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Abstract: In this study, we investigated whether radiomic features of CT image data can accurately predict HMGA2 
and C-MYC gene expression status and identify the patient survival time using a machine learning approach in 
pancreatic ductal adenocarcinoma (PDAC). A cohort of 111 patients with PDAC was enrolled in our study. Radiomic 
features were extracted using conventional (shape and texture analysis) and deep learning approaches following to 
segmentation of preoperative CT data. To predict patient survival time, significant radiomic features were identified 
using a log-rank test. After surgical resection, level of HMGA2 and C-MYC gene expressions of PDAC tumor regions 
were classified using a support vector machines method. The model was evaluated in terms of accuracy, sensitivity, 
specificity, and area under the curve (AUC). Besides, inter-reader reliability analysis was used to demonstrate the 
robustness of the proposed features. The identified features consistently achieved good performance in survival 
prediction and classification of gene expression status, on images segmented by different radiologists. Using CT 
data from 111 patients, six features in the segmented region of images were highly correlated with survival time. 
Using extracted deep features of excised lesions from 47 patients, we observed an average AUC score of 0.90 with 
an accuracy of 95% in C-MYC prediction (sensitivity: 92% and specificity: 98%). In HGMA2 group, using shape fea-
tures, the average AUC score was measured as 0.91 with an accuracy of 88% (sensitivity: 89% and specificity: 88%). 
In conclusion, the radiomic features of CT image can accurately predict the expression status of HMGA2 and C-MYC 
genes and identify the survival time of PDAC patients.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is 
an aggressive malignant tumor with a poor 
prognosis [1] and expected to be rated as 3rd 
for the cause of cancer-related death by 2030 
[2]. Even for patients suitable for surgical resec-
tion, the average survival time is no more than 
18 months [3, 4]. Therefore, developing reliable 
prognostic biomarkers is urgently needed. 
Previous studies have provided clinical and 
experimental evidence supporting the onco-

genic role of HMGA2 and C-MYC genes in PDAC 
[5-7]. The high-mobility group AT-hook2 (HM- 
GA2) protein is encoded by the HMGA2 gene on 
12q14.3 which is expressed at high levels dur-
ing the embryonic stage. HMGA2 contains an 
AT-hook which binds to AT-rich DNA regions and 
regulates replication, transcription, and repair 
[8]. Several studies demonstrated the reflec-
tion of metastasis in renal carcinoma, esopha-
geal carcinoma, colorectal cancer and PDAC 
with over-expression of HMGA2 [1, 2, 5, 6]. On 
the other hand, the oncogene C-MYC is located 
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on chromosome 8q24 and C-MYC protein is a 
transcription factor that plays a crucial role in 
cell proliferation, apoptosis, differentiation and 
metabolism [7]. The studies showed that dys-
regulated C-MYC is involved in the development 
and progression of PDAC disease and may  
contribute to the dedifferentiation of tumor 
cells, tumor development, and histological 
tumor grade [9-11]. Therefore, identification of 
HMGA2 and C-MYC gene expression status 
requires serious attention for PDAC prognosis.

Tissue biopsy is the crucial step for obtaining 
the gene expression for diseases, but it is high-
ly invasive and prone to sampling bias due to 
tissue heterogeneity. Besides, several studies 
pointed out potential impurity after contamina-
tion with healthy tissue in the tumor microenvi-
ronment after genomics analysis [12]. There- 
fore, a non-invasive prognosis approach that 
reflects the gene expression is severely 
required. 

Computed tomography (CT) is routinely used as 
a noninvasive imaging approach for diagnosis 
and staging of PDAC in clinical practice [3, 4]. 
However, information obtained through a rou-
tine CT image analysis may include only funda-
mental properties of tumors e.g. gross area, 
volume, and simple shape descriptors. On the 
other hand, texture analysis can provide more 
complex characteristics of the tissues not 
observed by human eye [13]. Therefore, the 
popularity of radiomics analysis which de- 
scribes the tissue characteristics with high 
dimensional features has improved during 
recent years [14, 15]. Earlier studies demon-
strated the potential of radiomic analysis for 
prediction of tumor genotypes, grade, and prog-
nosis of the tumor [14, 15]. On the other hand, 
recent studies have investigated the CT image 
texture extracting image characteristics using 
deep learning approach for diagnosis purpose 
[16, 17]. Although machine learning has been 
utilized to classify cancer according to the gene 
expression patterns, the association between 
radiomic and genetic features to predict the 
overall survival of the patients is still under-
studied [18]. 

In this study, we focused to evaluate the 
strengths of radiomic analysis extracting con-
ventional and deep learning features of CT 
images for prediction of HMGA2 and C-MYC 
genes expression status for diagnosis of PDAC 
and overall survival time of the PDAC patients.

Materials and methods

Patients

This retrospective study was approved by the 
Ethics Committee of Southwest Hospital 
(Chongqing, China) (No. KY201802). The study 
cohort consisted of 61 male and 50 female 
patients with histologically proven PDAC, who 
underwent surgical resection from 2008 to 
2011 at our institution. The average age for the 
patients was 57 years with 10 months of over-
all survival time. 

Tissue samples and immunohistochemistry

The cross sections of the excised lesions for 47 
patients among the study cohort were available 
for HMGA2 and C-MYC expression analysis. The 
tissue samples were embedded in paraffin and 
stained for immunohistochemistry (IHC) stud-
ies for C-MYC and HMGA2 genes. After IHC pro-
cedure, tissue was quantified using a compos-
ite score obtained by multiplying the staining 
intensity level (0, no staining; 1, weak staining; 
2, moderate staining; 3, strong staining) 
(Supplementary Figure 1) with the percentage 
of positive cells (0, 0%; 1, 1-10%; 2, 10-50%; 3, 
> 50%). The score for each specimen was 
between 0 and 9, corresponding to the level of 
protein expression. 

CT image acquisition and segmentation

All 111 patients received a preoperative pan-
creas protocol CT scan with following acquisi-
tion parameters: 0.6 mm section width and 2 
mm reconstruction interval, 120 kVp and 210-
300 mAs. All images were reconstructed with a 
high-kernel (b30) and a high-resolution matrix 
(512 × 512). Non-enhanced images from the 
upper aspect of the liver to the iliac crest were 
obtained. Omnipaque-350 contrast was then 
injected intravenously at a rate of 3.5 ml/sec 
based on total volume weight. Abdominal aortic 
tracking was used, and the threshold was set to 
180 Hu. The arterial phase image was obtained 
3 seconds after the trigger, and the venous 
phase images were obtained 25 seconds after 
the trigger.

The pancreatic lesion was segmented from the 
venous phase images, where they were gener-
ally more conspicuous. A slice with maximal in-
plane tumor diameter was manually chosen as 
a representative section of the tumor lesion. 
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The region of interest (ROI) of the lesion was 
defined manually by two radiologists using an 
in-house developed computer-aided segmenta-
tion tool for imaging analysis [19] and inter-
reader reliability of segmentation was evaluat-
ed in term of intersection-over-union (IoU) mea-
sure, denoted as:

A B( , )I U a a a a
a a
A B
A B=q ,
+

                                        (1)

Where aA and aB represent the segmented 
areas of the same patient’s CT data by clinician 
A and B, respectively.

Radiomic features

All radiomic features (conventional and deep 
features) were extracted from segmented  
ROIs on CT data using Matlab® (version 9.1.0, 
MathWorks, Natick, Massachusetts) and Mat- 
ConvNet toolbox [20]. 

Conventional features: The conventional fea-
tures combines 27 shape (eccentricity, extent, 
perimeter, orientation, centroid, major axis 
length, area, solidity, extrema, equivalent-diam-
eter and minor axis length) and 43 texture fea-
tures (mean gray-level intensity and uniformity) 
extracted with multi-level of LoG band-pass fil-
ter with the parameter σ ranged between 0.5 
and 2.5 [21, 22].

Deep convolutional features: In recent studies, 
implementation of convolutional neural net-
works (CNN) in medical image processing 
resulted in superior performance [23]. Due to 
the requirement of large data set to train a new 
CNN model, the transfer learning approach is 
commonly preferred while working with relative-
ly small datasets [24]. The recent studies have 
shown that shallow layers in CNN contain more 
general information and can be used as feature 
extractors to obtain common medical image 
features [23, 25, 26]. Therefore, we utilized a 
pre-trained CNN model to extract image char-
acteristics from CT images for diagnosis and 
prognosis of PDAC [27]. Prior to feature extrac-
tion, a sigmoid function normalization was per-
formed to enhance details in the ROIs. Then, 
masked images were fed into the first three 
convolutional layers in the CNN model and 256 
features were extracted. 

Classification

The patients with histology images were labeled 
according to the level of gene existence as low 

(staining score < 6) and high expression (stain-
ing score ≥ 6) based on staining score. The 
labels were utilized while generating a classifi-
cation model using a support vector machine 
approach with k-fold and leave-one-out cross-
validation methods while using all the radiomic 
features. The performance of the classifier was 
evaluated in term of accuracy, sensitivity, spec-
ificity, and AUC based on the results of cross-
validation. The optimal cut-off threshold values 
were determined at the point on the ROC curve 
where the positive likelihood ratio (true positive 
fraction/false positive fraction) was maximal. 
After that, we calculated the corresponding 
sensitivity and specificity. The selected ROC 
cut-offs of the radiomic signature in the training 
dataset were then applied to the validation 
dataset to calculate the sensitivity and 
specificity.

To improve the classifier, we employed an 
exhaustive feature selection approach to deter-
mine the significant features [28]. The number 
of features is increased in each iteration as 
long as the performance of the classifier is 
improved. The pipeline of the method is shown 
in Figure 1.

Performance: We divided the test into three 
groups which utilize the conventional features 
(with shape and texture features), deep fea-
tures, and all the features. Then, we performed 
feature selection method and reported the per-
formance with the AUC, accuracy specificity 
and, sensitivity scores. To obtain more robust 
results, we use 10-fold, 20-fold, 30-fold, 
40-fold, and leave-one-out cross-validation to 
assess the classification efficacy, which means 
the scores are averaged over 147 tests.

Statistics

All 111 patients were included in the survival 
prediction study. To control the confounding 
effects from age or gender, the patients were 
grouped into two groups by age or gender, 
where we divided them by either above or below 
the median age of 59 [29]. 326 conventional 
and deep features were extracted from each 
patient’s CT data. For each feature, we divided 
the patients into two groups by the median 
value of the feature.

To examine the effects of gender, age and 
radiomic features on survival, we utilized log-
rank tests to do univariate survival analysis. 
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Besides, we used Kaplan-Meier estimate anal-
ysis to assess survival. In the log-rank test, the 
Chi-squared test was used to compare distribu-
tions of categorical variables. The features that 
showed discrimination with respect to the sur-
vival time were shown as the Supplementary 
Figure 2. P value larger than 0.05 was consid-
ered statistically significant.

Results

Segmentation result

Two experienced radiologists blindly seg- 
mented CT slices with maximal in-plane tumor 
diameter (Figure 2) and inter-reader reliability 
was performed for evaluation of segmented 
regions by the radiologists. An average IoU 
score of 0.70 was obtained for 111 patients 
(Supplementary Figure 3), which was higher 
than the commonly used threshold of 0.5 to 
judge inter-reader reliability [30].

Correlation of survival prediction and radiomic 
features

The characteristics of patients were presented 
in Supplementary Table 1 with multivariate Cox 
regression analysis. The results showed that 
survival time was independent of age and gen-
der. The comparison of the log-rank test was 
shown in Supplementary Figure 2. In two doc-
tors’ log-rank test, we obtained 39 and 37 sig-
nificant features for patient survival time, 
respectively. However, due to variability be- 
tween different doctors, not all the selected 
features performed consistently well in differ-
ent doctor segmented images. Thus, there 
were only six common features with chi-square 
values over 3.8 as significant for survival time 
(Supplementary Figure 4). The feature IDs were 
2 (shape feature: extent), 75 (deep convolution-
al feature), 112 (deep convolutional feature), 
156 (deep convolutional feature), 164 (deep 
convolutional feature), and 284 (deep convolu-

Figure 1. The pipeline of the algorithm used in gene classification. For each preoperative CT image, 326 radiomic 
features were extracted after manually segmenting the CT images. Following surgical resection pancreatic tumor, 
HMGA2 and C-MYC expressions of the pancreatic tumor were classified using support vector machine with the se-
lected radiomic features. K-fold cross-validation is used to evaluate the classification model. 

Figure 2. Segmented tumor images from the same patient’s CT data. Different colors indicate the segmentation 
from the different radiologists. (A) The ROI segmented by Dr. A; (B) The ROI segmented by Dr. B.
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tional feature). The values of those features 
were presented in Table 1 while the survival 
curves were shown as Supplementary Figure 2, 
which indicated that the models built with 
these 6 features could predict the survival time 
of patients well.

The correlation between radiomic features and 
immunohistochemistry

The classification performance with the best-
selected features for C-MYC was presented in 
Supplementary Figure 5. The selected deep 
features had much stronger classification 
power and the performance increased with the 
size of training data while the test with a bigger 
k (folds) had better results. Therefore, the best 
performance was obtained with a leave-one-
out test, where AUC, accuracy, specificity, and 
sensitivity were 0.96, 98%, 100%, and 96%, 
respectively. Note that, combining deep fea-
tures with conventional features did not 
improve the performance, observed from the 
average values shown in Table 2. This shows 
that using selected features from deep fea-
tures will be enough for classification. The  
classification performance with the best-
selected features for HMGA2 was shown in 
Supplementary Figure 6. The average values of 
testing results with k-fold cross-validation were 
shown in Table 2. In terms of AUC, the selected 
features perform generally well. However, the 
performance was very sensitive to the size of 
the training data. This can be observed that 

AUC scores in 10-fold were much lower than 
other folds. Note that even the AUCs scores 
were acceptable in 10-fold, but sensitivity was 
extremely low due to imbalanced data (much 
more positive data than negative data). The 
same holds true for C-MYC, the better perfor-
mance was obtained by leave-one-out, where 
the best AUCs was 0.99 with an accuracy of 
98%, the specificity of 100%, and sensitivity of 
93%.

Finally, we used previously selected features to 
classify C-MYC and HGMA2 with different doc-
tor segmented images, i.e. fifteen groups (fea-
tures) from C-MYC and HMGA2 classification 
test segmented by Dr. A, fifteen groups (fea-
tures) from C-MYC and HMGA2 classification 
test segmented by Dr. B. Another 240 addition-
al experiments in total were conducted to 
assess our selected radiomic features (Figure 
3).

In C-MYC test, we could find the features select-
ed from Dr. B could obtain consistently good 
performance with segmented images, where 
average AUC was about 0.90 with an accuracy 
of 95%, a sensitivity of 92%, and a specificity of 
98% (feature IDs = 147 and 148, deep fea-
tures). Note pure deep features contributed to 
the good performance. On the other hand, we 
identified features selected from Dr. B again 
provided good performance with segmented 
images for HMGA2 test while obtaining an AUC 
of 0.91 and an accuracy of 88%. Besides, the 

Table 1. The values of the selected features
Feature ID 2 75 112 156 164 284
Dr. A 0.70 ± 0.08 35.58 ± 18.11 2.75 ± 6.56 1.16 ± 3.32 0.75 ± 3.35 1.16 ± 3.32
Dr. B 0.67 ± 0.09 36.76 ± 16.55 3.93 ± 7.44 1.17 ± 3.77 0.63 ± 2.57 1.17 ± 3.77
Note: Six common features with chi-square values over 3.8 are significant for survival time. The feature IDs are 2 (shape fea-
ture: extent), 75 (deep convolutional feature), 112 (deep convolutional feature), 156 (deep convolutional feature), 164 (deep 
convolutional feature), 284 (deep convolutional feature).

Table 2. Values aggregated from all (folds) experiments with respect to AUC, Accuracy, Specificity, 
Sensitivity scores in C-MYC and HMGA2

C-MYC HMGA2
AUC Accuracy Specificity Sensitivity AUC Accuracy Specificity Sensitivity

Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B Dr. A Dr. B
Conventional features 0.72 0.74 73% 72% 86% 79% 60% 66% 0.81 0.81 81% 81% 85% 92% 71% 57%

Deep features 0.90 0.87 89% 86% 89% 86% 88% 85% 0.84 0.86 82% 85% 95% 90% 53% 71%

All features 0.90 0.87 89% 87% 89% 89% 89% 85% 0.84 0.86 82% 85% 95% 92% 53% 69%
C-MYC, C-MYC protein; HMGA2, high-mobility group AT-hook2.
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features demonstrated a sensitivity of 89% and 
a specificity of 88% for shape feature (extrema 
points in the region). We presented the ROC fig-
ures using the best-performed features select-
ed in the experiment for C-MYC and HMGA2 
classification in Figure 4.

Discussion

In our study, we showed a significant relation-
ship between textural features and expression 
of C-MYC and HMGA2 proteins. C-MYC was cor-

related with two deep convolutional features 
(No. 147 and 148) while HMGA2 was directly 
expressed with single shape feature (extrema 
points in the region). Our results also indicate 
that a total of 6 texture features (conventional 
and deep convolutional) were significantly 
associated with survival of PDAC patients. The 
radiomic features of CT image were well corre-
lated with HMGA2 and C-MYC gene expression 
status and also showed high accuracy in pre-
dicting survival time of the patients. 

Figure 3. The AUC scores in C-MYC (blue bars) and HGMA2 (red bars) classification using selected features with 
different doctor segmented images in different K-folds validations. Green bars indicate the mean AUC scores in 
both C-MYC and HGMA2 classification. In x-axis label, “conv” means using selected conventional features, “deep” 
means using selected deep convolutional features, while “all” means using both selected conventional features and 
deep convolutional features. “A” indicates that the ROIs are segmented by Dr. A, and “B” indicates that the ROIs are 
segmented by Dr. B. 

Figure 4. The ROCs with AUC scores in C-MYC and HMGA2 classification: (A) ROCs in C-MYC classification with best-
performed features, namely features 147 and 148 (deep features); (B) ROCs in HMGA2 classification with best-
performed feature 14 (shape feature: extrema points in the region).
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In oncology, radiomic data is in a mineable form 
to build a quantitative characteristic model 
relating image features to phenotypes or gene-
protein signatures [31]. The core hypothesis of 
radiomics is that texture may provide valuable 
diagnostic, prognostic or predictive information 
as revealing complex patterns [32]. Hanania et 
al utilized radiomic features to evaluate the 
malignant potential of intraductal papillary 
mucinous neoplasm (IPMNs) [33]. 14 features 
were selected from 360 features of 53 patien- 
ts. The most predictive marker differentiated 
low-grade and high-grade lesions with an AUC 
of 82% with a sensitivity of 85% and specificity 
of 68%. Hou et al reported that radiomic analy-
sis in contrast-enhanced CT could well differen-
tiate responders from nonresponses to chemo-
radiotherapy in esophageal carcinoma [34]. 
Five features were used to construct classifier 
models using ANN and SVM methods which 
resulted in accuracies of 97% and 89% for  
ANN and SVM, respectively. Yang et al condu- 
cted a study to investigate the correlation 
between radiomic features and KRAS/NRAS/
BRAF mutations in colorectal cancer, extracting 
radiomic features from CT images of 117 
patients with 10-fold cross-validation [35]. The 
AUC, sensitivity, and specificity for predicting 
KRAS/NRAS/BRAF mutations were measured 
as 0.83, 69%, and 86% in the validation cohort, 
respectively. There was a thorough intra-/inter-
reader agreement evaluation. Besides, 10-fold 
cross-validation was repeated for 1000 times 
to prevent overfitting in training and to select 
the model with the best performance. Huang et 
al reported that radiomics nomogram for pre-
operative prediction of lymph node (LN) metas-
tasis in patients with colorectal cancer and vali-
dation of the radiomics nomogram was per-
formed [36]. Eilaghi et al reported that CT tex-
ture features were promising prognostic imag-
ing biomarkers of overall survival in PDAC for 
30 patients included in the study [37]. CT imag-
ing is preferably used for initial exams of pan-
creas despite the ability to obtain more detailed 
information with other imaging modalities e.g. 
US and MRI [38]. In this study, we investigated 
the CT image texture of 111 patients with PDAC 
disease to identify quantitative imaging bio-
markers which are significantly correlated with 
overall survival. We performed segmentation 
by two experienced radiologists and evaluated 
the segmentation results (average IoU score of 
0.70 (Supplementary Table 2) to improve the 
robustness of the study and prevent potential 

bias caused by segmentation. The segmenta-
tion error of our in-house software was within 
an acceptable range, which provides a prereq-
uisite for future multi-center research. We also 
demonstrated that deep convolutional neural 
networks (CNNs) could automatically learn 
well-performed features and achieve superior 
performance in medical image processing. The 
radiomic features provided high accuracy in 
predicting survival time of the patients. To the 
best of our knowledge, we are the first one  
to systematically evaluate the proposed prog-
nostic factors, i.e., conventional features and 
deep features, in PDAC under different cross-
validation criteria with inter-reader reliability 
analysis.

Our study had several limitations. First, it was 
lack of a patient cohort for external validation 
where verification of the proposed prediction 
models requires large cohorts of patients. We 
performed a retrospective single-institution 
study and the study has all limitations inhe- 
rent to retrospective studies and accompany-
ing chances of bias. Additionally, we only used 
the regions with the maximum tumor area, 
which cannot reflect the overall characteristics 
and heterogeneity of the tumor. In the next 
step, we will adopt a 3D segmentation method. 
Finally, we only cross-checked the included 
samples. More results need to be verified in 
subsequent randomized controlled trials. 

In conclusion, our study showed that CT radio- 
mic features of PDAC can accurately predict 
HMGA2 and C-MYC gene expression levels and 
identify the overall survival time of the PDAC 
patients. Our findings may provide potential 
clinical value for evaluation of PDAC disease 
with a noninvasive approach.
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Supplementary Figure 1. Immunohistochemistry (IHC) methods as follows: spares were dewaxed, hydrated, blocked, 
followed by incubation with primary antibody 4°C overnight (Both antibodies were diluted 1:200, Proteintech, Chi-
cago, USA), and further incubation with the streptavidin-biotin complex (Maixin, Fuzhou, China). After diaminobenzi-
dine and hematoxylin (Beyotime, Shanghai, China) staining, tissue was quantified using a composite score obtained 
by multiplying the staining intensity level (0, no staining; 1, weak staining; 2, moderate staining; 3, strong staining) 
with the percentage of positive cells (0, 0%; 1, 1-10%; 2, 10-50%; 3, > 50%). A. C-MYC without expression; B. C-MYC 
with lower expression; C. C-MYC with High expression; D. HMGA2 without expression; E. HMGA2 with lower expres-
sion; F. HMGA2 with high expression. 

Supplementary Figure 2. Kaplan-Meier curves for Features in patients with pancreatic ductal adenocarcinoma. We 
compute feature value of the tumor region by two experienced doctors’ segmentation and split into two groups by 
feature median: (A) Feature 2, (B) Feature 75, (C) Feature 112, (D) Feature 156, (E) Feature 164, and (F) Feature 
284.
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Supplementary Figure 3. Intersection-over-union scores of the corresponding patients from the segmented images 
between two doctors.

Supplementary Table 1. Multivariate Cox regression analysis of sur-
vival rate in patients with pancreatic ductal adenocarcinoma

Factors Groups Survival time range (month)
95% CI

P
Lower Upper

Age (year) < 59 10.367 ± 1.243 7.113 10.887 0.787
Age (year) ≥ 59 9.064 ± 1.605 6.833 9.767
Gender Male 12.419 ± 1.752 7.725 10.275 0.326
Gender Female 8.943 ± 0.986 6.153 10.447
Note: CI, confidence level.

Supplementary Figure 4. Six features whose chi-square values are greater than 3.8 in two doctors’ log-rank tests 
for patients’ survival time prediction. Higher value identifies a stronger distinguishing power. Blue bars indicate 
chi-square values computed from the ROIs that are segmented by Dr. A, and red bars indicate chi-square values 
computed from the ROIs that are segmented by Dr. B.
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Supplementary Figure 5. C-MYC expression classification using selected conventional features, deep convolutional 
features and all features extracted from the ROIs segmented by Dr. A and Dr. B in different k-folds cross validation 
tests (Scores V.S. N-folds). A. AUC scores; B. Accuracy scores; C. Specificity scores; D. Sensitivity scores. 

Supplementary Figure 6. HMGA2 expression classification using selected conventional features, deep convolution-
al features and all features extracted from the ROIs segmented by Dr. A and Dr. B in different k-folds cross validation 
tests (Scores V.S. N-folds). A. AUC scores; B. Accuracy scores; C. Specificity scores; D. Sensitivity scores.

Supplementary Table 2. Correlations of C-MYC and HGMA2 protein expression with the age and gen-
der of pancreatic ductal adenocarcinoma

Variables
C-MYC HMGA2

High expression Low expression P High expression Low expression P
Sample size 24 23 14 33
Gender (male/female) 17/7 18/5 0.5594a 11/3 24/9 0.6743a

Age(years) 57.96 ± 9.93 55.52 ± 10.15 0.5776b 55.50 ± 11.96 57.30 ± 9.20 0.4098b

Note: aPearson Chi-square test, bTwo-sample t-test. C-MYC: C-MYC protein; HMGA2: high-motility group AT-hook2 protein.


