Original Article Involvement of androgen receptor (AR)/microRNA-21 axis in hypoxia/reoxygenation-induced apoptosis of mouse renal tubular epithelial cells

Tongchang Chen*, Qiu Yao*, Weichao Wang, Zhenfeng Ye, Yawei Huang, Meng Wu, Xiaoqing Xi

Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China. *Equal contributors.

Received July 3, 2019; Accepted August 27, 2019; Epub September 15, 2019; Published September 30, 2019

Abstract: The function of androgen receptor (AR)/microRNA-21 (miR-21) axis in tumor development was well investigated. However, the roles of the axis performed in hypoxia/reoxygenation (H/R)-induced apoptosis of mouse renal tubular epithelial cells (RTECs) is not known. In this study, H/R-induced apoptosis of RTECs was established to evaluate the role of miR-21-AR axis. The protocol of 8-h hypoxia and 24-h reoxygenation were selected to produce H/R injury. Our data showed that H/R increased miR-21 and caspase-3 expression, reduced the expression AR and programmed cell death protein 4 (PDCD4). By contrast, AR-siRNA increased H/R-induced apoptosis, and promoted caspase-3 expression, but reduced PDCD4 expression (vs. H/R group). pre-miR-21 reduced, while antagomiR-21 promoted apoptosis and PDCD4 expression in H/R-induced RTECs. Moreover, pre-miR-21 promoted, while antagomiR-21 reduced caspase-3 expression in H/R-induced RTECs. Together, H/R increased miRNA-21 and reduced AR expression, then regulating PDCD4- and caspase-3-dependent apoptosis. AR/miR-21 axis could be a potential therapeutic target for the kidney ischemia injury.

Keywords: Kidney, androgen receptor/miR-21 axis, renal hypoxia/reoxygenation

Introduction

Ischemia injury in cerebrum, heart and kidney, etc. is the main cause of death and disability [1]. Ischemia-related renal injury involves a series of complex pathophysiological processes, including energy exhaustion, oxidative stress and inflammatory reaction [2, 3]. Hypoxia is the primary initiator of the ischemic injury [4]. In renal ischemia-reperfusion, blood flow is blocked, followed by blood reperfusion and acute inflammation, including production of a large number of pro-inflammatory factors and release of chemokines, increased expression of adhesion molecules, activation of neutrophils and monocytes and tissue infiltration [5]. Thus, it is of particular interest to investigate the potential mechanisms or signaling pathway involved in hypoxia/reoxygenation (H/R)-induced renal injury.

MicroRNAs (miRNAs) are small endogenous non-coding RNAs of about 21-22 nucleotides, which are ubiquitous in animals, plants, viruses and other organisms [6]. The function of miR- NAs is related to the regulation of gene expression [7]. miRNAs have been reported to modulate ischemia-reperfusion injury. For examples, miR-320 level was reduced by ischemia-reperfusion injury in heart [5]. After acute myocardial infarction, the expression of miR-127 was upregulated, and blockage of the expression of miR-127 could reduce the occurrence of arrhythmia after myocardial infarction [8]. miR-21 is a extensively-researched miRNA, which has been detected in renal ischemia-reperfusion injury [9]. Therefore, whether miR-21 is involved in H/R-induced renal injury and the potential mechanisms still deserve investigation.

Androgen receptor (AR) is a key macromolecule mediating androgen, and can be detected in kidney [10]. Androgen has been reported to affect the nitric oxide synthase (NOS) activity in kidney by binding with androgen receptor, thus further affecting renal hemodynamics and various physiological functions [11]. Interestingly, miR-21 and AR formed an axis to regulate each other's expression, resulting in a positive feedback loop to regulate biological activities, such

Genes	Sequence (5'-3')	Primer length (bp)	Product length (bp)	Annealing temperature (°C)
PDCD4 F	TCTTTCACATCCACCTCTTCCACAT	25	377	61.8
PDCD4 R	GACCCTGACAATTTAAGCGACTCTC	25		
Caspase-12 F	GGATAGCCACTGCTGATA	18	256	60.3
Caspase-12 R	AGTTCACCTGGGACCTCA	18		
GAPDH F	TCAACGGCACAGTCAAGG	18	357	60.3
GAPDH R	TGAGCCCTTCCACGATG	17		
miR-21 F	ACGTTGTGTAGCTTATCAGACTG	23	-	58.4
<i>miR-21</i> R	AATGGTTGTTCTCCACACTCTC	22		
<i>U</i> 6 F	CTCGCTTCGGCAGCACA	17	94	60.00
<i>U</i> 6 R	AACGCTTCACGAATTTGCGT	24		

 Table 1. Sequences of the primers

Table 2. Sequences of the siRNAs

Genes	Sequence (5'-3')	
AR-siRNA-1	F	CUCCAAGGAUAGUUACCUA
	R	UAGGUAACUAUCCUUGGAG
AR-siRNA-2	F	GGUCCUUCACUAAUGUCAA
	R	UUGACAUUAGUGAAGGACC
AR-siRNA-3	F	CGACAGUGACUAGAAGAAA
	R	UUUCUUCUAGUCACUGUCG

as antitumor [12]. In this study, a mouse kidney epithelial cell line (TCMK-1) was challenged by hypoxia-reoxygenation and the roles of AR/miR-21 axis performed in the ischemia injury of renal cells were investigated by regulating the expression of miR-21 and/or AR.

Materials and methods

Cell culture

TCMK-1 cells were purchased from the Cell Bank of Chinese Academy of Sciences and cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% fetal bovine serum (FBS; cat. no. 04-007-1A; Biological Industries) and 100 U/ml penicillin and 100 µg/ml streptomycin (Beijing Solarbio Science & Technology Co., Ltd.) in 5% CO, at 37°C. H/R was produced using D-Hanks solution and normal medium (DMEM medium containing 10% newborn bovine serum). D-Hanks solution was balanced in an airtight container with N₂ for more than 1 h to produce anaerobic solution. The normal medium was sucked out and added with the anaerobic solution. Then, the culture bottle was

incubated in an airtight container with 95% N_2 -5% CO_{2} (V/V) at 37°C. Then, the medium was replaced with normal medium and put back into incubator for reoxygenation. H/R regimes included: reoxygenation 1 h after 45 min of hypoxia; reoxygenation 3 h after 1 h of hypoxia; reoxygenation 6 h after 2 h of hypoxia; reoxygenation 12 h after 4 h of hypoxia; reoxygenation 24 h after 8 h of hypoxia.

Cell transfection

Cells at 80% confluence were transfected with AR-siRNA (GenePharma Co. Ltd., Shanghai, China) using Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.). After 6 h, the medium was replaced with fresh DMEM medium containing 10% FBS and cultured in an 5% CO_2 incubator at 37°C for 24 h. 48 h after transfection, subsequent experiments were performed. The expression of AR was verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The sequences of the siRNA-AR were listed in **Table 2**.

Experimental groups

The experimental groups included: a control group; a AR negative control group (siRNA-NC); a AR-siRNA group (AR-siRNA); a H/R group (H/R); a H/R + AR negative control group (H/R + siRNA-NC); a H/R + AR-siRNA group (H/R + AR-siRNA); a miRNA negative control group (miR-21-NC); a pre-miR-21 group (pre-miR-21); a H/R + miR-21-NC; a H/R + pre-miR-21; a H/R + antagomiR-21. After transfection, hypoxia and reoxygenation were performed 2 h later. Flow cytometry, quantitative fluorescence PCR and western blot were performed at 12 h, 24 h and 48 h after reoxygenation.

ELISA

TNF- α level was measured following the instruction of the TNF- α assay kit (m1002095, Shanghai MIbio, Shanghai, China) as previously described [13].

Figure 1. Hypoxia/reoxygenation promotes TNF- α and caspase-12 expression, and induces apoptosis of TCMK-1 cells. A. TNF- α level was promoted by different hypoxia/reoxygenation regimes, especially 4 h-12 h and 8 h-24 h; B. Caspase-12 expression at mRNA level was up-regulated by hypoxia/reoxygenation regimes, especially 4 h-12 h and 8 h-24 h; C. Apoptosis detected by flow cytometry. Left: representative images of flow cytometry; Right: quantification data. Apoptosis was induced by hypoxia/reoxygenation regimes, especially 8 h-24 h. N=6 in each group, *P < 0.05 vs. control (One-way ANOVA followed by the Student-Newman-Keuls).

Flow cytometry

Flow cytometry was used to detect cell apoptosis. 3×10^6 cells were collected and centrifuged with 1 ml PBS at 1500 rpm for 3 min. The cells were washed twice. 3μ l Annexin V-FITC and 5μ l Pl were added into each tube. After slightly mixing, the cells were incubated at room temperature at dark for 10 min, followed by measurement with flow cytometer (NovoCyte 2060R, ACEABIO, China).

Fluorescence quantitative polymerase chain reaction (FQPCR)

mRNA levels in the different treatment groups was extracted using a TRIzol assay kit (Baosheng Science & Technology Innovation Co. Ltd., Shanghai, China). mRNA was transcribed into cDNA using a reverse transcription kit (cat. no. 639522, Takara Biotechnology Co., Ltd., Dalian, China) at 37°C following the protocol (25°C 10 min, 37°C 120 min and 85°C 5 min) and qPCR was used to detect the expression level of the target genes by using SYBR Green (HY-K0501, MedChemExpress, Shanghai, China). The thermocycling conditions were as follows: Initial denaturation at 95°C for 10 min, followed by 40 cycles of a PCR at 95°C for 10 sec, 60.3°C for 30 s and 72°C for 30 s. The $2^{-\Delta\Delta Cq}$ method was used to quantify the results as previously described [14, 15]. The primers (5'-3') used were listed in **Table 1**.

Western blot

Protein was extracted from the cells by a protein isolation kit (28-9425-44, ReadyPrep; GE Healthcare Life Sciences) as previously described [16]. Protein levels were quantified with a bicinchoninic acid protein assay kit. Protein (25 µg/lane) was separated via 12% sodium

Figure 3. AR-siRNAs reduced AR expression and miR-21 was regulated by pre-miR-21 and antagomiR-21. A. AR expression at the mRNA level was reduced by AR-siRNAs, especially AR-siRNA1; B. AR expression at the protein level was reduced by AR-siRNAs, especially AR-siRNA1; C. miR-21 expression was promoted by pre-miR-21 and inhibited by antagomiR-21. N=6 in each group, *P < 0.05 vs. control (One-way ANOVA followed by the Student-Newman-Keuls).

dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto nitrocellulose membranes. The membranes were blocked in 5% skim milk for 2 h at room temperature and incubated with the following primary antibodies overnight at 4°C: rabbit polyclonal anti-AR (ab45172, Abcam, 1/5000), mouse monoclonal anti-β-actin (TA-09, ZSBio, 1/2000), rabbit polyclonal anti-PDCD4 (ab79405, Abcam, 1/5000), rabbit polyclonal anti-caspase-3 (ab32-499, Abcam, 1/10000). After incubation with the second antibodies at room temperature for 2 h, enhanced chemiluminescence exposure liquid droplet (cat. no. RPN2133; GE Healthcare Life Sciences, Chalfont, UK) was added to the membranes. The membranes were visualized using a gel imaging system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Densitometry was performed using Quantity One version 1.4.6 (Bio-Rad Laboratories, Inc.). Experiments were repeated three times.

Statistical analysis

Data were presented as the mean \pm standard error of the mean and analyzed using SPSS version 19.0 (SPSS, Inc., Chicago, IL, USA). Significant differences were determined using one-way analysis of variance followed by the Student-Newman-Keuls *post-hoc* test. P < 0.05 was considered to indicate a statistically significant difference.

Results

Hypoxia/reoxygenation promotes miRNA-21 and caspase-3, and reduces PDCD4

Initially, we screened the optimal time of hypoxia/reoxygenation in TCMK-1 cells. Compared with control group, TNF- α level increased significantly in groups of hypoxia for 1 h and reoxygenation for 3 h, hypoxia for 4 h and reoxygen-

AR/miR-21 axis in H/R-induced renal cell apoptosis

Figure 4. AR-siRNA and antgomiR-21 promotes, while pre-miR-21 antagonizes hypoxia/reoxygenation-induced apoptosis. Upper panel: representative images of flow cytometry; Down panel: quantification data. *P < 0.05 vs. control; #P < 0.05 vs. H/R. N=6 in each group (One-way ANOVA followed by the Student-Newman-Keuls).

Figure 5. pre-miR-21 promotes miR-21 expression and AR-siRNA reduces AR expression in hypoxia/reoxygenation model. A. Pre-miR-21 promotes miR-21 expression; B. AR-siRNA reduced AR expression at mRNA level. *P < 0.05 vs. control; #P < 0.05 vs. H/R. N=6 in each group (One-way ANOVA followed by the Student-Newman-Keuls).

ation for 12 h, and hypoxia for 8 h and reoxygenation for 24 h (Figure 1A). The expression of caspase-12 at mRNA level increased significantly in groups of hypoxia for 0.75 h followed by reoxygenation for 1 h, hypoxia for 4 h followed by reoxygenation for 12 h, and hypoxia for 8 h followed by reoxygenation for 24 h (Figure 1B). The apoptosis increased significantly in groups of hypoxia for 4 h followed by reoxygenation for 12 h, and hypoxia for 8 h followed by reoxygenation for 24 h. The apoptotic rate in the cells receiving a regime of hypoxia for 8 h and reoxygenation for 24 h was the highest (about 20%) (Figure 1C). As inflammation and apoptosis are critical features for ischemia injury [17], the regime of hypoxia for 8 h and reoxygenation for 24 h was selected in the subsequent experiment to evaluate the role of AR/ miR-21 axis performed in the H/R-induced renal injury.

We detected miR-21, PDCD4 and caspase-3 expression in the regime of hypoxia for 8 h and reoxygenation for 24 h. Compared with control group, the expression of miR-21 and caspase-3 in H/R group was significantly higher, while the expression of PDCD4 was significantly lower (P < 0.05) (Figure 2).

AR-siRNA increases H/Rinduced apoptosis, promotes caspase-3 expression, and reduces PDCD4 expression

To test the role of AR performed in H/R-induced apoptosis, we silenced AR expression. As shown in Figure 3A, 3B, AR expression in ARsiRNA1 group was significantly lower than that in control group (P < 0.05). To test the function of miR-21, we designed pre-microRNA-21 and antagomiR-21. As shown in Figure 3C, the expression of miR-21 in pre-microRNA-21 group was significantly higher than that in control group, and the expression of miR-21 in antagomiR-21 group was significantly lower than that in control group (P < 0.05).

Compared with control group, the apoptotic rates of ARsiRNA, H/R, H/R + siRNA-NC,

H/R + AR-siRNA, H/R + RNA-21-NC and H/R +antagomiR-21 groups increased significantly at 12 h, 24 h and 48 h. Compared with H/Rgroup, the apoptotic rates of H/R + AR-siRNAgroup and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h, respectively (**Figure 4**).

AR-siRNA reduces AR expression, and premiR-21 and antagomiR-21 regulate miRNA-21 expression in H/R model

As shown in **Figure 5A**, the expression of miR-21 in H/R, pre-microRNA-21, H/R + miR-21-NC and H/R + pre-microRNA-21 increased significantly at 12 h, 24 h and 48 h, while the expression of miR-21 in antagomiR-21 and antagomiR-21 + H/R groups decreased significantly compared with control group. Compared with H/R group, the expression of miR-21 in H/R + pre-microRNA-21 groups increased significantly, and decreased significantly in H/R + antagomiR-21 group.

Compared with control group, AR expression at mRNA level in AR-siRNA group, H/R group, H/R + AR siRNA-NC group and H/R + AR-siRNA group decreased significantly (P < 0.05) (**Figure**

5B). Compared with H/R group, AR expression in H/R + AR-siRNA group decreased significantly (P < 0.05).

AR-siRNA and pre-miR-21 reduces, while antagomiR-21 promotes PDCD4 expression

The expression of PDCD4 in each group was shown in **Figure 6**. Compared with control group, the expression of PDCD4 at mRNA level in H/R, H/R + siRNA-NC, H/R + AR-siRNA, premiR-21, and H/R + pre-miR-21 groups at 12 h, 24 h and 48 h decreased significantly, while the expression of PDCD4 in antagomiR-21 group increased significantly. Compared with H/R group, the expression of PDCD4 H/R + pre-miR-21 groups at 12 h, 24 h and 48 h decreased significantly, and the expression of PDCD4 in antagomiR-21 + H/R group increased significantly. We also obtained a consistent result of PDCD4 expression at protein level.

AR-siRNA and antagomiR-21 increases, while pre-miR-NA-21 reduces caspase-3 expression

The expression of caspase-3 protein in each group was shown in Figure 7. Compared with control group, the expression of caspase-3 in AR-siRNA group, H/R group, H/R + siRNA-NC group, H/R + AR-siRNA group, H/R + microRNA-21-NC group and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h. Compared with H/R group, the expression of caspase-3 in H/R + AR-siRNA group and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h, while the expression of caspase-3 in 12 h, 24 h and 48 h H/R + pre-microR-NA-21 group decreased significantly (P < 0.05).

Discussion

In this study, we provided data to classify the potential mechanisms involved in H/R-induced apoptosis of mouse renal tubular epithelial cells through regulating AR/miR-21 axis. Moreover, H/R reduced PDCD4 and promoted caspase-3-dependent apoptosis of renal cells. This study would implicate potential therapeutic targets for renal ischemia injury.

Renal ischemia injury involves complex pathophysiological processes such as energy exhaus-

Figure 7. pre-miR-21 reduces, while AR siRNA and antagomiR-21 promotes caspase-3 expression in hypoxia/reoxygenation model. Compared with control group, the expression of caspase-3 in AR-siRNA group, H/R group, H/R + siRNA-NC group, H/R + AR-siRNA group, H/R + microRNA-21-NC group and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h. Compared with H/R group, the expression of caspase-3 in H/R + AR-siRNA group and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h. Compared with H/R group, the expression of caspase-3 in H/R + AR-siRNA group and H/R + antagomiR-21 group increased significantly at 12 h, 24 h and 48 h, while the expression of caspase-3 in 12 h, 24 h and 48 h H/R + pre-microRNA-21 group decreased significantly. *P < 0.05 vs. control; #P < 0.05 vs. H/R. N=6 in each group (One-way ANOVA followed by the Student-Newman-Keuls).

tion, oxidative stress and inflammatory reaction [2]. Inflammation, as one of the main response of renal ischemia-reperfusion injury, is important for the pathological process of renal ischemia-reperfusion injury [18]. TNF- α is a cytokine produced by activated macrophages that inhibits osteoblasts and stimulates osteoclasts, and is associated with inflammation [19]. Apoptosis is another important cause of renal injury induced by ischemia-reperfusion [20]. In this study, we initially determined the regime of H/R based upon both of inflammation and apoptosis. Apoptosis is a process of programmed cell death, an autonomous and orderly process of cell death [21]. Caspase-12 located at the adventitia of endoplasmic reticulum. Once endoplasmic reticulum is stressed, caspase-12 and caspase-7 are cleaved; caspase-9 is further activated by activated caspase-12, which triggers caspase-9-dependent apoptotic cascade [22, 23]. In this study, the optimal hypoxiareoxygenation regime was determined based on the expression of TNF- α , apoptosis and caspase-12. Our data revealed that the regime of reoxygenation for 24 h and hypoxia for 8 h triggered obvious inflammation and apoptosis. Therefore, this regime was selected in the subsequent experiment.

In myocardial ischemia-reperfusion injury, it has been found that protective effect of ischemia preconditioning is closely related to the increased expression of miR-21 [24]. Overexpression of miR-21 can decrease the apoptotic rate of renal tubular epithelial cells caused by ischemia-reperfusion injury [6]. miR-21 negatively regulates PDCD4 gene and thus inhibits apoptosis of tissues [25]. In the study of myocardium, we found that miR-21 can inhibit apoptosis of cardiomyocytes by inhibiting PDCD4 and downstream transcrip-

tion activator [26]. In the study of renal ischemia-reperfusion injury, we also found that miR-21 can reduce apoptosis by inhibiting the expression of PDCD4 [27].

Caspases are inactive protease precursors with high inertia and conservativeness before being cleaved by hydrolysis [28]. Caspase-3 plays a key role in apoptotic pathway [29], likely through Fas and TNFRI [30]. The results of this study implicated that the expression of miR-21 increased after hypoxia, while the expression of PDCD4 decreased, which was consistent with the above results. Our results also suggest that hypoxia can promote the expression of miR-21 and negatively regulate the PDCD4 expression. Therefore, we further synthesized pre-miR-21 and antagomiR-21 to test the function of miR-21 in the process. Our data revealed that premiR-21 could increase miR-21, while antagomiR-21 decreased the expression of miR-21. We also revealed that caspase-3 expression was promoted after hypoxia.

Androgen diffuses freely into cells, binding to AR in target cells, forming hormone-receptor complex, then enters into the nuclei, and regulates basic transcription [31]. Studies have shown that androgen has protective effects on ischemia-reperfusion injury of heart and brain [32, 33]. Androgen could promote Bcl-2, decrease Bax expression to inhibit neuronal apoptosis, thereby alleviating the damage of nervous system caused by hypoxic-ischemia [34]. However, endogenous androgens may also have pro-inflammatory and pro-apoptotic effects after ischemia-reperfusion [35]. Chaves et al. found that exogenous androgens can block the cardioprotective effect of exercise and increase the cardiac damage caused by ischemia-reperfusion [36]. Kim et al. reported that inhibition of androgen could alleviate oxidative stress-induced kidney injury [37]. Our results revealed that silencing AR expression could promote apoptosis, and overexpression of miR-21 after H/R could inhibit apoptosis, while inhibiting the expression of miR-21 could promote apoptosis. These results revealed that high expression of AR had a protective effect, but after silencing its expression, the protective effect will lose, thus inducing apoptosis. Our results also revealed that the cell damage caused by miR-21 after H/R had a certain protective effect.

The expression of PDCD4 decreased when premiR-21 was used, and increased when antagomiR-21 was used. It was also found that premir-21 after H/R decreased the expression of caspase-3 and antagomiR-21 after H/R increased the expression of caspase-3. These results point that the expression of PDCD4 is negatively regulated by miR-21, which further downregulated caspase-3 and ultimately inhibited apoptosis. The results showed that silencing AR could also increase the expression of caspase-3, thus promoting the apoptosis of renal cells induced by H/R.

In conclusion, H/R can regulate AR/miR-21 axis through increasing the expression of miR-21 and decreasing the expression of AR, which trigger PDCD4 and caspase-3-dependent apoptosis. AR/miR-21 axis is likely a potential therapeutic target for H/R-induced renal injury.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (8166-0119).

Disclosure of conflict of interest

None.

Address correspondence to: Xiaoqing Xi, Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Mingde Road No. 1, Nanchang 330006, China. E-mail: xxiaoqing112@126.com

References

- Kalogeris T, Baines CP, Krenz M and Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 2012; 298: 229-317.
- [2] Bonventre JV and Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121: 4210-4221.
- [3] Andersson KE, Nomiya M and Yamaguchi O. Chronic pelvic ischemia: contribution to the pathogenesis of lower urinary tract symptoms (LUTS): a new target for pharmacological treatment? Low Urin Tract Symptoms 2015; 7: 1-8.
- [4] Zhang W, Siraj S, Zhang R and Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy 2017; 13: 1080-1081.
- [5] Liang L, Wang J, Yuan Y, Zhang Y, Liu H, Wu C and Yan Y. MicRNA-320 facilitates the brain parenchyma injury via regulating IGF-1 during cerebral I/R injury in mice. Biomed Pharmacother 2018; 102: 86-93.
- [6] Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG and Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 2010; 107: 14339-14344.
- [7] Catalanotto C, Cogoni C and Zardo G. MicroR-NA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17.
- [8] Conde E, Gimenez-Moyano S, Martin-Gomez L, Rodriguez M, Ramos ME, Aguado-Fraile E, Blanco-Sanchez I, Saiz A and Garcia-Bermejo ML. HIF-1alpha induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep 2017; 7: 41099.
- [9] Yang Y, Guo JX and Shao ZQ. miR-21 targets and inhibits tumor suppressor gene PTEN to

promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med 2017; 10: 87-91.

- [10] Pelletier G. Localization of androgen and estrogen receptors in rat and primate tissues. Histol Histopathol 2000; 15: 1261-1270.
- [11] Neugarten J, Ding Q, Friedman A, Lei J and Silbiger S. Sex hormones and renal nitric oxide synthases. J Am Soc Nephrol 1997; 8: 1240-1246.
- [12] Mishra S, Deng JJ, Gowda PS, Rao MK, Lin CL, Chen CL, Huang T and Sun LZ. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014; 33: 4097-4106.
- [13] Yang SJ, Song ZJ, Wang XC, Zhang ZR, Wu SB and Zhu GQ. Curculigoside facilitates fear extinction and prevents depression-like behaviors in a mouse learned helplessness model through increasing hippocampal BDNF. Acta Pharmacol Sin 2019; [Epub ahead of print].
- [14] Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408.
- [15] Xu W, Cao J, Zhou Y, Wang L and Zhu G. GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice. Neurobiol Learn Mem 2018; 149: 10-19.
- [16] Zhu G, Yang S, Xie Z and Wan X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 2018; 138: 331-340.
- [17] Anselmi A, Abbate A, Girola F, Nasso G, Biondi-Zoccai GG, Possati G, Gaudino M. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardiothorac Surg 2004; 25: 304-11.
- [18] Edwards JK. Acute kidney injury: new antagonist prevents I/R injury. Nat Rev Nephrol 2015; 11: 631.
- [19] Liu CW, Sung HC, Lin SR, Wu CW, Lee CW, Lee IT, Yang YF, Yu IS, Lin SW, Chiang MH, Liang CJ and Chen YL. Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-alpha-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-kappaB pathway. Sci Rep 2017; 7: 44689.
- [20] Wang Y, Schmeichel AM, lida H, Schmelzer JD and Low PA. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy. Antioxid Redox Signal 2005; 7: 1513-1520.

- [21] Li J, Yang S and Zhu G. Postnatal calpain inhibition elicits cerebellar cell death and motor dysfunction. Oncotarget 2017; 8: 87997-88007.
- [22] Zhang Q, Liu J, Chen S, Liu J, Liu L, Liu G, Wang F, Jiang W, Zhang C, Wang S and Yuan X. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis 2016; 21: 432-442.
- [23] Zhu G, Wang X, Wu S, Li X and Li Q. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease model in mice. Phytother Res 2014; 28: 179-186.
- [24] Zhou Y, Zhu Y, Zhang L, Wu T, Wu T, Zhang W, Decker AM, He J, Liu J, Wu Y, Jiang X, Zhang Z, Liang C and Zou D. Human stem cells overexpressing miR-21 promote angiogenesis in critical limb ischemia by targeting CHIP to enhance HIF-1alpha activity. Stem Cells 2016; 34: 924-934.
- [25] Young MR, Santhanam AN, Yoshikawa N and Colburn NH. Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue? Mol Interv 2010; 10: 76-79.
- [26] Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES and Zhang C. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009; 284: 29514-29525.
- [27] Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L and Ren J. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 2017; 8: 3211.
- [28] Zhu G, Wang X, Wu S and Li Q. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death. Neurochem Int 2012; 60: 400-408.
- [29] Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K and Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37: 2829-2838.
- [30] Qian QZ, Cao XK, Liu HY, Zheng GY, Qian QQ and Shen FH. TNFR/TNF-alpha signaling pathway regulates apoptosis of alveolar macrophages in coal workers' pneumoconiosis. Oncotarget 2018; 9: 1302-1310.
- [31] Miao L, Yang L, Li R, Rodrigues DN, Crespo M, Hsieh JT, Tilley WD, de Bono J, Selth LA and Raj GV. Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymal plasticity in prostate cancer. Cancer Res 2017; 77: 3101-3112.
- [32] Seara FAC, Barbosa RAQ, de Oliveira DF, Gran da Silva DLS, Carvalho AB, Freitas Ferreira AC,

Matheus Nascimento JH and Olivares EL. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. J Steroid Biochem Mol Biol 2017; 171: 34-42.

- [33] Kelicen Ugur P, Lule S, Cincioglu M, Pekiner C and Gursoy-Ozdemir Y. Megestrol acetate inhibits the expression of cytoplasmic aromatase through nuclear C/EBPbeta in reperfusion injury-induced ischemic rat hippocampus. Eur J Pharmacol 2011; 654: 217-225.
- [34] Wu J, Hadoke PW, Takov K, Korczak A, Denvir MA and Smith LB. Influence of androgen receptor in vascular cells on reperfusion following hindlimb ischaemia. PLoS One 2016; 11: e0154987.
- [35] Wang M, Tsai BM, Kher A, Baker LB, Wairiuko GM and Meldrum DR. Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemiareperfusion. Am J Physiol Heart Circ Physiol 2005; 288: H221-226.

- [36] Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, de Carvalho AC, de Carvalho DP, Oliveira MF and Nascimento JH. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol 2006; 99: 223-230.
- [37] Kim J, Kil IS, Seok YM, Yang ES, Kim DK, Lim DG, Park JW, Bonventre JV and Park KM. Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem 2006; 281: 20349-20356.