue from each 

Table 1. Primer sequences for RT-qPCR
Gene Forward primer (5’-3’) Reverse primer (5’-3’)
ALP CGAGATACAAGCACTCCCACTTC CTGTTCAGCTCGTACTGCATGTC
BSP CAGGGCAGTAGTGACTCATCC TAGCCCAGTGTTGTAGCAGA
COL1A1 CGATGGATTCCAGTTCGAG  TAGGTGATGTTCTGGGAGGC
SPP1 GTGGCCACATGGCTAAACCCT GACTTACTTGGAAGGGTCTGTGG
OCN GGTGCAGCCTTTGTGTCCAA CCTGAAAGCCGATGTGGTCA
RUNX2 AACCCTTAATTTGCACTGGGTCA CAAATTCCAGCAATGTTTGTGCTAC
CAP CTGCGCGCTGCACATGG GCGATGTCGTAGAAGGTGAGCC
CEMP1 GGGCACATCAAGCACTGACAG CCCTTAGGAAGTGGCTGTCCAG
SATB2 GCCCTGGTCTTCTTTCTCCC CGGAAGAGTTGGTTGGCTCT
MSX2 GCCTCGGTCAAGTCGGAAAA CGGCGCGCACTCACTT
TEAD1 CCATTCCAGGGTTTGAGCCT GCTTGGTTGTGCCAATGGAG
YAP1 TCCCAGATGAACGTCACAGC TCATGGCAAAACGAGGGTCA
LATS1 TGAAGAGCGAAGGGAATCTCG TTTAAAAGGTTTTACCCGCATCA
WTIP CCACCTACTGTGTCGTCGTT TCAGAGCTCAGTGACGTGC
GLI2 GCAGGTGTATCCCACGGAAA CTGGCATCCTCCCAGCATAG
GDF5 GACTCCCCAAACTCCTCACTT CACCCAACACAGTGCAGATGA
DVL2 AGTGAGCATGGCGCTGG TCGCTGGTCATGAGGGTAGA
CTGF GTTTGGCCCAGACCCAACTA GGCTCTGCTTCTCTAGCCTG
LIMD1 GAGAGATGGATGCTCACCCG GTAGAGGTTCCCCATGGCCT
WWTR1 TGGACCAAGTACATGAACCACC GACTGGTGATTGGACACGGT
TEAD2 CCCCATCTACTGACCTCCCA GGTTCCACGAAGGCTGAGAA
GAPDH AACAGCGACACCCACTCCTC CATACCAGGAAATGAGCTTGACAA

miRNA target genes. GO terms 
and KEGG pathway annota-
tion were used to further iden-
tify the biological functions of 
the target genes. Genes with a 
false discovery rate (FDR) < 
0.05 were considered to be 
significantly enriched target 
candidate genes.

Quantitative RT-PCR (RT-
qPCR)

To measure the mRNA level of 
miRNAs and other genes, total 
RNA was isolated from PDLCs 
and rat periodontal ligament 
tissue using a mirVanaTM mi- 
RNA isolation kit (Invitrogen, 
Carlsbad, CA, USA). Then, 1 μg 
of total RNA was reverse-tran-
scribed using a Mir-X miRNA 
First-Strand Synthesis kit and 
PrimerScript RT Reagent kit 
with gDNA Eraser (Takara, 
Tokyo, Japan). SYBR Premix Ex 
Taq II (Takara, Tokyo, Japan) 
was used for RT-qPCR analy-
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rat’s distal stretched side and the control side 
was collected for RT-qPCR analysis.

Measurement of OTM

Rats were sacrificed 14 days after orthodontic 
force application. The maxillary alveolar bone 
together with three molars on the right and left 
sides were isolated and submitted to X-ray pho-
tography (Bruker Corp., Billerica, MA, USA). 
Mesial molar movement was determined by the 
distance between the cemento-enamel junc-
tions of the orthodontic loaded first molars and 
the second molars. The measurement of OTM 
was performed using the ruler tool in Adobe 
Photoshop software (Adobe Inc., San Jose, CA, 
USA).  

Hematoxylin and eosin (H&E) staining

The maxillary alveolar bone and the three 
molars from each rat were fixed with 4% para-
formaldehyde for 24 h at room temperature. 
They were then decalcified for 3 months using 
10% EDTA (pH = 7.4) and then dehydrated and 
embedded in paraffin. All specimens were cut 
into 5 μm sections and were then deparaf-
finized and rehydrated. H&E staining was per-

formed for histological and histomorphometric 
analysis.

Statistical analysis

Statistical analysis was undertaken by SPSS 
16.0 software (IBM, Armonk, NY, USA) or 
GraphPad Prism 5.0 software. All quantitative 
data were presented as mean ± standard devi-
ation (SD) of at least three independent experi-
ments. Statistical difference was assessed by 
student’s t test or one-way analysis of variance 
(ANOVA) in either two or multiple groups. A 
P-value < 0.05 was considered statistically 
significant.

Results

Morphology and characterization of PDLCs

PDLCs derived from periodontal ligament tis-
sue reached confluence in two weeks, exhibit-
ing spindle, fibroblast-like morphology (Figure 
1A). Flow cytometry analysis indicated that cul-
tured PDLCs were positive for mesenchymal 
stem cell markers (CD146, CD90) and negative 
for CD45 (Figure 1B). ALP and alizarin red stain-
ing revealed calcium deposits and mineralized 

Figure 1. Morphology and characterization of human periodontal ligament cells (PDLCs). (A) Cultured single cells 
grew to confluence in two weeks, exhibiting spindle, fibroblast-like morphology. (B) Flow cytometry analysis indicated 
that cultured PDLCs were positive for mesenchymal stem cell markers CD146 (42.64%) and CD90 (99.08%), and 
negative for CD45 (0.51%). (C) ALP and (D) Alizarin red staining indicated the presence of calcium deposits and min-
eralized nodules in PDLCs after osteogenic induction for 7 days and 21 days, respectively. (E) Lipid accumulation 
was detected by Oil Red O staining of PDLCs cultured for 14 days with adipogenic medium. (F) Relative expression 
levels of the osteogenic/cementoblastic markers ALP, RUNX2, COL1A1, OCN and CEMP1 were upregulated during 
the process of osteogenesis of PDLCs (P < 0.05). *P < 0.05 vs. control.
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nodule formation in PDLCs after osteogenic 
induction for 7 days and 21 days, respectively 
(Figure 1C, 1D). The relative expression of all 
osteogenic genes was increased during the 
process of PDLC osteogenesis (Figure 1F). Mo- 
reover, staining with Oil Red O showed the for-
mation of lipid clusters in cultured cells (Figure 
1E). These results indicate that PDLCs were of 
mesenchymal origin and had multi-differentia-
tion potential.

Mechanical stretch-induced osteogenic/ce-
mentoblastic differentiation of PDLCs

PDLCs at a density of 1 × 105 were seeded onto 
a six-well plate with a flexible silicon membrane. 

After mechanical loading for 24 h, the stretched 
cells showed a higher expression level of osteo-
genic/cementoblastic genes and proteins com-
pared with the cells in the control group (Figure 
2A, 2B). This indicates that the osteoblastic/
cementoblastic differentiation of PDLCs was 
increased when mechanical force was imposed. 
See the original Western blot images in Figures 
S1 and S2.

Differentially expressed miRNAs 

To analyze the variance in miRNAs during 
mechanical force loading, we compared the 
known miRNA expressions between stretched 
and non-stretched PDLCs to identify the differ-

Figure 2. Effect of mechanical stretch on osteogenic/cementoblastic differentiation of cultured human periodontal 
ligament cells (PDLCs). A. The osteogenic/cementoblastic markers RUNX2, SATB2, MSX2, BSP, SPP1, OCN, CAP, 
and CEMP1 were detected by RT-qPCR analysis and were found to be upregulated in the tension group (P < 0.05). 
B. Western blot analysis revealed that stretched PDLCs had higher expression levels of osteogenic/cementoblastic 
proteins. *P < 0.05 vs. control.
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entially expressed miRNAs. A heat map and 
cluster analysis was applied to visualize the 
miRNAs differentially expressed between the 
two groups. The analyses showed that 47 
known miRNAs were differentially expressed, of 
which 31 were upregulated and 16 were down-
regulated in the stretched PDLCs compared 
with the normal PDLCs (Figure 3A). The overall 
distribution of the differentially expressed miR-
NAs is displayed in a scatter plot (Figure 3B).

Validation of differentially expressed miRNAs 
in vitro by RT-qPCR

To verify the results obtained from our RNA-Seq 
experiment, nine osteogenesis-related miRNAs 
were chosen for validation by RT-qPCR. The 
function and the validated osteogenesis-relat-
ed targets of those nine miRNAs were reviewed 
according to the published literature by sear- 
ching PubMed (Table S1). Consistent with the 

Figure 3. Hierarchical clustering analysis, scatter plot, and in vitro validation of differentially expressed miRNAs in 
stretched and non-stretched periodontal ligament cells (PDLCs). (A) Cluster analysis of 47 differentially expressed 
miRNAs. Red color represents a relative high expression level. Green color shows a relative low expression level. 
In the stretched group, 31 miRNAs were significantly upregulated and 16 were downregulated compared with the 
control group. (B) miRNA scatter plot. Red dots represent significantly upregulated miRNAs in the stretched PDLCs 
compared with the control cells. Green dots show significantly downregulated miRNAs. Blue dots represent equally-
expressed miRNAs. (C) RT-qPCR was applied to verify the expression levels of differentially expressed miRNAs. 
Consistent with (D) the RNA-Seq results, miR-218-5p, miR-138-5p, miR-221-3p, and miR-132-3p were remarkably 
upregulated, while miR-133a-3p, miR-145-3p, miR-143-5p, miR-486-3p, and miR-210-3p were significantly down-
regulated in the stretched group (P < 0.05). *P < 0.05 vs. control.
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RNA-Seq results, miR-218-5p, miR-138-5p, 
miR-221-3p, and miR-132-3p were remarkably 
upregulated, while miR-133a-3p, miR-145-3p, 
miR-143-5p, miR-486-3p, and miR-210-3p we- 
re significantly downregulated in the stretched 
group (Figure 3C, 3D). These results indicated 
that mechanical force could induce changes in 
the expression profile of miRNAs in PDLCs.

Validation of miRNA expression in rats

To further confirm the expression levels of sev-
eral conserved miRNAs after mechanical force 
loading, we established a rat model for OTM 
(Figure 4A). X-ray photographs and quantitative 
analysis (Figure 4B, 4C) indicated that OTM 
was evident after 14 days of force application 
at the maxillary first molar. HE staining revealed 

that there was more bone tissue formation at 
the tension site compared with the control site 
(Figure 4D). Next, we isolated PDL tissue from 
both the stretched site and the control site 
after 3 days of orthodontic force loading. 
RT-qPCR was performed to detect the expres-
sion levels of six conserved miRNAs, including 
miR-221-3p, miR-138-5p, miR-132-3p, miR-
210-3p, miR-133a-3p, and miR-133a-5p. The 
results were consistent with our RNA-Seq and 
in vitro experiment (Figure 4E).

Identification of differentially expressed miR-
NAs controlled by osteoblast-specific transcrip-
tion factors

RUNX2, osterix (OSX), SATB2, MSX2, and DLX5 
are well-known transcription factors that play a 

Figure 4. Rat orthodontic tooth movement (OTM) model and validation of differentially expressed miRNAs in vivo. A. 
A rat model for OTM. B. X-ray photography of orthodontic force induced tooth movement in rats after 14 days. Black 
arrow: force loading direction; scale bar: 500 μm. C. Tooth movement measurement between cemento-enamel 
junctions of orthodontic loaded first molars and second molars for the tension force-stimulated site (TS) and the 
control site (CS). The results showed significantly more tooth movement in the tension site (P < 0.05). D. HE staining 
revealed more bone tissue volume in the stretched group (right) compared with the control group (left). Scale bar: 
100 μm; r: root; p: periodontium; b: alveolar bone. E. Six conserved miRNAs, including miR-221-3p, miR-138-5p, 
miR-132-3p, miR-210-3p, miR-133a-3p, and miR-133a-5p, were detected by RT-qPCR analysis. The results were 
consistent with our RNA-Seq and in vitro experiment (P < 0.05). *P < 0.05 vs. control.
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vital role in osteogenic differentiation. In the 
present study, the expressions of RUNX2, SA- 
TB2, and MSX2 were upregulated in PDLCs 
after mechanical loading (Figure 2A). In order 
to verify the regulatory effect of miRNAs on 
these transcription factors, we used three soft-
ware programs to search for miRNA targeted 
osteogenesis-related transcription factors. As 
shown in Table 2, several miRNAs were predict-
ed to target the above-mentioned transcription 
factors. 

Functional analysis of mechanical stretch-
responsive miRNAs

GO is an international standardized gene func-
tion classification system that comprehensively 
describes the properties of genes. To explore 
the potential functions of differentially expre- 
ssed miRNAs in stretched PDLCs, we perfor- 
med GO enrichment analysis to identify the 
functions significantly associated with the pre-
dicted target genes of the changed miRNAs. 
The most enriched GO terms in the biological 
process, cellular component, and molecular 
function domains are shown in Figure 5A.

KEGG analysis can identify the main pathways 
in which the target gene candidates of the 
changed miRNAs could be involved. The top 20 
enriched pathways of the target genes are dis-
played in Figure 5B. Among them, the MAPK 
signaling pathway, cAMP signaling pathway, 
and Hippo signaling pathway were found to be 
involved in the regulation of osteogenesis. 

Hippo signaling pathway is differentially ex-
pressed in stretched and non-stretched PDLCs

The Hippo signaling pathway is involved in 
mechano-transduction and osteogenesis. Acc- 
ording to our RNA-Seq results, the Hippo signal-
ing pathway was obviously enriched in biologi-
cal function analysis of target genes associated 
with differentially expressed miRNAs. Furth- 

ermore, several key components of the Hippo 
signaling pathway, such as YAP1, WWTR1, 
TEAD2, CTGF, DVL2, GDF5, GLI2, LIMD1, WTIP, 
LATS1, and TEAD1, were predicted to be target 
genes of the differentially expressed miRNAs 
(Figure 6A); the upregulation of these compo-
nents in PDLCs submitted to mechanical force 
loading was validated by RT-qPCR (Figure 6B). 
Among them, YAP1, WWTR1, TEAD2, CTGF, 
DVL2, and GDF5 were found to be positive reg-
ulators of osteogenesis.

Discussion

OTM can be induced by the constant applica-
tion of orthodontic force. PDL and alveolar bone 
cells can perceive and transfer the mechanical 
force into molecular events. As a result, bone 
formation and resorption occur at the tension 
and compressive sites, respectively. To date, 
the underlying mechanisms in this process 
have not been fully elucidated. In our study, we 
first developed an in vitro force-loading model 
for PDLCs to mimic the process of OTM. Then, 
we applied high-throughput sequencing to de- 
termine the expression profile of miRNAs in 
stretched and non-stretched PDLCs. We also 
performed prediction and functional analysis  
of target genes. Our findings suggest that mul-
tiple miRNAs may be involved in mechanical 
force-induced osteoblastic/cementoblastic dif-
ferentiation of PDLCs. 

A number of in vitro studies have demonstrated 
that PDLCs are mechanosensitive. Cyclic str- 
etch can induce several biological changes in 
PDLCs, such as cell realignment, cytoskeleton 
organization, apoptosis, and angiogenesis [21-
24]. In addition, previous studies have also 
reported that cyclic tension can promote the 
osteogenic differentiation of PDLCs. An in vitro 
study showed that cyclic tension resulted in 
increased osteogenic gene expression of PD- 
LCs [25]. Another study reported that mechani-
cal loading may control osteoblastic/cemento-

Table 2. Osteogenesis-related transcription factor targeted by differentially expressed miRNAs
Transcription factor Function miRNA
RUNX2 Osteogenesis miR-218-5p, miR-625-3p, miR-150-5p, miR-2682-5p, miR-7-1-3p, miR-221-3p, miR-133a-5p

Osterix Osteogenesis miR-486-3p, miR-145-3p, miR-143-5p, miR-133a-3p

SATB2 Osteogenesis miR-218-5p, miR-1-3p, miR-31-5p, miR-376a-3p

MSX2 Osteogenesis miR-7-1-3p, miR-708-5p, miR-942-3p

DLX5 Osteogenesis miR-376a-3p, miR-942-3p
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Figure 5. Functional analysis of mechanical stretch-responsive miRNAs. A. GO enrichment analysis indicated that 
target genes of differentially expressed miRNAs had a broad range of functions, including biological process, cellular 
components, and molecular function. B. Top 20 enriched pathways are shown in the scatter plot. The horizontal axis 
represents rich factor. The vertical axis shows the specific 20 enriched pathways.

blastic differentiation of PDLCs mediated by 
angiotensin II signaling [10]. In this study, we 

observed higher expression of osteoblastic/
cementoblastic genes and proteins in PDLCs 
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after applying mechanical tension force load-
ing, which was consistent with previous stu- 
dies.  

miRNAs are a type of small and non-coding 
RNA that regulate gene expression at the post-
transcriptional level. Several previous studies 
have reported the expression profile of miRNAs 
in PDLCs after force stimulation. One study 
detected the expression levels of miRNAs in 
PDLCs treated with fluid shear stress using 
microRNA arrays [16]. Another study explored 
miRNA expression differences between normal 
PDLCs and PDLCs that underwent 72 hours of 
12% cyclic tension force stimulation. The above 
study screened 3100 miRNAs, of which 17 miR-
NAs were upregulated and 15 miRNAs were 
downregulated [26]. In our study, we cultured 
PDLCs under 10% equibiaxial strain at 0.1 Hz 
for 24 hours, and applied high-throughput 
sequencing to identify the expression profile of 
miRNAs. According to our results, the expres-
sion levels of 47 miRNAs were found to be 
altered after stretching, of which with 31 were 
upregulated and 16 were downregulated. The 
differences in results obtained by other schol-
ars compared to our results may be attributed 
primarily to the analytical methods. Compared 
with microarray analysis, high-throughput se- 
quencing can identify new miRNAs that have 
previously been unreported, including those 

evident at low expression levels. Additionally, 
the effect of mechanical stimulation on cells 
may be related to the device, magnitude, dura-
tion, and frequency. Next, we selected nine 
osteogenesis-related miRNAs to be further vali-
dated by RT-qPCR. The results of our RT-qPCR 
analysis were consistent with the RNA-Seq 
experiment. The relative function and validated 
targets of those nine miRNAs in the process of 
osteogenesis were also reviewed in this study 
(see Table S1). However, further studies must 
be performed to determine whether these 
osteo-miRNAs are also involved in the process 
of osteogenic/cementoblastic differentiation of 
stretched PDLCs.

Osteogenesis is a well-organized process in- 
volving various factors. In recent years, tran-
scription factors have been found to combine 
with miRNAs to regulate osteogenic differentia-
tion of MSCs. RUNX2, an early and primary 
osteogenic transcription factor, is responsible 
for the activation of osteoblast marker genes, 
including collagen type I alpha 1 chain (COL- 
1A1), SPP1, and bone sialoprotein (BSP) [27]. 
Additionally, miR-133a was reported to be a key 
negative regulator of osteogenic differentiation 
of vascular smooth muscle cells, and this effect 
appeared to be mediated by targeting RUNX2 
[28]. As a downstream gene of RUNX2, OSX is 
specifically expressed during osteoblast differ-

Figure 6. Differentially expressed miRNAs targeted core components of the Hippo signaling pathway. A. Regulatory 
networks of known differentially expressed miRNAs and the components of the Hippo signaling pathway. The red 
and green solid circles represent upregulated and downregulated miRNAs, respectively. The light grey box repre-
sents the components of the Hippo signaling pathway. B. RT-qPCR confirmed that the expression levels of several 
key components of the Hippo signaling pathway, including YAP1, WWTR1, TEAD2, CTGF, DVL2, GDF5, GLI2, LIMD1, 
WTIP, LATS1 and TEAD1, were upregulated in PDLCs submitted to mechanical force loading (P < 0.05). *P < 0.05 
vs. control.
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entiation and is critical for bone formation [29]. 
It has been shown that miR-143 and miR-145 
can repress osteogenic differentiation through 
the regulation of OSX expression, forming a 
feedback loop with Kruppel-like factor 4 (KLF4) 
and OSX in odontoblasts [30]. DLX5 is a bone-
inducing transcription factor that is expressed 
in the later stages of osteoblast differentiation 
[31]. A previous study showed that miR-203 
and miR-320b can negatively regulate BMP2-
induced osteoblast differentiation by suppre- 
ssing DLX5, which in turn inhibits RUNX2 and 
OSX [32]. MSX2 has been found to act as an 
upstream factor of RUNX2 [33]. miRNA array 
analysis has revealed that miR-124a and miR-
181a are important regulatory factors for 
osteoblastic differentiation of mouse-induced 
pluripotent stem cells; both can directly target 
DLX5 and MSX2 [34]. SATB2 is an important 
determinant of osteoblastic differentiation and 
can enhance the activity of RUNX2 and activate 
transcription factor 4 (ATF4) [35]. To date, sev-
eral miRNAs have been reported to regulate 
osteoblastic differentiation by directly binding 
to the 3’-UTR of SATB2 mRNA [36, 37]. In sum-
mary, the above evidence suggests that regula-
tion of transcription factors controlled by miR-
NAs is a crucial mechanism underlying osteo-
genic differentiation. In the present study, 
RUNX2, OSX, DLX5, MSX2, and SATB2 were 
predicted to be the targets for differentially 
expressed miRNAs in PDLCs after force stimu-
lation. Furthermore, the expression levels of 
RUNX2, MSX2, and SATB2 were found to be 
upregulated in tension force loading PDLCs. 
Whether the differentially expressed miRNAs 
regulate the mechanical stretch-induced osteo-
genesis of PDLCs by targeting these osteogenic 
specific transcription factors requires further 
study.

Increasing evidence indicates that the Hippo 
signaling pathway is regulated by mechanical 
stress. Several core components that are re- 
ported to be positive regulators of osteogene-
sis are involved in the Hippo signaling pathway. 
Yes-associated protein (YAP) and transcription-
al coactivator with PDZ-binding motif (TAZ) are 
key downstream effectors of the Hippo signal-
ing pathway, and have potential to function in 
mechano-transduction and osteogenic differ-
entiation [38]. Cyclic stretch enhances the 
osteogenesis of PDLCs via YAP-activation [39], 
and TAZ is indicated as a key mediator, promot-
ing ADSC commitment to the osteoblast lin-
eage [40]. TEA domain transcription factor 2 
(TEAD2) is located in the nucleus, where it can 

form a complex with YAP and co-activate the 
expression of multiple genes involved in cell 
fate determination, proliferation, and survival 
[41]. Connective tissue growth factor (CTGF) is 
a target gene of YAP; its expression is known to 
be induced by mechanical stimulation and is 
involved in osteogenic differentiation of mech- 
anical stretched-associated ADSCs [42]. Grow- 
th differentiation factor 5 (GDF5) and Disheve- 
lled 2 (DVL2) are another two components 
involved in the Hippo signaling pathway; they 
have been shown to be involved in the osteo-
genic differentiation of ligamentum flavum (LF)-
derived stem cells (LFSCs) and synovial fibro-
blasts, respectively [43, 44]. Recently, a num-
ber of studies have demonstrated an associa-
tion between miRNA and the Hippo signaling 
pathway during osteogenesis of human MSCs 
(hMSCs). One study showed that miR-135b-5p 
positively regulates osteogenic differentiation 
of hMSCs by controlling the expression levels of 
LATS1 and MOB1B, key negative regulators of 
the Hippo signaling pathway, resulting in subse-
quent activation of the Hippo signaling pathway 
[45]. In our study, YAP1, WWTR1, TEAD2, CTGF, 
DVL2, GDF5, GLI2, LIMD1, WTIP, LATS1, and 
TEAD1 were determined to be the target genes 
of differentially expressed miRNAs, and also 
were confirmed to be upregulated in stretch- 
ed PDLCs. Therefore, we speculate that the 
changed miRNAs can regulate the mechani- 
cal stretch-induced osteogenic/cementoblas- 
tic differentiation of PDLCs via components of 
the Hippo signaling pathway. 

In conclusion, we first identified and character-
ized the expression profile of miRNAs in PD- 
LCs after mechanical force loading using high-
throughput sequencing. Furthermore, we ex- 
plored a regulatory network between differen-
tially expressed miRNAs and transcription fac-
tors to identify the potential mechanisms un- 
derlying osteogenic/cementoblastic differen- 
tiation of stretched PDLCs. This study provides 
a basis for further insight into the molecular 
mechanisms involved in bone remolding during 
OTM.
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Figure S1. Western blot analysis of cementoblastic marker. Each protein lysate was loaded on SDS-PAGE gel as 
above order. Hela cell line and periodontal ligament (PDL) tissue were used as positive control of CEMP1 expres-
sion, and GAPDH was used as internal control. The red box represents the location of CEMP1. Protein bands were 
detected by using an enhanced chemiluminescence (ECL) kit (Biosharp, Hefei, China) and visualized by Odyssey® 
CLx imaging system (LI-COR Biotechnology, Lincoln, NE, United States). The observed molecular weight of CEMP1 
and GAPDH was 26 kDa and 37 kDa, respectively.

Figure S2. Western blot analysis of relative osteogenic proteins. Each protein sample was loaded on a 10% SDS-
PAGE gel as above order, and transferred onto 0.22-μm polyvinylidene difluoride (PVDF) membranes. The mem-
branes were blocked with 5% non-fat milk for 1 h at room temperature. Then, these membranes were cut off at 
the dotted line and incubated with primary antibodies against human RUNX2, SPP1, and GAPDH at 4°C overnight. 
Protein bands were detected by using an enhanced chemiluminescence (ECL) kit (Biosharp, Hefei, China) and visu-
alized by Odyssey® CLx imaging system (LI-COR Biotechnology, Lincoln, NE, United States). The observed molecular 
weight of RUNX2, SPP1 and GAPDH was 70 kDa, 42 kDa and 37 kDa, respectively.
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Table S1. Biological functions of selected miRNAs which are involved in osteoblastic differentiation

miRNAs Validated targets Cell lines
Biological function  

(osteogenesis: +; inhibit of 
osteogenesis: -)

1. miR-132-3p
2. miR-132-3p
3. miR-132
4. miR-132

1. FOXO1/GDF5/SOX6 
2. Ep300
3. Sirt1 
4. β-catenin

1. Ligamentum flavum cells
2. Primary rat osteoblasts
3. MC3T3-E1 cells
4. Umbilical cord mesenchymal stem cells

1. - [1]
2. - [2]
3. - [3]
4. - [4]

1. miR-221
2. miR-221

1. RUNX2
2. ZFPM2

1. C2C12 cells
2. MC3T3-E1 cells

1. - [5]
2. + [6]

1. miR-138
2. miR-138
3. miR-138-5p
4. miR-138
5. miR-138-5p

1. TRPS1/SULF2
2. ZEB2
3. EIF4EBP1
4. FAK (PTK2)
5. Osteocalcin (OC)

1. 5TGM1 
2. Human bone marrow mesenchymal stem cells (hBMSCs)
3. MC3T3-E1
4. BMSCs/Tendon-derived stem cells/Adipose-derived stem cells (ADSCs)
5. Periodontal ligament stem cells

1. - [7]
2. - [8]
3. - [9]

4. - [10]
5. - [11]

1. miR-218
2. miR-218
3. miR-218
4. miR-218
5. miR-218

1. SFRP2/DKK2
2. RUNX2 
3. SOST/DKK2/SFRP2
4. TOB1
5. ROBO1

1. hADSCs
2. Human dental stem cells
3. BMSCs
4. BMSCs
5. Fibroblast-like synovial cells

1. + [12]
2. - [13]
3. + [14]
4. + [15]
5. + [16]

1. miR-145
2. miR-145
3. miR-145
4. miR-145

1. ZEB2
2. Foxo1
3. Cbfb 
4. SP7

1. hBMSCs
2. hADSCs
3. MC3T3-E1 
4. C2C12/MC3T3-E1

1. - [8]
2. - [17]
3. - [18]
4. - [19]

1. miR-143
2. miR-143-3p
3. miR-143

1. SP7 
2. RICTOR/LARP 
3. TNF-α

1. hBMSCs/MC3T3-E1
2. hMSCs 
3. Dental pulp stem cells

1. - [20]
2. - [21]
3. - [22]

1. miR-486 1. Smurf2 1. Aortic valve interstitial cells 1. + [23]
1. miR-133a-5p
2. miR-133a-3p
3. miR-133a
4. miR-133a
5. miR-133a

1. RUNX2
2. SLC39A1
3. RUNX2
4. SP7
5. RUNX2/TRPS1

1. MC3T3-E1
2. BMSCs 
3. C2C12 cells/Vascular smooth muscle cells
4. MC3T3
5. C3H10T1/2/C2C12/NIH3T3/3T3-L1

1. - [24]
2. - [25]
3. - [26]
4. - [27]
5. - [28]

1. miR-210
2. miR-210-3p
3. miR-210

1. EFNA3
2. SOST
3. ACVR1b

1. hBMSCs
2. BMSCs
3. ST2 cells

1. + [29]
2. + [30]
3. + [31]
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