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Abstract: Traditionally, the metastasis has been detected in the late stage of the cancer, which mostly leads to
death. The classical opinion about tumor metastasis is that tumor cell migration begins with the single tumor cell
and goes through a series of complicated procedures, and lastly arrives and survives at distant tissues and organs.
However, emerging studies have found a new migration mechanism called collective cell migration in many cancers.
The collective cell migration could move as clusters with the tight cell-cell junction in the tumor microenvironments,
toward the traction established by the leader cells. In addition, the collective cell migration has been shown to
have higher invasive capacity and higher resistance to the clinical treatments than the single tumor cell migration.
Interestingly, the collective clusters of tumor cells have been detected in the early stage of the cancer patient, which
has led to the understanding of the significance of early cancer screenings. Here, we reviewed the major principles
and guidance of the collective cell migration mechanisms, and the specific manifestations in the different tumors

such as breast cancer and lung cancer.
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Introduction

Metastases are responsible for advanced can-
cers, which are usually connected with the
worse clinical outcomes. The whole process is
complex, multi-step but inefficient, including
the escape of primary cancer cells into the cir-
culatory system, and finally colonization and
proliferation in the distant organs [1]. The tradi-
tional opinions demonstrated that the cancer
invasion began with the single colonial growth
tumor cell from the primary tumor, which has
comprised the foundation of the tumor trans-
mission models, such as epithelial-mesenchy-
mal transition (EMT) and migratory cancer stem
cells [2] (Figure 1). However, there are emerg-
ing evidences found in many types of cancers,
like breast cancer, lung cancer, and mesenchy-
mal tumors, whose metastases can also be
seeded as large, cohesive cohorts of cells clus-
tered into adjacent tissues. The first report of
collective cell clusters was in 1950s, which
found that the blood sample of cancer patient
contained both individual and collective tumor
cells [3]. Some studies have also been reported

that the tumor clusters could travel more effi-
ciently [1], and circulating tumor cells (CTC)
clusters had significance of clinical outcomes
[1]. Recent studies have suggested that collec-
tive cell migration revealed worse clinical out-
comes than single cells.

Collective cell migration is a fundamental pro-
cess which is a coordinated movement of group
cells that maintain connected via cell-cell junc-
tions [4-6]. This process has often been ob-
served in the epithelial regeneration and the
formation, and reshaping of large tissue struc-
tures during the embryonic development peri-
od, such as angiogenic sprouting and neural
crest cell streaming [4, 7, 8]. Nowadays collec-
tive cell migration has been reported to con-
nect with cancer migration, and even metasta-
ses [9, 10]. Collective cell migration is a com-
prehensive achievement of a variety of process-
es, such as collective polarization, mechanical
coupling, and cytoskeletal kinetics. It majorly
followed the guidance of cell-intrinsic multicel-
lular organization, the leader-follower cell be-
havior, and integration of extracellular signal
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Figure 1. The invasion mechanism of single cancer cell and collective cancer cell. The single cell invasion begins
with a single tumor cell from the primary tumor site and undertakes the EMT program to lose some epithelial char-
acteristics, and then comes into the circulatory system, lastly arrives at the distant tissues and organs after expe-
riencing the MET program which gains the epithelial characteristics again. The collective cell invasion begins with
a clusters of cells of the primary tumor while does not need completed EMT program that remains some epithelial

characteristics and locates at the secondary organs as a whole units.

guidance cues. The knowledge of collective cell
migration in tumors has had great significance
on the treatment of cancer. In this review we
illuminated some common equipments and
ways for studying collective cell migration, and
discussed the emerging principles and guid-
ance mechanisms of collective cell migration,
and how it particularly performed in common
tumors.

Major principles and guidance of the collec-
tive cell migration mechanisms

Collective cell migration by cell-cell junction

Collective cell migration can move as a unit
with the help of the cell-cell junction coupled to
dynamic actin cytoskeleton. Cell-cell junction
keeps cellular adhesion, polarization, and sens-
es and integrates external guidance signals,
then further passes mechanical signal pro-
cessing and forces transmission within the
migrating clusters in the whole movement [11,
13]. Like in embryonic development, cell-cell
junction may be the production of the comple-
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mentary adhesion systems [14]. The ingredi-
ents of cell-cell junction in the collectively
migrating cells involve adhesion receptor and
cytoskeletal adaptor systems, including des-
mosomal proteins, gap junctions, tight junction
constituents and integration between immuno-
globulin family members (Table 2) [8]. Most of
them participate in the entire process of signal
transmission mediated by cell-cell junction,
such as PIBK/AKT, focal adhesion kinase (FAK)
and Rho GTPases [10, 15, 16]. The adhesions
take alterations in surface expression and cyto-
skeletal coupling under the control of up-
streaming signaling, then generate various cell-
cell junction [17]. And adhesion receptors can
help to stabilize the junction between cells.
Thus, the adhesion-positive cell-cell junction
can be seen as a strong marker of the collec-
tive invasion [18]. Besides, the mechano-trans-
ducing bridge was made by these cell junctions
in the nearby cells, which underlies organiza-
tions on the actin cytoskeleton [19]. Cell-cell
junctions connect the actin cytoskeleton of
multiple cell bodies, which establish the basis
for conformity of the forces of individual cells
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Table 1. Instruments and ways to research collective cell migration mechanism

Instruments or ways Field Function References
Time-lapse microscopy Intracellular mechanism Group dynamics, molecular process evaluation, interaction between cells and cells and substrates and son on [81]
Intravital imaging Intracellular mechanism Monitor of speed, location and type of invasion [82]
Mouse models Breast cancer and other cancers Tumor development process, tumor microenviroments representation [83-85]
3D matrix-based cell culture Epithelial cancers, melanoma and other cancers Tumor development process, tumor microenviroments representation [9, 13]
Lineage analysis CTC clusters To define CTC clusters metastasis arisen from polyclonal origin [1]
Gene ontology analysis CTC clusters To prove the survival advantage of clusters in circulation [77]
Histological studies Collective cell invasion The morphology of collective cells and the extent of the invasion [4]
Table 2. Adhesion systems and their roles in cell-cell junction
Adhesion systems Location and roles Relevant regulation proteins and signaling pathways References
Adherens junctions (AJs). Cell-cell junctions of epithelial and endothelial tissues Rho family GTPases: Cdc42 in Par6/aPKC and CIP4 (Cdc42-interacting protein 4); [86-88]
Connect the actin cytoskeleton of adjacent cells activator of AJs: Rac guanine nucleotide exchange factor (GEF) TIAM1, and Nectin and
Nectin-like proteins
Tight junctions (TJs). In plasma membranes of adjacent cells Composed transmembrane proteins: claudin, occludin, tricellulin, marveld3, junctional [89-92]
Create a barrier as restricting diffusion as paracellular gates adhesion molecules (JAMs), 201, Z02, Z03
Rho GTPase signaling: RhoA, Cdc42, Rac
Gap junctions (GJs). Intercellular membrane channels Cx43, N-cadherin, cytoskeletal proteins such as microfilaments and microtubules [93-95]
Form a tight connection between adjacent cells contributing to cell-cell
adhesion
1gCAMs limmunoglobulin-like cell-adhesion molecules Proteins at the cell membrane: growth-factor receptors, integrins, cadherins and [96, 97]
Mediate adaptive cell-cell interactions intracellular proteins: effectors of signal transduction pathways and cytoskeletal proteins
Slit/Robo Roundabout receptors (Robo) and their Slit ligand Netrin, GTPase activating proteins (GAPs), RhoA, Cdc42, Rac [36]
Control actin cytoskeletal dynamics by interacting with different
signaling molecules
Ephrin/Eph receptor. Tyr kinase receptors and ephrins Tyr kinase adaptor protein 1 (Nck1), Nck2, Vav2, Vav3, Src, ephexins [98]
Control actin cytoskeletal dynamics in short-distance cell-cell signaling RhoA, Cdc42, Rac
Integrins. Transmembrane proteins that connect the cytoskeleton with ECM F-actin, FAK, Src, ERK (extracellular signhal-regulated kinase), JNK (c-Jun N-terminal kinase) [99, 100]
Important transducers of mechanical forces
Table 3. The proteins and signaling pathways in collective cell migration
Cell guidance/environment The guidance and functions Proteins and signaling pathways References
Cell-cell junction Connect the actin cytoskeleton of multiple cells with adhesions Rho GTPase signaling: RhoA, Cdc42, Rac PI3K/AKT/FAK/ERK [10, 15, 16, 88]
Keep cellular polarization and force transmission within the whole clusters
Leader-follower polarization Integrate signals of various environments and regulate the actomyosin contractility MAPK, ERK, FAK, Rac [6, 34, 41, 46, 50]
Connect with substrates and cells around via actin cytoskeleton Rho/Rock signaling
N-WASP, LIM Kinases 1 and 2, Notch1-DIl4
CTC cells Express a hybrid epithelial-mesenchymal (hybrid E/M) phenotype during the 0OCT4, NANOG, SOX2, and SIN3A [57]
metastasis progression Na+/K+ATPase
Breast cancer Maintain the leader-follower polarization of K14* cells in MMTV-PyMT and TNBC YAP signaling, ITGA3, ITGA5, Rho signaling, [50, 61, 63, 64]
models POSTIN and TNC, DOCK10, ITGA11, DAB2, PDFGRA, VASN and PPAP2B
Lung cancer Promote collective cell migration and metastasis in lung cancers LPP, vimentin [79, 80]
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and the leader-follower polarity in the whole
group [20-22]. Cell-cell junctions can stabilize
mechanical connections, however, cytoskeletal
connections and adhesion sites are dynamic
and constantly changing to adapt to the micro-
environment during the migration [23]. What’s
more, the dynamic collective cell function deep-
ly depends on different period cell-cell junc-
tions, from hours to days or even weeks [24].
The critical cell-cell junction medicating the
direction and speed of collective cell move-
ments is in few minutes via unstable and short-
lived adhesions sensing [25]. There are a seri-
es of cell-cell junction mechanisms that have
been involved in tumor collective cell invasion.
Epithelial tumors metastasis majorly referred
to E-cadherin and [B-catenin positive cell-cell
junctions which can mediate AJs and cell-cell
interactions in tumor cells [26]. EMT can repro-
gramme cell-cell junctions to enhance the abil-
ity of invasion and metastasis of epithelial can-
cers, which includes weakening or even dissolv-
ing cell-cell adhesions within the tumor cells,
cleaving cadherins via up-regulateing the ex-
pression of stromal proteases, deregulating
integrin adhesion systems, and turning Rho-
mediated actomyosin contractility from cell-cell
junctions toward cell-matrix interactions [27-
29]. Thus, the adaptability of cell-cell coping
program strategies makes cancer invasion and
metastasis suitable in different tissue environ-
ments. The specific transmission to the differ-
ent environments during the collective invasion
process still remains to be further explored.

The leader-follower behavior in collective cell
migration

The guidance for individual tumor cell invasion
has been widely understood, including chemi-
cal and physical guidance [9], which also works
in the collective cell migration. What’s more,
the collective cell migration also needs to inte-
grate guiding cellular signals for moving and
maintaining the migration as a cohesive cell
group. The process relates to several cell-intrin-
sic and extracellular mechanisms of guidance
and polarity under the multicellular decisions
[30]. The major mechanism refers to the lead-
er-follower polarization, which is related to the
coordination of two kinds of cells - leader and
follower cells. In the front of the moving groups,
there are usually localized leader cells which
receive and integrate the signals, while the
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nearby cells with cell-cell junction, migrate to
the direction given by the leader cells, calling
follower cells [31, 32]. The leader cells main-
tain their polarity and invasion into tissue struc-
tures by acquiring their leading edge to the sub-
strate supported by Als signaling, such as
actin-based structures, signal processing and
special gene expression [33].

Like in mammalian sprouting vessels [33], the
leader cells integrate the guidance of the extra-
cellular inputs and downstream intracellular
signals in the specific cell-type and tissue-con-
text, such as mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase
(ERK), FAK and Rho GTPases [6, 34-38]. The
early activation of these pathways contributes
to the intrinsic bipolarity in leader cells, which
causes leader cell selection in cell subsets and
inhibits the leader cell selection in adjacent
cells, known as followers. Leader cells can reg-
ulate actin cytoskeleton polymerization, the
actomyosin contractility and force transmission
and then pass the force in the whole units to
stabilize the focal adhesions with the sub-
strates with the help of the activation of Rho
GTPases in a case [39, 40]. Meanwhile the fol-
lower cells maintaining cell-cell junction could
silence Rho/Rock signaling and reduce acto-
myosin contractility [41] (Table 3). The units of
collective cell movements demonstrate leader
cells that contact with nearby structures accor-
ding to Rac-driven filopodal protrusions and
substrate adhesions [36]. Moreover, the adhe-
sion to substrates of the leader cells is mainly
balanced by two kinds of forces: the integrin-
based pulling force at the cell-cell junction of
tumor cells, and the pushing force by the neigh-
boring cells. The leader cells with mesenchy-
mal characteristics grasp the direction and
speed of migration by stretching actomyosin-
mediated protrusions, degrading the surround-
ing microenvironments and resetting the ex-
tracellular matrix (ECM) [9]. The follower cells
move with the cell-cell junction behind along
the traction made by the leader cells and read-
just the ECM [42].

Consequently, collective cell migration mainly
relies on the leader-follower cell behavior be-
sides the integrated mechanocoupling and
guidance in migration transversion also con-
tributes a lot. The actomyosin contractility has
been found to exert as the central hub dis-
posing coordinating mechanical sensing and

Am J Transl Res 2019;11(9):5301-5312



Invasion mechanism about the collective cell migration

Key:

Leadin
cell . Ve
(C) Follower

cell

Actomyosin
cytoskeleto
n

Ai Force transmition
L]

‘ Cell-ECM adhesion

x Cellcell

junction

Figure 2. The guidance of leader-follower cell polarization in collective cell clusters. The leader cells could exert
pulling force to the follower cells by establishing the cell-ECM adhesion and impose a pushing force to the ECM,
and receive pushing force from the mitosis of rear cells. The actomyosin cytoskeleton plays an important role in the
whole movements as the core of the force transmission from cells to the matrix and between cells. The collective
cells move as a unit with the cell-cell junction that the actomyosin contractility level is low at the junctions, which
makes the intracellular pressure which is important to the ECM remodelling.

mechanical transduction responses [43]. While
collective tumor cells migrate in the tissue
structures, cell adhesion molecules sense the
changes in substrate, cytoskeletal rearrange-
ments promoted by ECM and environmental
sensing promoted by actomyosin contractility
together contribute to signal polar activation
and changes of gene expression (Figure 2),
which is crucial for the translation of cytoskel-
etal forces into migration motion [13, 33, 44,
45].

However, cadherin-mediated cell-cell junctions
at the mechanosensitive adhesions develop an
antagonistic relationship with integrin-based
adhesions that induce cell polarization and de-
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termine the migration direction by promoting
cell contractility of the rear of end cells [46-48].
And the cadherin-mediated cell-cell junction
also suppresses the formation of protrusion in
leader cells and the combination of the integ-
rins with the ECM by transversal RhoA-mediat-
ed contractility. Cadherin-mediated mechanical
sensitive adhesions interact with the actomyo-
sin network by the catenins like p120- and o-
and B-catenin, and this interaction is vital for
the maintenance of the cell groups [34]. The
balance between the force of cadherin and
integrin integrates the leader and follower cells
moving migration. Furthermore, the actomyosin
cytoskeletal needs to be continuously remod-
elled by the changes in transcriptional pro-
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grams to pass different tissue structures [49].
For example, the leader cell plays its role via
the Notch1-Dll4 lateral inhibition, while the Rho
signaling regulates the rear cells [46]. Also, the
expression of N-WASP participates in the for-
mation of cellular protrusions extended by lead-
er cells. Besides, the cellular protrusions need
the help of LIM Kinases 1 and 2 to increase
actin filament stability [50, 51]. Therefore,
adhesion molecules regulations, dynamic ch-
anges of actomyosin cytoskeleton activities
and specific gene expression programs in the
leader-follower cells are fundamental in effi-
cient collective cell migration.

Collective migration in CTC cells

The classic single tumor cell metastasis mech-
anism has been studied for some years, sug-
gesting that cells need to undergo the EMT pro-
cess to be invasive [52]. During the EMT, single
tumor cells loose cell adhesion factors which
are the characteristics of the epithelial cell and
express classical mesenchymal markers indu-
ced by the tumor cell environment factors.
When the single tumor cells reach the distant
tissues, they will experience the MET program
and reacquire the epithelial cell characteristics
[53, 54]. However, the collective cell migration
found in CTC clusters did not need to undergo
the complete EMT process to accomplish the
metastasis [55]. Tumor cells in CTC clusters
could maintain epithelial gene expression and
furthermore express a hybrid epithelial-mesen-
chymal (hybrid E/M) phenotype to finish the
proliferation and metastasis [1, 56]. Moreover,
in CTC clusters it has been found that stem-
cell-related and proliferation-related genes are
enriched and the transcription factors are
hypomethylated in the binding site, such as
OCT4, NANOG, SOX2, and SIN3A [57]. Intere-
stingly, knockdown of the cell-cell junction or
the Na+/K+ATPase inhibitors could turn CTC
clusters into single CTC cells and lead to the
DNA methylation remodelling at critical sites
and further suppress the metastasis process,
which provides potential clues to clinical treat-
ments for the late stage of tumor diseases [57].

Specific manifestations of collective cell mi-
gration in the different tumors

Collective cell migration in breast cancer

There has been some common mechanisms
for breast cancer invasion, including epithelial-
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mesenchymal transition (EMT), collective inva-
sion, and the macrophage-tumor cell feedback
loop [58]. Collective invasion has been reviewed
as the frequently mechanism of breast cancer
invasion, in which the leader cells expressed a
basal epithelial gene program, including inter-
mediate filament cytokeratin-14 (K14) and the
nuclear transcription factor p63, rather than
molecular EMT [26], and guided the rear cells
to migrate toward the way established by the
leader cells that maintain the cell-cell junction
and the connection with the substrates in
microenvironments. The studies for tumor inva-
sion in breast cancers usually used multicolor
lineage-tracing strategy in a classic mouse
model of breast cancer-MMTV-PyMT [59], by
which we could observe the major stages of
metastasis such as collective invasion, locally
clusters dissemination, CTC clusters and dis-
tant metastasis [60]. The K14* cells in MMTV-
PyMT has been observed much more efficient
than single seed cell in breast cancer invasion
as they counted for 2% in the clusters but made
>88% tumor collective invasion [26] and could
enhance the survival of tumor clusters in dis-
tant tissues. K14* cells were enriched in local
dissemination and CTC clusters connected with
tumor spread, while K14 cells were predomi-
nated in large colonies and large metastasis
associated with proliferation [60]. Compared to
the K14 breast cancer cells, k14" cells in CTCs
have been found to be enriched expression of
87 genes [61]. K14* cells have been shown to
be required by collective cell invasion rather
than single seed dissemination as the increa-
sed genes expression of cell-cell junction and
the adhesion of cell-ECM [60]. Furthermore, in
MMTV-PyMT model, the leader cell may acquire
K14 expression according to the contraction of
the tumor cell-matrix border rather than existed
as fixed [26]. K14* cells could be induced by a
stromal ECM which contains abundant fibrillar
collagen and lacks collagen IV [26]. Meanwhile,
collective cell invasion in basal-type breast
cancer cells is limited because the tumor cells
can only move through the paths patterned by
fibroblasts in the ECM [62]. Therefore stromal
fibroblasts play a role in breast tumor collective
invasion as the leader cell by remodelling ECM,
which determines the trails followed by the
remaining tumor cells in the model of MMTV-
PyMT and the activity of fibroblasts as regulat-
ed by YAP signaling [63]. The leading fibroblasts
were regulated by ITGA3, ITGA5, and Rho sig-
naling, while follower cells were dependent on
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Cdc42 and MRCK [64]. Some studies reported
that the K14* cells had some connections with
the proteins required in metastasis transcribed
by POSTIN and TNC encoding [61]. Similarly,
collective migration could be eliminated by the
hydrolysis of the MT1-MMP-mediated protein,
which can express the leader cells creating the
paths trailed by the follower tumor cells [65].
The intrinsic differences of tumor cell subpopu-
lations could affect the migration movements
of the collective invasion [65, 66]. In triple-neg-
ative breast cancer (TNBC) an epigenetically
distinct subpopulation of breast tumor cells
has been identified called “trailblazer” cells,
which may be expressed by a pattern of genes
and could be more invasive than the K14* br-
east tumor cells [50]. The cohort is comprised
of 7 genes, including DOCK10, ITGA11, DAB2,
PDFGRA, VASN and PPAP2B, which regulate the
activation of collective invasion, and DOCK10
is required for tumor metastasis [50].

Cadherin has been found in most breast can-
cers as a crucial characteristic, and the level of
membrane E-cadherin has played a dual role in
promoting cancer invasion and metastasis
[67]. A special collective migration mechanism
has been explored in the 4T1 cells of a highly
metastatic mouse breast carcinoma model,
where tumor cells move expressing highly inva-
sive phenotype remaining loosely inter-con-
nected by tethers moderately mediated by
E-cadherin [68] rather than extensive cell-cell
junction similar to the other collective migration
cells. Furthermore, knockdown of the E-ca-
dherin would prevent the formation of tethers
and switch the migration mode from collective
to single-cell, and reduce the dissemination of
4T1 cells to the lung and others [69].

However, in the classic EMT program induced
by the stromal cells, E-cadherin has usually
been reported as down-regulated in the tumor
migration cells with the loss of cell-cell adhe-
sion and the phenotype of epithelial cells [70,
71]. Inflammatory breast cancer (IBC) has been
a good model to explore the principles of collec-
tive cell dissemination, and is a highly aggres-
sive subtype of breast cancer that mainly
invades via CTC clusters [72]. CTC cells highly
express E-cadherin which is the hallmark of epi-
thelial traits, rather than go through EMT pro-
gram during the metastasis process, which
may have connections with the worse clinical
outcomes compared to the non-IBC patients
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[61, 72, 73]. Together, the interaction between
collective cell migration and single tumor cell
migration regarding cancer metastasis requires
further research.

Collective cell migration in lung cancer

It has been reported that CTC clusters were
detected in the blood of lung cancer patients,
which have greater potential to metastasize
and the clustered cells have more survival
advantages than single CTC cells [74]. And the
CTC clusters in SCLC (small cell lung cancer)
has been shown a capability of being tumoro-
spheres with loosely and irregular connection,
which had resistance to radio chemotherapy
and worse prognosis (Figure 3) [75, 76]. Also,
the CTC clusters have been identified to have
higher expression of IL6, BCL2, ERCC1, Ki-67
and IL-17 than single CTC cells, indicating that
CTC clusters were highly invasive and connect-
ed to the worse clinical outcomes [77, 78].
Furthermore, during the early stage of the lung
adenocarcinoma metastasis process, the tu-
mor cells experience mostly epithelial-like col-
lective invasion, and are surrounded by vim*p/
FSP1* cancer-associated fibroblasts (CAF)
which require vimentin to maintain heterotypic
tumor cell-CAF interactions [79]. Additionally,
LPP regulates the expression of matrix metal-
loproteinase 15 (MMP-15) by degrading N-ca-
dherin in PC14PE6 cells to promote collective
cell migration and metastasis in lung cancers
[80]. Together, the emerging studies detailing
the collective cell migration in lung cancers
could contribute to clinical treatments.

Conclusion and outlook

The collective cell migration is an emerging
mechanism distinguished from the classic sin-
gle tumor cell metastasis, which does not need
a complete EMT program and can move as a
cohort unit in which cells maintain the cell-cell
junction and express some epithelial character-
istics. Also, collective cell migration has been
reported to have greater potential for metasta-
sis and dissemination and has higher therapeu-
tic resistance compared to single cell migra-
tion. A summary of the instruments and typical
methods used in collective cell migration, are
shown in Table 1. There are some challenges
remaining to be further studied. First, what are
the intrinsic differences between different cell
clusters in different cancer diseases? Second,
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Figure 3. The invasion and metastasis mechanism of CTC clusters in SCLC. CTCs originate from the lung tumor and
invade into the circulation. Small clusters of CTCs may become to tumorospheres. Then the whole tumorosphere
extravasates from circulation into the distant organs as liver, bone and brain. Tumorospheres keep loosely and ir-
regular connection and showed resistances to radiochemotherapy and worse clinical prognosis.

what are the specific mechanisms that change
the single-cell migration to the collective cell
migration? Third, how do the clusters adapt to
the complicated environments during the me-
tastasis process and finally survive in the dis-
tant organs? The discovery of collective cell
migration has brought a new perspective to
solving tumor disease. And there have been
some FDA-approved medicines targeting col-
lective clusters, which bring emerging clues to
the terminal cancer treatments. Furthermore,
screening of the collective cell migration could
contribute to the detection of the early stage of
tumor patients.
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