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Abstract: Acute myocardial infarction is one of the leading causes of deaths worldwide. Although ameliorative thera-
pies against ischemic injury have remarkably reduced death rates among patients, they are inevitably complicated 
by reperfusion injury. Therefore, it is essential to explore other approaches to reduce ischemia/reperfusion injury 
(IRI). Modulating the levels of nicotinamide adenine dinucleotide (NAD+) is a promising therapeutic strategy against 
some aging-related diseases. The aim of this study was to determine the role of NAD+ in a swine model of myocar-
dial IRI. Fourteen Bama miniature pigs were subjected to 90 min transluminal balloon occlusion, and then randomly 
administrated with 20 mg/kg NAD+ or saline before reperfusion. Emission computerized tomography (ECT) was per-
formed immediately and 4 weeks after reperfusion, and the cardiac tissues were analyzed histologically. In addition, 
the levels of cardiac function markers and the pro-inflammatory cytokines IL-1β and TNF-α were also measured. 
NAD+ administration markedly reduced myocardial necrosis, enhanced glucose metabolism, and promoted cardiac 
function recovery. The extent of inflammation was also reduced in the NAD+ treated animals, and corresponded 
to less cardiac fibrosis and better ventricular compliance. Thus, NAD+ supplementation protected the myocardium 
from IRI, making it a promising therapeutic agent against acute myocardial ischemic disease. 
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Introduction

Myocardial infarction (MI) is a leading cause  
of mortality worldwide. Although several novel 
therapies targeting ischemic injury have achi- 
eved a significant reduction in mortality rates, 
the very process of myocardia reperfusion re- 
sults in secondary damage to the myocardium. 
This ischemia-reperfusion injury (IRI), which 
can affect almost 50% of the infarcted area, 
also exerts damaging effects beyond the ini- 
tial perfusion site [1]. The mechanism of IRI is 
complex, and pharmacological therapies tar-
geting this pathophysiological process have 
been ineffective so far [2].

Nicotinamide adenine dinucleotide (NAD+) is  
a vital enzymatic cofactor that is involved in 
most metabolic pathways and signal trans- 
duction [3], and is a reliable indicator of me- 
tabolic efficiency [4]. The major NAD+ depen-

dent enzymes, including sirtuins 1-7 (SIRT1-7), 
poly (adenosine diphosphate-ribose) polymer-
ases (PARPs) and cyclic ADP-ribose (cADPR, 
CD38/CD157) SIRTs (SIRT1-SIRT7), respective-
ly function as energy sensors and transcript- 
ional effectors [5], regulators of DNA repair and 
fat metabolism [6], and as a secondary mes-
senger in Ca2+ signaling [7]. The activity of all 
these enzymes are tightly controlled by the  
content of intracellular NAD+. Therefore, modu-
lating NAD+ levels is a potential therapeutic 
strategy against aging-related diseases like  
diabetes [8], fatty liver disease [9], cancer [10, 
11] and neurodegeneration [12, 13], which in- 
volve dysregulation in the aforementioned en- 
zymes. However, there is insufficient evidence 
regarding the role of NAD+ in cardiovascular 
diseases. Since the human heart shows several 
anatomical similarities with the porcine heart, 
we investigated the possible therapeutic role of 
NAD+ in a swine model of myocardial IRI.
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Material and methods

Establishment of a porcine model of IRI

Fourteen 3-month old Bama miniature pigs 
(body weight 17.78±2.45 Kg) were provided by 
the Shanghai Jiao Tong University School of 
Agriculture and Biology. The animals were hou- 
sed and fed according to standard guidelines. 
All animal experiments were conducted in ac- 
cordance with relevant ethical standards of the 
National Institute of Health (NIH), and were ap- 
proved by the Academic Ethics Committee of 
Shanghai Chest Hospital of Shanghai Jiao Tong 
University. 

The animals were fasted overnight, and anes-
thetized with intramuscular injections of 0.6 
mg/kg midazolam, 20 mg/kg ketamine and 
0.01 mg/kg atropine 30 min before the opera-
tion [14]. Sodiumthiopental (5 mg/kg), 0.02 
ml/kg/h propofol, 2.5 μg/kg/h sufentanil and 
0.1 mg/kg/h pancuronium were then adminis-
trated intravenously to maintain the anesthetic 
state. Supine animals were fixed on the DSA 
equipment operating table (United States Ge- 
neral Electric (China) Co. Ltd., Innova IGS 520), 
and a 6F sheath was introduced into the femo-
ral artery. After administering 10000 U heparin, 
a coronary angiography (CAG) was performed. 
The left anterior descending coronary (LAD) 
was then occluded for 90 min in the distal lu- 
men by an adequately sized balloon. An ST-T 
change of the ECG and a follow-up CAG were 
recorded. Before reperfusion, 20 mg/kg NAD+ 
(Sigma, St. Louis, Missouri, USA) or 20 ml sa- 
line (NS) was administrated through the ear 
vein as previously described [15]. The animals 
were defibrillated in case of ventricular fibrilla-
tion (VF), and their arterial blood pressure and 
heart rate were measured continuously. 

Emission computerized tomography 

Single photon emission computed tomography 
(SPECT): Electrocardiography gated myocardial 
perfusion SPECT was performed immediately 
after reperfusion and at the 4-weeks follow-up. 
The animals were placed in a supine position, 
and 555-740 MBq technetium-99m-sestamibi 
(99mTc-MIBI; Shanghai Atom Kexing Pharmaceu- 
tical, China) was administered intravenously. 
Scanning was performed after 90 min with a 
Discovery 670 scanner (GE Medical Systems 
Inc., Milwaukee, WI, USA), and each image (to- 
tal 32 in a 64×64 matrix) was acquired for 30  
s over a 180° arc at 6° intervals. The data was 

reconstructed at the horizontal-axis, vertical 
long-axis and short-axis of the heart. 

Positron emission computed tomography (PET): 
After SPECT acquisition, PET imaging was per-
formed with a high-spatial-resolution full-ring 
PET/CT scanner (Truepoint Biography 64, Sie- 
mens Healthcare). All scans were attenuation 
corrected using a low-dose CT scan. A hyperin-
sulinemic/euglycemic clamp was performed 
before obtaining the PET images [16] to mea-
sure the basal blood glucose levels. Briefly, the 
animals were intravenously injected with 30 ml 
of 50% glucose, and when the blood glucose 
level rose above 8 mM, 2-4 IU insulin was in- 
jected. When the blood glucose level decrea- 
sed to 7-8 mM, 111-148 MBq of 18F labeled 
fluorodeoxyglucose (18F-FDG; Dongcheng Phar- 
maceutical, China) was administrated intrave-
nously. The images were acquired and recon-
structed after 1 h.

Image analysis 

The data were independently reviewed after 
each scan in a blinded fashion. Manual cor- 
rection was processed when the mitral valve 
plane or left ventricular contour was inappro- 
priate for visual interpretation. Standardized 
quantitative analysis of ECT data was perform- 
ed with a polar map. The mean signal intensity 
(MSI) in the respective areas based on a 17- 
segment model was automatically calculated 
by QPS software (version 3.1, Cedars-Sinai Me- 
dical Center, Los Angeles, CA, USA) as a mea-
sure of myocardial perfusion and glucose me- 
tabolism [17]. The results were evaluated as 
per the American Heart Association (AHA) and 
segmental scoring methods, and the left ven-
tricular average segmental MSI was calculated. 
MSI<70% indicated a decrease in myocardial 
perfusion or metabolism. The total perfusion 
defect (TPD, %) was calculated using the QPS 
software to evaluate the myocardium at risk 
area [18]. 

Regions with perfusion defect but preserved 
18F-FDG uptake, or with PET MSI 25% larger 
than the SPECT MSI, indicated a perfusion-
metabolism mismatch (MM, %) with an isch-
emic but surviving myocardium. A decrease in 
both 99mTc-MIBI and 18F-FDG uptake indicated  
a perfusion-metabolism match (M, %) and myo-
cardial necrosis. The MM% and M% in the TPD 
were calculated automatically using Emory Car- 
diac Toolbox software (Version 3.3).
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The gated SPECT date was analyzed by QGS 
software (version 3.1, Cedars-Sinai Medical 
Center, Los Angeles, CA, USA) to calculate the 
parameters of ventricular function, including  
LV ejection fraction (EF) and the wall motion 
(WM) of each segment. The WM score, graded 
from 0-5, indicated dyskinesis with varying lev-
els of hypokinesis, and segmental WM scores 
≥4 were defined as abnormal. Summed motion 
score (SMS) was also automatically calculated 
by QGS software. Peak filling rate (PFR) and 
mean filling rate (MFR) obtained by QGS soft-
ware were used to evaluate the left ventricular 
compliance.

Circulating markers

Myocardial enzymes, including troponin I (cTnI) 
and creatine kinase isozyme (CK-MB) were me- 
asured at different time points after reperfu-
sion using a clinical analyzer (AU5811, Beck- 
man Coulter). The concentration of porcine TNF- 
α and IL-1β were evaluated 24 h after reperfu-
sion using a sandwich ELISA kit (R&D Systems) 
according to the manufacturer’s protocol.

Histological analysis

The animals were euthanized by injecting pen-
tobarbital sodium, and tissues were collected 
from the infarcted, non-infarcted (at least 2  
mm away from the margin of the infarct) and 
border regions (just next to the infarcted zone) 
of the myocardium. The samples were fixed in 
10% formalin, and stained with Masson tri-
chrome according to standard protocols. The 
extent of fibrosis was quantified in the stained 
tissues in eight fields under 20× magnification 
using the ImageJ software, and expressed as 
the percentage of the total section area. The 
tissue sections were also stained with a com-
mercially available terminal deoxynucleotidyl 
transferase dUTP nick end labelling (TUNEL) kit 
(Sigma), and the number of TUNEL+ apoptotic 
cells were counted in eight fields under 20× 
magnification. 

Statistical analysis

All analyses were performed with SPSS 22.0 
(Version 22.0, IBM, Chicago, IL, USA). The data 
were checked for normal distribution with the 
Shapiro-Wilks W test. Continuous data was ex- 
pressed as mean ± standard deviation (SD), 
and compared using independent samples t- 

test (Levene homogeneity test of variance and 
the Mann-Whitney U test were used to calcu-
late the P value). Mann-Whitney U test was us- 
ed for categorical variables. A 2-sided P-value 
<0.05 was considered statistically significant.

Results

Animal mortality

Four pigs died before the follow-up duration of 
4 weeks - two in the NAD+ group while estab-
lishing the IRI model due to persistent VF, and 
the other two in the control group after reperfu-
sion. The data of these four animals were ex- 
cluded from the study, leaving 5 pigs each in 
the NAD+ and NS groups.

NAD+ decreased myocardial necrosis 

The cTnI and CK-MB levels within the first  
24 h after MI were measured to evaluate the 
extent of cardiac damage. While cTnI peaked 
within 2-10 h in the NAD+ group, it took 2-16 
hours to rise to maximum levels in the con- 
trol group, and was significantly higher in the 
latter (57.68±1.48 ng/ml) compared to the 
NAD+ group (38.31±3.5 ng/ml) 24 h after MI 
(P=0.001, Figure 1A). The CK-MB levels were 
also significantly higher in the control group 
compared to the NAD+ group (73.12±14.38 
ng/ml vs 44.13±9.59 ng/ml, P=0.006, Figure 
1B, 1C).

A decrease in both 99mTc-MIBI and 18F-FDG up- 
take is indicative of myocardial necrosis. The 
TPD of both groups after reperfusion were  
similar (38.40±6.02 vs 39.76±5.61, P>0.05, 
Figure 2A), but myocardial necrosis was more 
severe in the control group (12.40±11.10% vs 
40.20±10.76%, P=0.004, Figure 2B). At the 
4-week follow-up, the TPD of the NS group 
increased compared to that of the NAD+ treat-
ed animals, although the difference was not 
significant. In addition, the percentage of apop-
totic cells in the border zone was also differ- 
ent between the two groups after 4 weeks 
(71.30±8.96 vs 89.30±13.15, P=0.002, Fig- 
ure 2C, 2D). 

NAD+ improved myocardial metabolism and 
restored cardiac function

Regions with perfusion defect but preserved 
18F-FDG uptake, or with PET MSI 25% larger 
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than the SPECT MSI, were defined as perfu- 
sion-metabolism mismatch (Figure 3A), which 
is indicative of glucose metabolism in the isch-
emic myocardium. The wall motion was grad- 
ed from 0-5, which indicated dyskinesis with 
varying levels of hypokinesis (Figure 3C). NAD+ 
treatment markedly enhanced glucose metab-
olism (87.60±11.10% vs 59.80±10.76%, P= 
0.004, Figure 3B), and restored the cardiac 

farcted area eventually decreases the extent  
of ventricular fibrosis. After 4-weeks follow-up, 
the NAD+-treated animals showed significantly 
lower degree of fibrosis as per Masson stain- 
ing (2.98±1.28 vs 4.59±1.79%, P=0.019, Fig- 
ure 4C, 4D), which was consistent with their 
improved PFR (2.86±0.90 vs 1.50±0.41 EDV/s, 
P=0.015, Figure 4C) and MFR (1.15±0.39 vs 
0.62±0.15 EDV/s, P=0.023, Figure 4C).

Figure 1. Alteration in the levels of myocardial enzymes after reperfusion. cTnI (A) and CK-MB (B, C) levels were 
measured at different time points after reperfusion to evaluate the extent of cardiac damage. (A) The cTnI level 
was significantly higher in the NS group 24 h after MI. (B) Maximum CK-MB level was also higher in the NS group. 
(C) Time-dependent change in CK-MB levels after MI. NAD+ supplementation reduced myocardial enzyme release.

Figure 2. NAD+ supplementation decreased myocardial necrosis. A. The per-
fusion defect in the NS and NAD+ groups immediately and 4 weeks after 
reperfusion. B. Reduced 99mTc-MIBI and 18F-FDG uptake indicated a perfu-
sion-metabolism match and myocardial necrosis. The matched regions were 
smaller in the NAD+ group compared to the control group. C. TUNEL+ stained 
apoptotic cells in the myocardium 4 weeks after reperfusion. D. The NAD+-
treated animals showed fewer apoptotic cells in the myocardium of border 
zone. 

function of these mismatched 
regions (31 vs 52, Z=-2.611, 
P=0.009, Figure 3D). However 
no significant difference was 
observed in the left ventricu-
lar ejection fraction of both 
groups. After the 4-week fol-
low-up, WM of both groups 
improved, and no significant 
difference was then observed 
due to the slower recovery of 
the untreated control. A lon-
ger follow-up for the animals 
showing more severe necrosis 
and fibrosis might result in a 
significant difference.

NAD+ attenuated inflamma-
tion, fibrosis and improved 
ventricular compliance 

NAD+ alleviated the inflam-
matory response by reducing 
the levels of TNF-α (30.59± 
6.56 vs 41.62±5.01 pg/ml, 
P=0.017, Figure 4A) and IL-1β 
(34.97±2.18 vs 38.69±1.43 
pg/ml, P=0.013, Figure 4B) 
24 h after reperfusion. Redu- 
ced inflammation in the in- 
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Discussion

Increasing evidence shows vital roles of NAD+ 
and NAD+-dependent enzymes in ameliorat- 
ing oxidative stress-induced injuries, prevent-
ing different forms of cell death, decreasing 
DNA damage, enhancing metabolism, protect-
ing mitochondrial fitness, and inhibiting inflam-
mation. Furthermore, the NAD+ levels correla- 
tes negatively with the severity of IRI [4]. Both 
the ischemic and reperfusion processes led  
to excessive activation of the PARPs, which rap-
idly depleted NAD+ to only 20%-30% of the 
baseline levels [19, 20], and limited the activi- 
ty of SIRTs [21]. NAD+ is synthesized de novo 
through the Preiss-Handler and salvage path-
ways [22], although the turnover is meagre and 
slow. Furthermore, IRI significantly inhibits the 
NAD phosphoribosyltransferase (NAMPT), the 
rate-limit enzyme of the salvage pathway, thus 
severely limiting NAD+ replenishment [23, 24]. 

Since exogenous supplementation is known to 
increase intracellular, including mitochondrial, 
NAD+ levels [25, 26], we hypothesized that ad- 
ministering NAD+ could ameliorate acute IRI. 
To this end, we established a porcine model of 
myocardial IRI, and observed significant cardio-
protective effects of NAD+ in the animals.

NAD+ reduced myocardial death 

NAD+ supplementation significantly prevented 
apoptosis and decreased myocardial necrosis, 
which can be attributed to several mechanis- 
ms. When exposed to mild to moderate levels 
of ischemic stress, PARP initiates DNA repair 
using NAD+ as the substrate to prevent apopto-
sis; however, the massive DNA damage caus- 
ed by IRI can constitutively activate PARP and 
trigger caspase-independent cell death. NAD+ 
depletion is a necessary intermediary step in 
this process [27], and NAD+ supplementation 

Figure 3. NAD+ improved glucose metabolism and restored cardiac function. A. Polar map showing severely reduced 
99mTc-MIBI uptake and normal 18F-FDG uptake indicating a perfusion/metabolism mismatch in the NAD+ group com-
pared to NS group. B. Total perfusion defect and perfusion-metabolism mismatch indicating that NAD+ improved 
glucose metabolism of ischemic myocardium. C. Polar map (17-segment) showing decreased wall motion in apex, 
anterior and inferior wall of both groups, and more severe effects in the NS group. D. Semi-quantitative scores of the 
entire wall motion indicated a better cardiac function of NAD+ group.
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restored SITR1 function and prevented PARPs 
overexpression [28]. In addition, SIRT1 can su- 
ppress the activity of p53 and inhibit p53- 
mediated apoptosis [29]. In our previous study 
on a rat model of IRI, we observed decreased 
expression levels of BAX, BCL-XL and caspase-3 
in the NAD+-treated animals [15].

NAD+ improved glucose metabolism and re-
stored cardiac function 

NAD+ supplementation improved glucose me- 
tabolism in the post-ischemic myocardium and 
thus restored cardiac function. The ischemic 
myocardium uses glucose as the primary ener-
gy source, and studies show that stimulating 
glucose metabolism during early reperfusion 
can improve cardiac function following isch-
emia [30-32]. In addition, since ATP generated 
by glycolysis is necessary for cytosolic Ca2+ 
homoeostasis, metabolic recovery can further 
reduce IRI by preventing Ca2+ overload [33]. 
NAD+ participates in both cytoplasmic glycoly-
sis and tricarboxylic acid cycle (TAC) in the mito-
chondria. The production of ATP depends on 
the intracellular NAD+ levels, and the depletion 

of cytoplasmic NAD+ by 50% or more would 
cause glycolytic failure despite excess glu- 
cose availability, and lead to cell death [26,  
34]. Furthermore, since NAD+ cannot be syn-
thesized rapidly, the redox enzymes requiring 
NAD+ are blocked after IRI, further resulting in 
metabolic failure. Exogenous NAD+ promotes 
ATP synthesis not only by directly participating 
in glucose metabolism, but also by activating 
SIRTs to upregulate catabolism. SIRTs increase 
cellular metabolism through multiple pathways, 
such as increasing glucose uptake, promoting 
pyruvate entry into the mitochondria for TCA, 
and up-regulating the activity of different rate-
limiting enzymes [35-37]. 

NAD+ modulates inflammation, relieve myo-
cardial fibrosis and improve ventricular compli-
ance 

NAD+ reduced TNF-α and IL-1β levels after 
ischemic reperfusion, which was followed by a 
decrease in fibrosis and improved ventricular 
compliance. IRI triggers a sterile inflammatory 
reaction, which is associated with expanded 
infarct size and maladaptive remodeling. There- 

Figure 4. NAD+ modulates inflammation, relieves myocardial fibrosis and improves ventricular compliance. A, B. The 
levels of inflammatory markers 24 h after reperfusion. C. Improved ventricular compliance of NAD+ group as indi-
cated by PFR and MFR values after 4-weeks follow-up. D. Representative photomicrographs of Masson trichrome-
stained sections showing cardiac fibrosis in the infarcted zone, border zone and remote non-infarcted myocardium. 
Myocardium is stained red and collagen is stained blue. E. Fibrosis of the myocardium 4 weeks after reperfusion, 
indicating less degree of fibrosis in the remote area of the NAD+ group.
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fore, timely repression of inflammation is criti-
cal for effective healing [38]. TNF-α overexpres-
sion following MI was observed in both isch-
emic and normal myocardium, and was sus-
tained in the later stages wherein it promoted 
fibrosis and extensive remodeling [39, 40]. 
IL-1β plays an important role in the inflamma-
tory response, and its inhibition after MI atten-
uated cardiomyocyte apoptosis and lowered 
the incidence of heart failure in both animal 
models and in clinical trials [41-43]. The posi-
tive feedback loop between the two cytokines 
result in the accumulation of the latter, finally 
leading to cell death [44, 45]. The activation of 
SIRTs by NAD+ might be responsible for the 
modulation of the myocardial inflammatory re- 
sponse, since SIRTs inhibit the expression of 
TNF-α, IL-1β and the downstream transcription 
factor NF-κB [46, 47]. In addition to increasing 
the ratio of glutathione to oxidized glutathione 
in mitochondria, SIRTs also upregulate superox-
ide dismutase (SOD2) activity in the mitochon-
dria to increase oxidative stress resistance 
[48]. SIRTs and PARPs were closely associated 
with metabolism, lifespan and aging, and are 
tightly controlled by the subcellular balance of 
NAD+. However its over-consumption following 
IRI limits NAD+-centered energy metabolism 
and signal transduction. Thus, restoring the 
NAD+ content by exogenous supplementation 
protected myocardium from IRI.

Conclusion 

Exogenous supplementation of NAD+ protects 
the myocardium from IRI, and therefore is a 
potential therapeutic agent against acute MI. 
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