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Abstract: The etiology and pathogenesis of oral lichen planus have not achieved a consensus yet. This study aimed 
to explore the possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Bioactive components 
from exosomes regulate intercellular communications that may be closely related to the occurrence and develop-
ment of diseases, including oral lichen planus. Further, exosomes are expected to be a biomarker for the diagnosis 
and treatment of oral lichen planus. In this study, new advanced views about the biological characteristics, clinical 
significance, and involvement of exosomes in oral lichen planus were reviewed. 
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Introduction

The exosomes are cellular waste products in 
the metabolism of reticulocytes [1]. They were 
first discovered and named by Rose Johnstone 
from Canada in the 1980s [2, 3]. In later de- 
cades, increasing evidence [4-7] showed the 
involvement of exosomes in cell proliferation, 
migration, inflammatory response, and tumor-
associated immunomodulation in various dis-
eases such as tumors [8, 9], cardiovascular 
diseases [10], neurological diseases [11], and 
oral diseases [12]. Oral lichen planus (OLP) is  
a chronic immune-mediated inflammatory dis-
ease characterized by liquefaction degenera-
tion in the basal keratinocytes and a band-
shaped subepithelial infiltration of lympho-
cytes; it may also be accompanied by skin 
lesions in some cases [13, 14]. The World He- 
alth Organization has classified OLP as “oral 
potentially malignant disorders (OPMDs)” [15] 
because of its malignant tendency, with undis-
covered pathogenesis and no unified therapy. 
In recent years, exosomes have been found to 
be closely related to the occurrence and devel-
opment of OLP [16, 17].

Composition and biological properties of exo-
somes

Exosomes are nanosized vesicles between 40 
and 100 nm in diameter [18, 19]. They are gen-
erated from inwardly budding vesicles in multi-
vesicular bodies (MVBs) released into the ex- 
tracellular space after the fusion of MVBs with 
the plasma membrane [20]. Most cells of the 
human body, including epithelial cells [21], lym-
phocytes [22], mast cells [23], and dendritic 
cells [24], can secrete exosomes, which medi-
ate cell-to-cell communications through blood 
plasma, breast milk, saliva, malignant ascites, 
amniotic fluid, urine, and many other body fluids 
during different biological processes [25, 26].

Being rich in proteins, lipids, and nucleic acids 
[20, 27], the conserved components of exo-
somal proteins are mostly located inside or on 
the surface of exosomes, contributing to the 
maintenance of the molecular structure and 
inner homeostasis of vesicles [4, 28]. The cell 
type-specific components of exosomal proteins 
are related to the selected processes in target 
cells and the modulation of gene expression in 
recipient cells [29, 30]. Moreover, the lipid bilay-
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er membrane structure of exosomes contains a 
variety of lipid components similar to the plas-
ma membrane [27, 31], which are proved to be 
involved in the intercellular communication, 
thus supporting and stabilizing the structure 
and inner environment of exosomes [32]. Exo- 
somes derived from different types of cells dis-
play different lipid compositions [33, 34], which 
might help exosomes to target the recipient 
cells and then adapt to the intracellular space. 

Nucleic acids, especially the microRNAs (miR-
NAs) [35-37] in exosomes, can be transferred 
to the target cells, affecting or even regulating 
the gene expression of recipient and target 
cells [38-40]. They protect circulating miRNAs 
from being degraded by RNA enzymes [41, 42]. 
However, Chevillet et al. [37] proposed that 
most of the miRNAs in body fluids might exist 
independently of the exosomes, which meant 
that exosomes could not serve as vehicles for 
miRNAs to interfere in intercellular information 
transfer. Besides, previous studies [27, 43] sh- 
owed that the RNA components of exosomes 
also had cell specificity, which was similar to 
that of the protein components of exosomes. 
However, a few conclusions were reached re- 
garding whether the RNA of exosomes was  
specifically sorted or randomly packaged [43]. 
Hence, further studies were needed to uncover 
the biogenesis of exosomes.

Clinical significance of exosomes

As the biological characteristics of exosomes 
and their roles in various diseases were deeply 
explored, their potential value in clinical diagno-
sis and therapy was gradually unveiled, imply-
ing that exosomes might serve as diagnostic 
and therapeutic tools [44-46] for many kinds of 
refractory diseases.

Role as diagnostic markers

Though derived from the same type of cells, the 
compositions and biological characteristics of 
exosomes are different under different physio-
logical or pathological conditions [7, 33]. The 
compositions of exosomes in patients with tu- 
mors [47-49], acute liver injury [50], or viral in- 
fection [34, 51] reflect the abnormal states of 
their mother cells to some extent, suggesting 
that exosomes might become a biomarker for 
disease detection. Kim et al. [52] showed that 
the expression level of exosomal four-trans-
membrane proteins collected from the saliva  

of patients with oral cancer was different from 
that in healthy individuals, revealing that the 
four-transmembrane protein might be a poten-
tial biomarker of oral cancer detection. Furth- 
ermore, Mitchell et al. [53] found that miRNA-
141 (a kind of specific miRNA expressed in 
prostate cancer) selectively aggregated in exo-
somes from mice with prostate cancer. They 
proposed that the serum level of miRNA-141 
might assist in the examination and diagnosis 
of prostate cancer, implying that exosomes 
could be an important marker for the blood test 
of tumors. Recent studies further found a sig-
nificant difference between exosomal miRNA 
profiles of patients with ovarian cancer and 
healthy individuals [54], indicating that the 
analysis of tumor-derived exosomes via blood 
test would provide the diagnostic evidence for 
cancer patients and even be beneficial to the 
disease therapy.

Regulation of tumor-related inflammation

Several studies [9, 55-57] indicated that tu- 
mor-derived exosomes had anti-tumor effects 
by inducing the apoptosis of tumor cells or 
enhancing anti-tumor immunity. Kim et al. [52] 
discovered that the Fas ligand (FasL) binding 
mode was found to help tumor cells escape 
from host immune surveillance by inducing the 
apoptosis of CD8+ T cells, and the expression 
level of FasL from exosomes was affected by 
tumor growth and degree of lymphatic metas-
tasis. Correspondingly, more studies explored 
the immunosuppressive functions of tumor-
derived exosomes, which could stimulate the 
proliferation and migration of tumor cells to 
promote tumor growth through inhibiting the 
differentiation of dendritic cells or reducing the 
cytotoxicity of T cells and natural killer cells 
[58-60]. Comprehensively as Altevogt et al. 
reported [56], tumor-derived exosomes might 
be bifunctional to regulate alterations of im- 
mune cell functions by stimulating the produc-
tion of inflammatory mediators or being dire- 
ctly delivered to target cells. The bidirectional 
effects of tumor exosomes on immune cells 
(whether stimulation or inhibition) were sup-
posed to depend on the length of the exposure 
to inflammatory factors, namely between the 
exosomes and the immune cells.

Therefore, the exosomal regulation on tumor-
associated immune responses could be appli- 
ed to novel clinical anti-tumor therapy, which 
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has attracted the attention of numerous rese- 
archers [17, 61, 62]. Notably, Viaud et al. [63] 
reported that the dendritic cell-derived exo-
somes loaded with tumor antigens could trig-
ger CD4+ and CD8+ T-cell-mediated immune 
responses. This was because they conveyed 
exosomal major histocompatibility complexes 
to the antigen-presenting cells, promoting the 
anti-tumor immune responses and inhibiting 
tumor growth in mice. The dendritic cell-derived 
exosomes are now being widely studied as 
novel cell-free vaccines for cancer immuno- 
therapy [64]. 

Role as drug delivery vehicles

Exosomes are expected to replace liposomes 
as an ideal drug carrier in the future, not only 
because of their good tolerance to the human 
body but also for their excellent homing ability 
toward targeted cells, which can be regulated 
by artificial membrane modification [46, 65]. 
Meanwhile, exosomes can also protect drug 
proteins and nucleic acids from degradation in 
the circulation, help confirm the direction to 
specific targeted cells, and reduce adverse 
reactions caused by targeting deviation [57, 
66]. For instance, Alvarez-Erviti et al. [67] found 
that exosomal siRNA could cross the blood-
brain barrier and knock out more than 60% of 
siRNA-targeting genes in neurons, microglia, 
oligodendrocytes, and their precursors, which 
can be applied to the treatment of nervous sys-
tem diseases.

Exosomes and T-cell-specific immune re-
sponse in OLP

The pathogenesis of OLP is related to the T- 
cell-specific immune response [14, 68]. Cor- 
responding to the pathological manifestations 
of OLP [13], the pathogenesis of OLP mainly 
comprises these processes: activation of T 
cells by antigen-presenting cells; T-cell prolifer-
ation, apoptosis, migration, and differentiation; 
and T-mediated apoptosis of keratinocytes. 
The depression of cell-mediated immunity, for 
example after taking cyclosporine, alleviates 
lymphocyte infiltration in lesions and clinical 
symptoms of OLP [69], with a limitation of an 
uncertainly recognized pathogen as a possible 
antigen. The roles of exosomes in immune re- 
sponses have also attracted extensive atten-
tion in the field of oral diseases and hence 
researchers hope to uncover the exact patho-
genesis and treatment of OLP.

Role as diagnostic markers for OLP

Due to easy operation, low cost, and noninva-
siveness, saliva has become an ideal sample 
for diagnosing and treating various oral diseas-
es [70, 71]. However, the risk of contamination 
is the fatal weakness of saliva. Too many inter-
fering impurities in saliva evidently lower the 
specificity and sensitivity of the test. This is well 
settled by the salivary exosome test for the 
diagnosis and antidiastole of oral diseases. 
Palanisamy et al. [72] clearly observed the 
intercellular signaling between fluorescence-
labeled salivary exosomes and keratinocytes in 
vitro, indicating that salivary exosomes could 
be a potential biomarker for disease detection 
and diagnosis. OLP has been classified as an 
“OPMD” for its malignant tendency. Patients 
with OLP should better accept the lifelong fol-
low-up to track the disease progression regu-
larly [15, 73]. In addition to higher acceptance 
of patients, the salivary exosome test is also 
more suitable for OLP compared with tradition-
al invasive tests such as biopsy, which exhibits 
the advantage of salivary exosomes.

Several studies [70, 74, 75] demonstrated that 
the expression of specific miRNAs of the exo-
somes in the peripheral blood and saliva of 
patients with OLP was different from that in 
healthy individuals. Byun et al. [76] compared 
the exosomal miRNA profiles from the saliva of 
16 patients with OLP and 8 healthy controls 
using gene-chip analysis and TaqMan quantita-
tive polymerase chain reaction (PCR). They dis-
covered that the miR-4484 was significantly 
upregulated, and might serve as a potential 
diagnostic marker and therapeutic target for 
OLP. The gene-expression profiles researched 
by Peng et al. [77] showed higher expression 
levels of miR-34a-5p and miR-130b-3p in cir- 
culating exosomes of patients with OLP than 
those of controls, while the levels of exosomal 
miR-301b-3p were lower. In addition, the posi-
tive association between the expression levels 
of miR-34a-5p and the severity of clinical symp-
toms of OLP was also discovered [77]. The high-
er the expression levels of circulating exosomal 
miR-34a-5p in patients with OLP, the more 
severe the clinical symptoms. This finding sug-
gested that circulating exosomal miR-34a-5p 
might be a promising biomarker for assessing 
the clinical severity of OLP. 

Moreover, exosomal miRNAs, as biomarkers, 
can not only be applied to the early screening 
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and progress monitoring of OLP but also assist 
in the study of OLP pathogenesis. Studies of 
OLP-specific exosomal miRNAs [76, 78] indica- 
te that these nucleotide sequences might be 
involved in the development of OLP. Hopefully, 
a study on the function of OLP-specific exosom-
al miRNAs might promote the investigation of 
OLP pathogenesis. Besides the positive corre-
lation between OLP severity and the expression 
levels of miR-34a-5p demonstrated by Peng et 
al., the target genes of miR-34a-5p are possibly 
associated with the modulation of cellular com-
munication, signal transduction, metabolic pro-
cesses, and gene expression, and hence the 
regulation of OLP progression, via phosphati-
dylinositol 3 kinase (PI3K)/protein kinase B 
(AKT) signaling pathways [77] (Figure 1).

Exosomes and immune disorders in OLP

The main pathological features of OLP include 
band-shaped lymphocytes of subepithelial infil-
tration and liquefaction degeneration of the 
basal keratinocytes [13]. Studies proved that 
the pathogenesis of OLP involves immune sys-
tem disorders, according to which OLP is specu-

lated to be a T-cell-mediated autoimmune dis-
ease [14]. Interestingly, besides the discovery 
of specific expression of some immune-related 
miRNAs in OLP-derived exosomes, the following 
in vitro experiments [16] also demonstrated 
that OLP-derived exosomes had certain regula-
tory effects on T cells and related cytokines, 
further confirming the role of T-cell-specific im- 
mune response in the pathogenesis of OLP in 
the perspective of exosomes. Peng et al. [16] 
investigated the biological characteristics of T 
cells co-cultured with plasma-derived exosom- 
es from patients with OLP using confocal laser 
scanning microscopy. They found that OLP-
derived exosomes could significantly enhance 
T-cell proliferation and inhibit T-cell apoptosis. 
Hence, it was speculated that exosomes might 
affect the progress of OLP by regulating the 
T-cell-mediated inflammatory response. More- 
over, exosomes from different subtypes and 
severities of OLP might affect T-cell vital move-
ments to varying degrees. Compared with re- 
ticular OLP, as Brant et al. [79] reported, less 
apoptosis but more lymphocytes were found  
in the inflammatory infiltrate of erosive OLP, 
indicating that the exosomes of erosive OLP 

Figure 1. Possible relations among pathogen/antigen, exosomes and OLP via circulation: a. Pathogen miRNAs in 
infected cells are integrated and uptaked by multivesicular bodies, and finally released into the extracellular space 
as cargoes in exosomes; b. Exosomes with pathogen miRNAs target and march into oral mucosa lamina propria 
through circulation; c. Exosomes carrying infected messages could promote proliferation of CD4+ and CD8+ T cells, 
as well as up-regulate activation of matrix metalloproteinases (MMPs) to stimulate destruction of the basement 
membrane and liquefaction degeneration of basal cells.
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might have a greater impact on T cells. The exo-
somes of erosive OLP can possibly enhance the 
T-cell-mediated immune response, leading to 
the aggravation of the clinical symptoms of 
OLP, which corresponds with relatively longer 
duration and higher recurrence rate of erosive 
OLP [80]. Besides, combining the different per-
formances of T-cell subsets between erosive 
and nonerosive OLP with the hypothesis that 
circulating exosomes might help T cells differ-
entiate into different subsets [81], Wang et al. 
[82] speculated that exosomes could also regu-
late the different directions of the differentia-
tion of T cells through different immune mecha-
nisms resulting in the clinical symptoms of OLP 
(Figure 2).

Methodological sense of viruses and exo-
somes for OLP research

Another study showed that exosomes carried 
viral RNAs to contaminate noninfected cells 
[51], indicating the same mechanisms of viral 
infection in OLP pathogenesis [68, 83]. Recent 
studies [84, 85] demonstrated that the intra-
cellular infection in keratinocytes might give 
rise to a vicious circle: T-cell-specific immune 
response induced by infection, followed by liq-
uefaction degeneration, epithelial barrier dys-
function, aggravation of viral infection, and 
finally stimulation of local immune response. 

The long-term persistent infection induced by 
this vicious circle might be the cause for ch- 
ronic and long-term features of OLP [83]. Fur- 
thermore, exosomes can deliver infectious pro-
teins and viral RNAs among cells to contami-
nate noninfected cells [34, 51], which might be 
a powerful force for the viral transmission and 
immune escape in infection mechanisms.

Hepatitis C virus-exosomes-OLP: Lichen planus 
is acknowledged as one of the extrahepatic 
manifestations of hepatitis C virus (HCV) infec-
tion [86]. Hence, HCV is also considered to be 
closely involved in OLP. An earlier epidemiologi-
cal survey [87] showed that the positive detec-
tion rate of HCV in Japanese patients with OLP 
was much higher than that in healthy people, 
but other studies [88, 89] at home and abroad 
revealed no significant correlation between 
HCV and OLP. Still, the meta-analyses [90, 91] 
of the association between HCV and OLP con-
sistently reported a significantly higher detec-
tion rate of HCV in the serum of patients with 
OLP than that in the control group, implying that 
a certain connection between HCV and OLP 
might be influenced by geographical differ- 
ences. Meanwhile, Cosset et al. [92] detected 
infectious viral RNAs in exosomes collected 
from hepatocytes and serum of patients with 
HCV, suggesting that exosomes could carry 
HCV-related cargo and fuse with noninfected 

Figure 2. Possible relations among pathogen/antigen, exosomes and OLP via keratinocytes: a. Pathogens invad-
ing into mucosal epithelium stimulate Langerhans cells/dendritic cells to secrete exosomes; b. Exosomes carrying 
pathogenic RNA enter the lamina propria and secrete MMPs through PI3K/AKT signaling pathways; c. Exosomes 
carrying pathogenic RNA enter the lamina propria, and stimulate the proliferation of CD4+/CD8+ T cells and the se-
cretion of MMPs; d. MMPs suppress the proliferation of epithelial cells and promote the apoptosis of keratinocytes.
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cells to help in viral transmission. In addition, 
similar to OLP lesions, the lymphocyte infiltra-
tion is also a typical feature in liver lesions of 
patients with HCV [93], indicating a similar 
immune background between these two dis- 
eases.

Human cytomegalovirus-exosomes-OLP: Hu- 
man cytomegalovirus (HCMV) is a ubiquitous 
opportunistic pathogen with no obvious clini- 
cal effects on healthy people [94] and an in- 
fection rate as high as 70%-100% in the glo- 
bal population. Ding et al. [95] analyzed the 
plasma of patients with OLP through RT-qPCR. 
They found five significantly upregulated HCMV-
encoded miRNAs (hcmv-miR-UL112-3p, hcmv-
miR-UL22a-5p, hcmv-miR-UL148d, hcmv-miR-
UL36-5p, and hcmv-miR-UL59). These miRNAs 
were found to indirectly or directly regulate the 
expression of immune-related active molecules 
[96-99], suggesting that specific HCMV-miRNAs 
might participate in OLP-specific immune res- 
ponse and play a certain role in the develop-
ment of OLP. In addition, Ding et al. [95] also 
found that HCMV-DNA in peripheral blood leu-
kocytes of patients with OLP was significantly 
higher than that in the control group. It was 
speculated that the higher the HCMV content  
in the body, the more likely the occurrence of 
OLP, further confirming that HCMV might be 
involved in the pathogenesis of OLP.

Ding et al. [95] also detected that most viral 
miRNAs were encapsulated in exosomes. They 
proposed that exosomes secreted by infectious 
cells and delivered into plasma might be the 
source of HCMV-encoded miRNAs in patients 
with OLP. Persistent intracellular viral replica-
tion may also allow the infectious cells to se- 
crete exosomes loaded with specific viral miR-
NAs into body circulation [100, 101]. As these 
viral-encoded miRNAs are nonimmunogenic 
molecules [85], the exosomes can protect the 
inner viral information from the attack of the 
immune system. The mechanism underlying 
the interaction between HCMV-encoded miR-
NAs and OLP is still unclear. However, HCMV-
encoded miRNAs may have significance in pa- 
tients with OLP [95, 102], providing a hint for 
the study of the pathogenic role of HCMV in 
OLP, with an extraordinary significance for the 
etiology, pathogenesis, diagnosis, and treat-
ment of OLP. 

Other viruses-exosomes-OLP: Except for the 
aforementioned two viruses, several other viru- 

ses are reported to be connected with OLP 
[103, 104], such as Epstein-Barr virus, human 
papillomavirus, and herpes virus. It is reason-
able to speculate that these OLP-related virus-
es can use exosomes as vehicles to take part in 
the pathogenesis of OLP. 

All these hypotheses about viruses-exosomes-
OLP need further verification.

Conclusion

As vesicles mediating intercellular communica-
tion, exosomes are found to be involved in cell 
proliferation, migration, and various inflamma-
tory responses. The lipid content of differently 
derived exosomes is different. The difference in 
lipid composition may help exosomes better 
adapt to the environment where the target cells 
are located. The different composition and bio-
logical characteristics of exosomes can possi-
bly reflect the abnormal state of the mother 
cells under different physiological and patho-
logical conditions. Whether the exosomal RNA 
is specifically sorted or randomly packaged in 
exosomes needs further exploration to uncover 
the biogenesis of exosomes. Researchers have 
found that many diseases, including OLP, are 
closely associated with exosomes. Exosomal 
microRNA-34a-5p in body fluids was found to 
be positively correlated with the severity of  
the clinical symptoms of OLP. The higher the 
level of exosomal microRNA-34a-5p, the more 
severe the clinical symptoms. Circulating exo-
somal microRNA-34a-5p may become a poten-
tial biomarker for diagnosing and evaluating 
the severity of OLP, whose target genes are 
mostly linked to the regulation of gene expres-
sion, signal transduction, and cellular meta- 
bolism. Further, PI3K/Akt signaling pathways 
might be involved in these progressions. 

Exosomes may participate in OLP mainly by 
inducing cellular immunity and evading immune 
surveillance. Hence, the study of the relation-
ships among exosomes, OLP-related immune 
responses, and microbial infections might pro-
vide a new perspective and direction for the 
study of the etiology of OLP and the mecha-
nisms of the progression of the disease. More- 
over, exosomes could be applied as the bio-
markers for the evaluation and diagnosis of 
OLP and used as the drug delivery vehicles for 
the treatment of OLP, indicating great pros-
pects for the clinical application of exosomes. 
However, the application of exosomes in the 
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diagnosis and treatment of OLP still needs fur-
ther investigation to design a correct therapeu-
tic strategy for the disease.
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