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Abstract: Mesenchymal stem cells (MSCs) are multipotent, non-hematopoietic stem cells capable of differentiat-
ing into varieties of mature cell types such as osteoblasts, chondrocytes, adipocytes, and myoblasts. MSCs can 
be isolated from different kinds of tissues and cultivated in vitro for amplification and passage easily. These cells 
have drawn researcher’s attention lately due to their ability of tissue repair, properties of hematopoiesis support 
and function of immunoregulation through the secretion of a variety of cytokines and growth factors that have both 
paracrine and autocrine activities. MSCs can regulate the proliferation of T cells, the antibodies secretion of B cells, 
maturation of DC, polarization of macrophages and also have many effects on neutrophils such as the suppression 
of NO secretion, inhibition of apoptosis, reduction of their infiltration, decreasing of N-Formy l-L-Methionine-L-leucy 
l-L-phenylalanine, induction of respiratory bursts and promotion of survivals. In some conditions, MSCs exert their 
function of treatment through immunoregulation. We reviewed the multifaceted roles of MSCs in communicating 
with immune cells mainly neutrophils in both in vivo and in vitro experiments. MSCs may provide promising trends 
for cell therapy in future.
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Introduction

Different types of stromal cells, including endo-
thelial cells, smooth muscle cells, reticular 
cells, and osteoblasts, are found within the 
bone marrow cavity, where they form a niche 
that plays an indispensable role in supporting 
the survival, growth, and differentiation of he- 
matopoietic progenitor cells [1-3]. A subset of 
mesodermal progenitor cells named multipo-
tent mesenchymal stromal cells or more com-
monly, mesenchymal stem cells (MSCs) are pri-
marily found in the stromal component of the 
bone marrow and many other tissues such as 
umbilical cord, and adipose [4-6]. MSCs are 
fibroblast-like and plastic-adherent having the 
potency to self-renew and differentiate into dis-
tinct types of cell lineages such as osteoblasts, 
chondrocytes, adipocytes, tenocytes, myotu- 
bes, neural cells, and hematopoietic-support-
ing stroma, either in vitro or in vivo [7, 8]. In the 
early 2000s, the research group of Barth- 

olomew A and Di Nicola M reported that MSCs 
have an immunoregulatory effects on lympho-
cytes [9, 10]. From then on, more researches 
about the immunoregulatory properties of 
MSCs have been reported. MSCs can regulate 
the proliferation, differentiation, maturation 
and immune functions of myeloid cells like 
monocytes, dendritic cells, macrophages, mye- 
loid-derived suppressor cells and granulocytes 
[11-15].

Neutrophils are one kind of granulocytes that 
originate from hematopoietic stem cells and 
mature in the bone marrow and are subse-
quently released into the blood of peripheral 
vasculature [16]. They are the largest quantity 
of leukocytes in the circulatory system of peri- 
pheral blood, reaching up to 70% of total leuko-
cytes in the human body [17]. Neutrophils make 
up the first line of host defense and protect 
hosts from pathogenic attacks via mechanisms 
such as phagocytosis, release of cytokines and 
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granules and formation of extracellular trap 
[18]. Neutrophils are also major phagocytes 
which have a primary of clearing extracellular 
pathogens [16]. Furthermore, they participate 
in the modulation of adaptive immunity by inter-
acting with various adaptive immune cells [19]. 
In addition to the host defense and immuno-
modulation, neutrophils are also involved in the 
pathogenesis and progression of many diseas-
es, including inflammation, autoimmune disor-
ders and cancer [17]. Interestingly, effects of 
MSCs have been tested in a variety of immune 
diseases such as collagen-induced arthritis 
(CIA) [20], graft-versus-host disease (GVHD) 
[21] and inflammatory bowel disease (IBD) [22]. 
It is evident that MSCs may interact with neu-
trophils with or without the conditions of dis-
eases. In this review, we will discuss research 
advances in the interaction between MSCs and 
some immune cells including neutrophils and 
also consider their evolving clinical potential in 
diseases.

The characteristics of MSC

Friedenstein and his colleagues were the first 
to point out that MSCs were fibroblast-like cells 
[23] characterized morphologically by a small 
cell body which is long and thin. The cell body 
contains a large, round nucleus with a promi-
nent nucleolus which is surrounded by finely 
dispersed chromatin particles, giving the nucle-
us a clear appearance. The remainder of the 
cell body contains a small amount of Golgi 
apparatus, rough endoplasmic reticulum, mito-
chondria and poly ribosomes. MSCs are widely 
dispersed and the adjacent extracellular matrix 
is populated by a few reticular fibrils but is 
devoid of the other types of collagen fibrils [24]. 
MSCs can be isolated from a variety of adult or 
neonatal tissues, primarily bone marrow, fat 
tissue, dental pulp, placenta, umbilical cord 
and amniotic fluid [25-27].

Although the terms mesenchymal stem cell and 
marrow stromal cell have been used inter-
changeably for many years, neither term is suf-
ficiently descriptive. Mesenchyme is embryonic 
connective tissue that is derived from the me- 
soderm and can differentiate into connective 
tissue but does not differentiate into hemato-
poietic cells [28]. On the other hand, stromal 
cell is connective tissue cell that forms the sup-
portive structure in which the functional cells of 
the tissue reside, which is an accurate descrip-

tion for one function of MSC but fails to convey 
the relatively recently discovered roles of MSC 
in the repair of tissue [29]. The term encom-
passes multipotent cell derived from other non-
marrow tissues, such as placenta, umbilical 
cord blood, adipose tissue, adult muscle, cor-
neal stroma or the dental pulp of deciduous 
baby teeth [30, 31]. The cell does not have the 
capacity to reconstitute an entire organ. Until 
today, the contributions of many laboratories 
validated Caplan’s concept of a mesenchymal 
stem cell [32] and made it possible to realize 
that these osteogenic cells were indeed capa-
ble of differentiating into several types of clonal 
connective cells such as osteoblasts, chondro-
cytes, myocytes, adipocytes, neurons and oli-
godendrocytes [33-36]. 

Immunoregulatory function of MSC

MSCs are characterized by immunophenotypes 
such as CD11b-, CD14-, CD34-, CD45-, HLA-
DR-, CD73+, CD90+, CD105+ and have been 
shown to possess a broad spectrum of immu-
noregulatory capabilities, affecting both adap-
tive and innate immunity [37]. They can also 
produce chemokines and proteases that are 
likely to play a role either in their immunomodu-
latory or migratory function [10, 38, 39]. MSCs 
inhibit the proliferation and maturation of im- 
mune cells and suppress the immune reaction 
both in vitro and in vivo in a non-MHC restricted 
manner [40, 41]. Therefore, MSCs are consid-
ered to be hypo-immunogenic which display low 
expression levels of HLA class I and no expres-
sion of HLA class II and costimulatory mole-
cules such as CD40, CD80, and CD86 [41]. 
Basically, MSCs could exert their widespread 
immunomodulatory effects on the innate and 
adaptive immune system. Ex-vivo amplified 
MSCs have also been shown to suppress the 
activity of a broad range of immune cells, 
including T cells, B cells, dendritic cells (DCs), 
natural killer T (NKT) cells, macrophages and 
neutrophils (Figure 1).

Immunoregulatory effects of MSC on T cell

The main features of the T cell response are 
cell proliferation and cytokines secretion. In- 
hibition of the proliferation of T cell is the most 
significant effect of MSCs on T cells. In vitro, 
MSCs are capable of suppressing the prolifera-
tion of T cell induced by mitogen and alloanti-
gen [42, 43], as well as activation of T cells by 
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port that MSCs inhibit the 
proliferation and/or functi- 
ons of CD4+ Th1, Th17, 
CD8+ T cell, and NK cell pr- 
edominantly via the secre-
tion of soluble factors inc- 
luding TGF-β1 and HGF [48, 
49]. Again, MSCs play a key 
role in cytotoxic CD8+ T ce- 
lls against intracellular pa- 
thogens. Schurch and co- 
lleagues reported that IFN- 
γ can promote the release 
of hematopoietic cytokines, 
including IL-6 from MSCs, 
which in turn reduces the 
expression of the transcrip-
tion factors Runx-1 and Ce- 
bpα in early hematopoietic 
progenitor cells, increases 
myeloid differentiation, trig-
gers the temporary activa-

CD3 and CD28 antibodies [42]. Suppression of 
T cell proliferation by MSCs has no immunologi-
cal restriction; similar suppressive effects be- 
ing observed with cells that were autologous or 
allogeneic to the responder cells [42, 43]. MSCs 
also modulate immune responses through the 
induction of regulatory T cells which are impor-
tant in maintaining immune homeostasis and 
self-tolerance. However, depletion of regulatory 
T cells has no effect on the suppression of T 
cell proliferation by MSCs, and MSCs physically 
hinder T cells from contact with antigen pre-
senting cells (APCs) [44]. Human adipocyte-
MSCs exert an anti-proliferative effect on 
mouse splenic T cells in vitro, primarily through 
COX-2 expression [45]. Human adipose-AT-
MSCs obtained from kidney donors induced a 
2.1-fold increase in the percentage of CD25+ 
CD127- FoxP3+ cells within the population of 
CD4+ T cell from all stimulated CD25- cells. The 
majority of cells within the fraction of induced 
Treg had a methylated FoxP3 gene Treg-specific 
demethylated region indicating that they were 
not of natural regulatory T cells origin [46].

Although the exact mechanism underlying the 
immunosuppressive effects of MSCs is still not 
clear, most evidences support that soluble fac-
tors are involved. These factors include PGE2, 
IDO, HGF and TGF-β1 [47]. Additionally, it is 
well-established that IFN-γ plays an important 
role in the enhancement of MSCs suppressive 
activity. Furthermore, increased evidences sup-

tion of emergency myelopoiesis and promote 
clearance of the infection [50].

Accumulated in vitro data have demonstrated 
that the proliferation of T cells stimulated with 
either polyclonal mitogens, allogeneic cells or 
specific antigens are inhibited by MSCs [9, 
51-55]. This inhibition is considered to be medi-
ated through arrest of the lymphocytes in the 
G0/G1 phase of the cell cycle. In addition, 
MSCs have also been reported to influence the 
cytokine secretion profile of the different T-cell 
subsets, as their addition to an in vitro activat-
ed T-cell culture resulted in decreased produc-
tion of the pro-inflammatory cytokines: IFN-γ, 
TNF-α, IL-6 and IL-17 and increased levels of 
anti-inflammatory cytokines such as IL-4 and 
IL-1 [54, 56, 57]. Taken together, these results 
could indicate a possible MSC-mediated alter-
nation in Th1/Th2 balance. Several research 
groups have demonstrated that MSCs are also 
capable of inhibiting the in vitro induction of 
CTL-mediated cytotoxicity [54, 58, 59], though 
how these stem cells exert an inhibitory effect 
on an already activated effector cytotoxic T cell 
is yet to be clarified.

Immunoregulatory effects of MSC on B cell 

B cells are a type of lymphocyte in the humoral 
immunity of the adaptive immune system spe-
cialized in antigen presentation and antibody 
production. Recent studies have shown that 

Figure 1. The effects of MSC on immune cells. The secretion of IL-6, IL-8 and 
GM-CSF by MSC increases neutrophil migration to the site of infection/injury, 
enhancing their activation and phagocytosis whilst promoting their survival. 
Furthermore, MSC can secrete other cytokines like PGE2, IDO, HGF, CPG, IL-2, 
IL-4, IL-10, TGF-β1 and so on to affect the proliferation, differentiation, matura-
tion and function of other immune cells such as T cell, B cell, Dendritic cell, 
Macrophage and NK cell.
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MSCs can inhibit several functions of B cells. 
Corcione and colleagues showed that the prolif-
eration of B cell was inhibited by MSCs through 
an arrest in the G0/G1 phase of the cell cycle. 
Possible interactions between MSCs and B 
cells have received relatively little scrutiny [60]. 
Most published results to date indicate that 
MSCs inhibit in vitro activation of the prolifera-
tion of B cell as well as immunoglobulin produc-
tion [60, 61]. MSCs inhibited the secretion of B 
cell resulting in a significant impairment of the 
production of IgM, IgG, and IgA. The expression 
of CXCR4, CXCR5, CCR7, CXCL12 and CXCL13 
in B-cell was significantly down-regulated by 
MSCs, suggesting that MSCs affected the che-
motactic properties of B cells. In addition, 
MSCs also affected the migration of B cells to 
inflammatory regions under the guidance of cell 
adhesion molecules and receptors of inflam-
matory chemokines [62].

A recent study by Lee and colleagues showed 
that the conditioned medium of MSCs infected 
with a mycoplasma strain, Mycoplasma argini-
ni, had marked inhibitory effects on Ig produc-
tion by lipopolysaccharide/interleukin-4-indu- 
ced B cells compared with mycoplasma-free 
MSC-CM [63]. Yan and colleagues found that 
BAFF in MSCs was expressed at a higher level 
after TLR4-priming, indicating that TLR4 and a 
downstream pathway play a role in BAFF secre-
tion and thus exert an important function in B 
lymphocyte-related immune regulation [64]. 
Another recent study highlighted galectin-9 
(Gal-9) strongly up-regulated upon activation of 
the cells by IFN-γ. Their results showed that 
Gal-9 is a major mediator of the anti-prolifera-
tive and functional effects of MSCs not only on 
T cells but also on B cells. Moreover, Gal-9 and 
activated MSCs contribute to the suppression 
of antigen triggered immunoglobulin release 
[65]. On the contrary, Rosado and colleagues 
reported that bone marrow-MSCs were able to 
promote in vitro proliferation and differentia-
tion of transitional and naive B cells isolated 
from both healthy donors and pediatric patients 
with SLE upon stimulation with CpG, soluble 
CD40L, anti-Ig antibodies and IL-2 [66]. Mean- 
while, B cells treated with UC-MSCs resulted in 
an increase of proliferation, differentiation into 
plasma cells and production of antibodies in 
vitro [67]. These conflicting results hint that it is 
important to distinguish the direct action of 
MSCs on B cells from indirect effects mediated 
by other cell types contained in the different 
culture conditions.

Immunoregulatory effects of MSC on DC

DCs are the main antigen presenting cells (AP- 
Cs) in the immune system. Their main function 
is to present antigenic material on the cell sur-
face to T cells. APCs significantly affect the bal-
ance between helper and regulatory T cells and 
establish self-antigen tolerance [13]. MSCs 
have been shown to inhibit the in vitro matura-
tion of monocytes and hematopoietic progeni-
tor cells into DCs [68, 69] as well as down-regu-
late the expression of MHC class II, CD11c, 
CD83 and co-stimulatory molecules on mature 
DCs. These effects, along with the MSCs ability 
to decrease the production of the pro-inflam-
matory cytokines: IL-12 [70] and TNF-α and to 
up-regulate the production of the anti- inflam-
matory cytokine IL-10 [71] in monocytes, sug-
gests that MSCs possess the potency to impair 
both the antigen presentation function of the 
DCs as well as their pro-inflammatory potential. 
The co-culture of MSCs with DCs resulted in a 
reduction of CCR7 chemokine expression by 
DCs following stimulation. The maturation of 
DCs in the presence of MSCs showed a signifi-
cantly lower migration of DCs towards CCL19 
[72]. Zhang and colleagues have shown that 
MSCs inhibit the up-regulation of CD1a, CD40, 
CD80, CD86 and HLA-DR during the differentia-
tion of DCs and prevent an increase in CD40, 
CD86 and CD83 expression during the matura-
tion of DCs [73]. In addition, Jiang and col-
leagues have also shown that the co-culture of 
MSCs can strongly inhibit the initial differentia-
tion of monocytes into DCs. Subsequently, 
CD83 expression was significantly reduced in 
the maturation of DCs treated with MSCs, sug-
gesting that their status was immature. At the 
same time, a decrease in the expression of pre-
sentation molecules (HLA-DR and CD1a) and 
co-stimulation molecules (CD80 and CD86) 
and the down-regulation of the secretion of 
IL-12 have also been observed [74]. Further- 
more, the differentiation of bone marrow pro-
genitors into DCs cultured with conditioned 
supernatants from MSCs was partially inhibited 
by IL-6 secretion. Also, MSC-secreted PGE2 
plays a major role in inhibiting the maturation of 
DCs, as well as its inhibitory effect on DC matu-
ration by acting early [75].

MSCs inhibit the effector properties of DCs in 
vitro, including antigen processing and presen-
tation to T cells by inhibiting the activation of 
mitogen activated protein kinase occurring dur-
ing TLR4 stimulation. Again, in vitro exposure of 
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DCs to MSCs as well as intravenous MSCs in 
vivo resulted in significant down-regulation of 
CCR7 and CD49d, two molecules involved in 
the original DCs in lymphoid organs. This event 
leads to inhibition of migration to draining 
lymph nodes and subsequent alteration of 
priming of naive T cells specific for the antigen 
[76].

Immunoregulatory effects of MSC on NKT cell

NKT cells are part of the innate immune system 
and link the adaptive immune system to the 
innate immune system. Once activated, these 
cells can perform the function assigned to Th 
and Tc cells by enhancing the cell-mediated 
immune response [77]. In addition, NKT cells 
play a key role in eliminating virus-infected cells 
and tumor cells. MSCs can influence innate 
immunity through their inhibition to the cytotox-
icity of NK cells by down-regulating the expres-
sion of NKp30, NKp44 and NKG2D activating 
receptors and suppressing the production of 
IFN-γ [78, 79]. MSCs alter the phenotype of 
NKT cells and suppress the proliferation, cyto-
kine secretion, and cytotoxicity towards HLA 
class I-expressing targets. Some of these eff- 
ects require cell-to-cell contact, while others 
are influenced by soluble factors, notably TGF-
β1 and PGE2, suggesting the existence of vari-
ous mechanisms of NKT cells suppression 
mediated by cell supplement medium (CSM) 
[80]. Spaggiari and colleagues also showed 
that MSCs could inhibit IL-2-induced prolifera-
tion of non-activated NKT cells [71]. MSCs, via 
HLA-G5, affect innate immunity by inhibiting 
both NKT cell-mediated cytolysis and IFN-γ 
secretion [81]. Therefore, MSCs manage to 
inhibit NKT cell proliferation and immune regu-
latory function by involving multiple cytokines 
and the signal pathway.

Immunoregulatory effects of MSC on macro-
phage 

Macrophages are differentiated from mono-
cytes that reside in tissues. They play a key role 
in the innate immune system and are particu-
larly specialized in the removal of dead cells 
and cell debris. Macrophage is also an impor-
tant immune effector cell involving a cell-medi-
ated immune response. Increasing evidences 
have shown that the regulation of macrophages 
by MSCs is essential for the inflammatory 
response and repair of tissue lesions. Rese- 

archers have reported that MSCs injection can 
modulate the response of the immune system 
by interacting with monocytes and macro-
phages to reprogram. Treated monocytes and 
macrophages produce large amounts of IL-10 
and the treatment decreases circulating am- 
ounts of TNF-α and IL-6 [82]. A recent study has 
shown that mouse MSCs tilt macrophages to 
an M2 phenotype independently of cell con-
tact. MSCs exerted this effect by inhibiting 
NF-KB p65 and activating STAT3 pathways 
[83]. In addition, the preferential shift of the 
macrophage phenotype from M1 to M2 may be 
related to the immune modulation characteris-
tics of MSCs [84]. The discovery of M1 mono-
cytes and macrophages transforming into M2 
macrophages in the presence of MSCs could 
be very important for the development of in- 
flammatory biology and the treatment of inflam-
matory diseases.

Immunoregulatory effects of MSC on neutro-
phil

The bone marrow is not only the organ where 
hematopoiesis occurs but also the site where a 
large amount of non-proliferating neutrophils is 
retained in the storage pool of bone marrow 
sinusoids [72, 76]. The bone marrow reserve 
with an estimated mass between 25-30 times 
larger than the circulating mass of granulo-
cytes, represents in conditions of increased 
demand a readily available source of neutro-
phils that possess the same functional proper-
ties as their peripheral counterparts [76, 85]. 
Interestingly, MSCs, which exert their homeo-
static functions through both paracrine mecha-
nisms involving the release of soluble factors 
and contact-dependent mechanisms, would 
line the bone marrow extravascular space, 
forming a network that interpolates with the 
sinusoids, where neutrophils of the bone mar-
row reserve reside. MSCs also suppress the in 
vitro production of hydrogen peroxide in acti-
vated neutrophils, thus suggesting that these 
stem cells can potentially limit the intensity of a 
respiratory burst upon inflammatory stimula-
tion [86].

Neutrophils are the most prevalent innate im- 
mune cells, responding to microbial challenge 
by accumulating at the wound site within min-
utes of injury. These non-proliferative, phago-
cytic cells respond to microbial challenge by 
releasing bactericidal molecules, reactive oxy-
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gen species and producing neutrophil extracel-
lular traps (webs of chromatin derived from the 
neutrophil nucleus containing proteases) [87]. 
Neutrophils, also known as polymorphonuclear 
(PMN) leucocytes are the major cell type that 
constitutes innate immune system. They com-
prise approximately 50-70% of leucocytes and 
predominate in eliminating pathogens that in- 
duce acute inflammation. Elimination of patho-
gens by neutrophils involves a series of physio-
logical sequences that comprise chemotaxis, 
phagocytosis and microbial killing. 

It has been demonstrated within mice that 
MSCs residing in tissue are central to the 
recruitment of neutrophils, exhibiting a pro-
inflammatory phenotype and secreting chemo-
tactic cytokines such as IL-6, IL-8, GM-CSF and 
macrophage inhibitory factor [88]. These find-
ings are further evidenced by results from a 
murine sepsis model where infusion of MSCs 
was shown to aid bacterial clearance through 
enhancing neutrophil phagocytic activity [89]. 
Neutrophils are notoriously short-lived immune 
cells and their survival is central to the elimina-
tion of infection and in facilitating tissue repair 
[90].

Effects of MSC on the oxidative metabolism of 
neutrophil

Neutrophils undergo a spontaneous oxidative 
response that can be increased by different 
stimuli, such as the bacterial-derived peptide 
formy l-l-methionine-l-leucy l-l-phenylalanine 
(f-MLP) [91]. Several studies indicate a close 
relationship between neutrophil apoptosis and 
oxidant production [92]. The effects of MSCs 
on the oxidative metabolism of neutrophil were 
investigated by assessing the oxidative status 
of neutrophils incubated with or without MSCs 
for 1 hour and then exposed to f-MLP or medi-
um for 30 minutes. Intracellular hydrogen per-
oxide levels were detected by flow cytometry. 
The results showed that MSCs significantly 
down-regulated the production of intracellular 
hydrogen peroxide in both unstimulated and 
f-MLP-stimulated neutrophils [91].

MSC inhibits apoptosis and preserves the vi-
ability of neutrophil

The microenvironment of bone marrow estab-
lishes close interactions between MSCs and 
bone marrow sinusoids in a putative perivascu-

lar niche. These vessels contain a large storage 
pool of mature non-proliferating neutrophils 
[72]. Researchers have investigated the effects 
of human bone marrow MSC on the survival 
and effector functions of neutrophil. MSCs 
from healthy donors, at very low ratios (up to 
1:500) of MSC: neutrophil, significantly inhibit-
ed the apoptosis of resting and IL-8-activated 
neutrophils and dampened N-f-MLP-induced 
respiratory burst. The anti-apoptotic activity of 
MSCs did not require cell-to-cell contact, as 
shown by trans-well experiments. Antibody neu-
tralization experiments demonstrated that the 
key MSC-derived soluble factor responsible for 
neutrophil protection from apoptosis was IL-6, 
which is signaled by activating STAT-3 transcrip-
tion factor. Furthermore, the expression of IL-6 
was detected in MSCs by real-time PCR and 
ELISA. Finally, recombinant IL-6 was found to 
protect neutrophils from apoptosis in a dose-
dependent manner. However, MSC had no eff- 
ects on neutrophil phagocytosis, expression of 
adhesion molecules, and chemotaxis in res- 
ponse to IL-8, f-MLP, or C5a [93].

It is shown that human MSCs inhibit the prolif-
eration of most of the immune cells. However, 
there are innate immune cells such as neutro-
phils and other polymorphonuclear cells that 
do not require an extensive proliferation prior to 
their effector function. The effect of MSCs on 
neutrophils in the presence of complete and 
serum-deprived culture media was investigat-
ed. The viability of neutrophils increases in the 
presence of MSCs. Annexin V and propidium 
iodide (PI) have been utilized to confirm wheth-
er the enhancement of neutrophil’s viability is 
due to a reduction in programmed cell death 
(PCD). MSCs significantly rescue neutrophils 
from apoptosis at 1, 5 and 10% of FBS supple-
mentation. The fractions of viable and dead 
cells were increased and decreased respec-
tively in the presence of MSCs. These results 
indicate that MSCs rescue neutrophils from 
nutrient or serum-deprived cell death. However, 
whether this effect is exerted through a specific 
signaling pathway or confining neutrophils in 
resting state by MSCs requires further investi-
gation [93].

During the beginning phase of inflammation, 
neutrophils are one of the first-respondent 
inflammatory cells to migrate towards the site 
of inflammation. MSCs inhibit in vitro apoptosis 
of resting and IL-8-activated neutrophils and 
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reduce N-f-MLP-induced respiratory burst while 
not affecting phagocytosis, expression of adhe-
sion molecules, or the migration capability of 
neutrophils in response to classic stimuli. Fur- 
ther researches have shown that MSCs res-
cued neutrophils from apoptosis by constitu-
tive release of IL-6 [93]. Cassatella and col-
leagues also reported that MSCs, upon TLR 
activation, may sustain and amplify the func-
tions of neutrophils. Their results showed that 
TLR3-activated MSCs are powerful in preserv-
ing neutrophils viability and function, and a 
concerted action of endogenously produced 
IL-6, IFN-β, and GM-CSF determines most of 
the modulatory effects exerted on PMN by 
TLR3-activated MSC [94]. Results documented 
by Maqbool and colleagues also indicated that 
MSCs rescue neutrophils from nutrient- or 
serum-deprived cell death [95].

Effects of MSC on bax and MCL-1 expression 
in neutrophil

Bax, a member of the Bcl-2 family, is a pro-
apoptotic mitochondrial protein modulated dur-
ing spontaneous neutrophil apoptosis [96]. The 
expression of Bax was evaluated in some 
reviews by immunocytochemistry and digital 
image analysis in neutrophils cultured in the 
absence or presence of MSCs. In these stud-
ies, Bax was expressed in neutrophils cultured 
for 18 hours. However, upon incubation with 
MSCs for the same time interval, neutrophils 
displayed significantly decreased Bax expres-
sion. In contrast, they found that MCL-1, a well-
known mitochondrial anti-apoptotic protein, 
was significantly up-regulated in neutrophils 
after 18-hour culture with MSCs compared with 
neutrophils cultured in medium alone for the 
same time interval [97] (Table 1).

MSC suppresses the nitric oxide (NO) secre-
tion by neutrophil

An assay was conducted to assess NO produc-
tion of neutrophils. Neutrophils were co-cul-
tured with or without MSCs at the ratio of neu-
trophil: MSC (1:100) for 24 hours supplement-
ed with or without 5 µg/ml LPS and PMA. The 
amount of NO released from the cells was 
derived from the standard curve. The results 
revealed that PMA served as potent stimulator 
of neutrophils compared to LPS. Although MS- 
Cs were allogenic to respondent neutrophils, 
MSCs did not stimulate the resting PMN. In the 

presence of MSCs and PMA, NO production of 
neutrophils was dramatically reduced more 
than three folds [93]. Therefore, neutrophils 
may be one of important immune cells which 
mediate the forward immunomodulation of 
MSCs (Figure 2).

MSC as a new trend for cell therapy 

Stem cells are unspecialized cells with the abil-
ity to renew themselves for long periods with-
out significant changes in their general proper-
ties. They can differentiate into various special-
ized cell types under certain physiological or 
experimental conditions. Cell therapy is a sub-
type of regenerative medicine. Cell therapy 
based on stem cells describes the process of 
introducing stem cells into tissue to treat a dis-
ease with or without the addition of gene thera-
py. MSCs exert different functions by secreting 
a variety of factors. They produce growth fac-
tors such as TGF-β, HGF, FGF and VEGF that 
induce proliferation and angiogenesis of vari-
ous cell types, in particular fibroblasts, epithe-
lial or endothelial cells [38]. Currently, there are 
many registered clinical trials in different clini-
cal trial phases aimed at evaluating the poten-
tial of MSC-based cell therapy worldwide. With 
the advancement of preclinical studies, MSCs 
have been shown to be effective in the treat-
ment of many diseases, including immune dis-
eases and non-immune diseases.

MSC in tissue repair

The wide tissue distribution and multipotent 
differentiation of MSCs together with the ob- 
served reparative effects of infused MSCs in 
many clinical and preclinical models [98-103] 
strongly suggest a critical role of MSCs in injury 
healing. They are believed to be responsible for 
growth, wound healing, and replacing cells that 
are lost through daily wear and tear and patho-
logical conditions. Because of these functions, 
they have been shown to be effective in the 
treatment of tissue injury and degenerative dis-
eases. In preclinical studies, researchers have 
also shown that human MSCs are effective in 
treating myocardial infarction through the se- 
cretion of tumor necrosis factor-inducible gene 
6 protein (TSG-6), which reduces inflammation 
and promotes tissue reconstruction. It also 
reduced inflammatory damage to the cornea by 
secreting TNF-alpha stimulated gene/protein 6 
[102].
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Table 1. Cytokines secreted by MSCs and their effects on neutrophils
Cytokines secreted by MSCs Functions on Neutrophils Relevant mechanism References
IL-2 Reduces neutrophil infiltration [96]

IL-4 Reduces neutrophil infiltration [96]

IL-6 Reduces neutrophil infiltration, inhibits neutrophil apoptosis and decreases N-Formyl-L-
Methionine-L-leucyl-L-phenylalanine-inducedrespiratory bursts

STAT3 [85, 92]

IL-8 Inhibits neutrophil apoptosis Modulation of two mitochondrial proteins of the Bcl-2 family, Bax 
and MCL-1

[92, 93]

Down-regulation of Bax and up-regulation of MCL-1

IL-10 Suppresses the functions of neutrophils Expression of PD-L1 and FasL molecules [93]

IL-17 Enhances neutrophil phagocytic activity, increases neutrophils maturation and number Induces G-CSF [92]

CXCL2 Reduces neutrophil infiltration [96]

CXCR2 Attenuates neutrophil recruitment Enhanced intracellular activation of p38 MAPK phosphorylation [96]

GM-CSF Promotes neutrophils survival [85]
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ease patients, both autolo-
gous and allogeneic MSCs 
were able to suppress in- 
flammation and reduce da- 
mage to the kidneys and 
bowel through the possible 
induction of regulatory T 
cells in patients [109-111]. 
It has also been reported 
that BM-MSCs can impro- 
ve multiple system atrophy 
(MSA) [112] multiple scle-
rosis (MS), amyotrophic lat-
eral sclerosis (ALS) [113] 
and stroke [114], likely th- 
rough immediate immuno-
modulatory effects [8]. Osi- 
ris’ Prochymal, the world’s 
first stem cell drug appro- 
ved in Canada on May 12, 
2012, was successful in 
phase III clinical trials in 
treating GvHD and Crohn’s 
disease and has become 
the only stem cell-based 
drug approved by FDA [115, 
116].

The interaction between 
mesenchymal stem cells 
and neutrophils has been 
demonstrated in various 
pathologies such as GVHD 
and IBD. Our search on the 
PubMed, SCI and Google 
scholar database about ar- 
ticles that highlight the in- 
teraction between these 
two kinds of cells in various 
diseases revealed a total 

MSC in immune disorder therapy

In addition to their property of treating tissue 
injury, MSCs are also applied to alleviate im- 
mune disorders because of their powerful ca- 
pacity of regulating immune responses. Various 
studies have evaluated the therapeutic effect 
of MSCs in preclinical animal models and dem-
onstrated great clinical potential. For example, 
MSCs have been successfully applied to re- 
verse GvHD in patients receiving bone marrow 
transplantation [104, 105] especially in pati- 
ents diagnosed with severe steroid resistance 
[106-108]. Similarly, in SLE and Crohn’s dis-

of 110 documents published from the discov-
ery of MSCs till date (Figure 3).

Conclusion

Mesenchymal stem cells are advantageous 
over other stem cell for a variety of reasons. 
Firstly, they avoid the ethical issues that sur-
round the embryonic stem cells research. 
Secondly, repeated studies have found MSCs 
to be immuno-privileged, which make them an 
advantageous cell type for allogeneic trans-
plantation. MSCs reduce both the risks of rejec-
tion and complications of transplantation. Th- 

Figure 2. The effect of MSCs on neutrophils. Abbreviations: IL-10 (interleukin 
10), IL-6 (interleukin 6), IL-8 (interleukin 8), Signal transducer and activator of 
transcription 3 (STAT3), TNF-stimulated gene 6 protein (TSG-6), CXC receptor 2 
(CXCR2).

Figure 3. Distribution of MSC regulation on neutrophils in different diseases.
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irdly, there have been advances in the use of 
autologous mesenchymal stem cells to regen-
erate human tissues, including cartilage, me- 
niscus, tendons, and bone fractures, because 
MSCs can exert regenerative effects through 
homing to sites of damage, paracrine signaling, 
regulating the immune response, and affecting 
the microenvironment. In summary, these traits 
give MSCs intense therapeutic interest, be- 
cause they represent a population of cells with 
the potential to treat a wide range of acute and 
degenerative diseases.

MSCs have been extensively tested for their 
immunomodulatory and trophic properties in 
the field of medical research. A growing number 
of journals report the role of MSCs in modulat-
ing the cells of the immune system. Although 
the specific mechanisms of action by which 
MSCs exert their immunomodulatory effects in 
vivo remain largely unknown, these cells also 
considered having therapeutic peculiarities are 
highly regulated by their microenvironment and 
paracrine signals. In this review, we discussed 
the effects of MSCs on some immune cells and 
in particular on neutrophils, thus demonstrat-
ing the importance of cellular interactions and 
the secretome of MSCs. A better understand-
ing of these interactions will be crucial for the 
improvement and development of new clinical 
protocols for MSC-based cell therapy. 

Existing research have identified that, cell con-
fluence and the number of population dou-
blings can impact a prominent therapeutic 
mechanism: the immunomodulatory potential 
of MSCs. The degree to which this effect is 
exerted is still largely unknown and needs to be 
further explored. As discussed in this review, 
there is also the need to futher explore the 
mechanisms involved in MSC and immune cells 
interactions in terms of their efficacy and pre-
dictability to improve their clinical potential. 
Furthermore, knowing the number of MSCs 
needed to give expected outcome for any ther-
apy will break through a major hurdle in their 
application in any treatments.
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