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Abstract: Metabolic reprogramming of tumor cells plays a critical role in the tumor microenvironment, including 
disorder of lipid metabolism. Recently, lipid metabolism has received increasing attention in cancer research. 
The proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family contains 6 proteins. 
Functionally, the PRELI-like family proteins were mainly involved in mitochondrial lipid transport and correlated with 
several types of diseases and malignant tumors. Here we review current knowledge of the functions, structures, bio-
logical functions and underlying mechanisms of the PRELI-like family proteins in cancer progression, which provide 
insights into the clinical translational application.
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Introduction

The proteins of relevant evolutionary and lym-
phoid interest (PRELI) domain containing fami-
ly, which contains PRELI/MSF1 motif, is pre- 
sent in a wide variety of eukaryotic proteins  
[1]. The gene family contains six members, 
namely PRELID1 (PRELI domain containing 1), 
PRELID2, PRELID3A, PRELID3B, SCE1L1 and 
SCE1L5. The PRELI-like family proteins play an 
important role of embryonic and development 
lymphocyte differentiation. They have been 
proposed to involve many cellular functions 
including apoptosis, cellular lipid metabolism 
and cellular signaling. Therefore, the PRELI-like 
family proteins might be correlated with the 
occurrence and development of multiple malig-
nant tumors. Recent studies have found that 
the PRELI-like family proteins regulated phos-
pholipids transport in mitochondria, and regu-
lated Mitochondrial ROS signaling as well as 
tumor progression and prognosis [2-4].

Lipid metabolism is one of the most important 
metabolic pathways in organism. It participates 
in signaling transduction, energy storage and 
release, and structural components of biofilms, 
which maintains internal and external environ-

ments homeostasis of cell. Lipid metabolic dis-
order can disrupt normal physiological func- 
tion. Aberrant expressions of lipid metabolism-
related genes lead to uncontrolled cell prolifer-
ation and tumor microenvironment remodeling. 
Therefore, the reprogramming of lipid metabo-
lism may play an indispensable role in carcino-
genesis, invasion and metastasis.

Here we summarize the recent progress of lipid 
metabolism-related PRELI family proteins. We 
also discuss the family members’ effects on 
human diseases, especially the relationship 
between lipid metabolism disorders and can- 
cer progression, which will highlight a novel tu- 
mor biomarker and potential molecular target 
for novel cancer therapy.

Structure characteristics of PRELI family

PRELI was first recognized as a stage-specific 
gene during mature B lymphocyte maturation 
and differentiation, and over 85% of PRELI 
amino acid sequence shared similar with the 
avian px19 [1, 5]. The PRELI domain contain- 
ing proteins were ubiquitous and evolution- 
arily conserved from plants to mammals. The 
PRELI/MSF1 domain was characterized by a 
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mixed α/β globular fold associating six β 
strands and four α helices [6]. Among the 6 
PRELI domain family proteins, PRELID1, PRE- 
LID2, PRELID3A (SLMO1) and PRELID3B (SL- 
MO2) were proved to be homologous to Ups 
family in Saccharomyces cerevisiae. In addi-
tion, other PRELI-like family members, SEC14- 
L1 and SEC14L5 (also named PRELID4A and 
PRELID4B) were similar to yeast SEC14, which 
also belonged to the SEC14 family (Table 1).

Structure characteristics of PRELID1

The PRELID1 gene was located on chromo-
some 5q35.3 and PRELID2 was localized to 
chromosome 5q32. Using differential mRNA 
display, PRELID1 was first cloned by isolating 
from the B lymphocyte-specific cDNA library. 
Like avian px19 protein, PRELID1 also con-
tained sequence conservation with tandem 
repeats (A/TAEKAK) of the late embryogenesis 
abundant (LEA) motif [5]. Co-expression of 
PRELID1 with GTP-binding protein Rab24 was 
from a strong promoter [7]. MDM35 was a twin 
Cx9C protein family member and acted as an 
interaction partner of Ups [8]. PRELID1 was 
often combined with TRIAP1, which was a yeast 
homologue of MDM35 [9]. In human TRIAP1, 
the acetylation of N-terminus and extension of 
C-terminal helix (α2) contributed to the interac-
tion between TRIAP1 and PRELID1 [9]. By con-
trast, PRELID2 lacked unique structure.

Structure characteristics of PRELID3A and 
PRELID3B

The SLMO1 and SLMO2 genes were separately 
located on chromosome 18p11.21 and chro-
mosome 20q13.32. SLMO was a mitochondrial 
protein in Drosophila which had yeast homolog 
UPS proteins (UPS1, UPS2, and Ups3) [10]. In 
yeast, UPS1 was a MSF1/PRELI family member 
and PRELID1, PRELID2, SLMO1 and SLMO2 
were human homologues of it [2]. Like UPS1 
and PRELID1, two additional homologous pro-
teins (UPS2 and UPS3 in yeast; SLMO1 and 
SLMO2 in humans) were conserved in various 
organisms. Meanwhile, the structure of PRE- 
LID3A and PRELID3B were similar to that of 
PRELID1, which could be combined with TRI- 
AP1 [3]. 

Structure characteristics of PRELID4A and 
PRELID4B

Partial homologies to yeast SEC14 and retinal-
binding protein (RALBP) of the Japanese flying 

squid, PRELID4A and PRELID4B were also 
known as SEC14L1 (SEC14 Like Lipid Binding 
1) and SEC14L5 (SEC14 Like Lipid Binding 5). 
They were located on human chromosome 
17q25.2 and 16p13.3 [11]. Sec14-like pro- 
teins were highly conserved in eukaryotes with 
a huge number. Like other members of the 
SEC14 family, they were found to contain  
CRAL-TRIO domain and closely relate to yeast 
sec14p proteins [12]. In addition, they also  
had sequence homology to hTAP (tocopherol-
associated protein) [13]. Among them, the 
GOLD (Golgi dynamics) domain has been pro- 
ved to exist in the protein of PRELID4A [12]. 
Furthermore, SEC14 was similar to Vitamin E 
(a-tocopherol), combining a-tocopherol or bioti-
nylated tocopherol into a hydrophobic pocket 
[13].

Biological processes, functions, and specificity 
of the PRELI-like family

Considering the findings that the yeast MSF1 
gene could regulate sorting of mitochondrial 
proteins [14], the function of PRELI/MSF1 
domain was hypothesized to be intimately re- 
lated to cellular membranes. Several studies 
described that the PRELI-like family members 
acted as lipid transporters, and directly or indi-
rectly involved in a lipid metabolism balance, 
especially phospholipids metabolism, which 
were located in cytoplasm or mitochondria. 
Besides the important roles in lipid transport 
and metabolism, individual PRELI-like family 
protein also have unique biological function in 
living organisms.

Mitochondrion intermembrane space complex 

The PRELI-like proteins, like other mitochon- 
drial proteins, required the outer Membrane 
(TOM) complex to cross the mitochondrial out- 
er membrane. PRELID1, PRELID3A and PRE- 
LID3B and TRIAP1 (TP53-regulated inhibitor of 
apoptosis gene 1) could form mitochondrion 
intermembrane space complexes via the hydro-
phobic stripe of TRIAP [15, 16]. The TRIAP1/
PRELI complex and its saccharomyces homo-
logues MDM35/UPS had the same function in 
mitochondrial phospholipid metabolism [17]. 
The complex also included substrate proteins 
with a twin Cx(9)C motif that were located in  
the MIA pathway [15]. It was suggested that 
MDM35 protected UPS1 and UPS2 from the 
proteolysis of the i-AAA protease Yme1 and 
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Table 1. The general characteristics of PRELI-like family proteins
Name Aliases main domain lipid transport type Subcelluar location Orthologs
PRELID1 PX19, PRELI PRELI/MSF1 PA mitochondrion UPS1 (Saccharomycetes), prel (Drosophila melanogaster)
PRELID2 PRELI/MSF1 PA? mitochondrion?
PRELID3A C18orf43, SLMO1 Slowmo/Ups, PRELI/MSF1 PA? mitochondrion? UPS2 (Saccharomycetes), Slmo1 (Mouse)
PRELID3B C20orf45, SLMO2 Slowmo/Ups, PRELI/MSF1 PS mitochondrion? UPS3 (Saccharomycetes)
PRELID4A SEC14L1 PRELI/MSF1, CRAL-TRIO, GOLD PI and PC Cytosol, Golgi apparatus Retm (Drosophila melanogaster)
PRELID4B SEC14L5 PRELI/MSF1, CRAL-TRIO, GOLD PI? Cytosol, Golgi apparatus Retm (Drosophila melanogaster)
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Atp23 in the intermembrane space [17]. TRI- 
AP1 also initiated PRELID folding to maintain  
a phospholipid-bound cavity. The small helix  
of PRELID1, which acted as a lid and motion  
of PRELI-like proteins Ω loop, participated in 
anchor and release of lipid [18]. After diffusion 
to the mitochondrial inner-membrane protein 
(MIM), the complex then separated and lipids 
were delivered [9]. The MDM35/UPS complex 
transports phosphatidylinositol (the precursor 
forms of cardiolipin) or phosphatidylserine (the 
precursor forms of phosphatidylethanolamine) 
from the outer mitochondrial membrane to 
inner mitochondrial membrane [17]. TRIAP1/
PRELI complex could serve as an intramito-
chondrial lipid transfer complex and play a role 
in promoting Cardiolipin (CL) and Phosphatidy- 
lethanolamine (PE) accumulation (Figure 1). CL 
was an essential mitochondrial-specific phos-
pholipid and coordinates death-inducing pro-
tein functions in the process of apoptosis [19].
TRIAP1 and PRELI involved transport of the PA 
from the outer to inner mitochondrial mem-
brane [19]. At high concentration of CL, Ups1 
might tightly integrate with MIM so as to form  
a negative feedback [2]. In addition, deletion  

of Ups1/PRELI inhibited cells apoptosis by im- 
pacting the production of CL and further facili-
tating the release of cytochrome c.

Similarly, through incubating Ups2-Mdm35 with 
liposomes, Phosphatidylserine (PS) was found 
to be transferred to acceptor liposomes selec-
tivity [15]. Therefore, as a mitochondrion lipid 
transport protein, Ups2-Mdm35 influenced ex- 
pression level of PE [3]. Apart from above, 
MICOS coordinated mitochondrial PE synthe- 
sis independently in vivo. In MICOS-deficient 
cells, the Ups2-Mdm35 limited the transfer of 
the PS, reduced the accumulation of mitochon-
dria PE, and thus protected the formation of 
mitochondrial respiration and crest [3] (Figure 
1). In addition, overexpression of Ups2 dimin-
ished CL levels to affect cell growth [17]. Ups3 
had a redundant function with Ups2 [15]. Kno- 
cking out or knocking down PRELID3B results 
in reduced mitochondrial PE levels. After res- 
toring PRELID3B expression but not transfer-
inactive mutation PRELID3B (T57K) in HeLa 
cells, mitochondrial PE levels were rescued 
[20]. These results show that TRIAP1/PRELI 
complex acting as a mitochondrial lipid trans-

Figure 1. Lipid trafficking of PRELID1/PRELID3B in mitochondria. A dynamic model for lipid transfer protein PRE-
LID1 (Hallow brown)/PELID3B (Coral) extracting PA (Yellow)/PS (Wheat) from MOM and delivering it to MIM. CL (Red) 
and PE (Bieque) are synthesized in the mitochondrial inner membrane. Importing of precursors into mitochondria 
is needed. RRELID1/PRELID3B enters the mitochondria through TOM and then combines with TRAIP1 (Green) to 
achieve stability. After separation of PRELID1/PRELID3B and TRAIP1, the PRELI-like proteins degraded by the i-AAA 
protease (Yme1: violet, Atp23: wine red). The small helix and motion Ω loop of PRELID1/PRELID3B participate in 
anchor and release of lipid. Moreover, mitochondrial MICOS complex also associates with the synthesis of PE. PE 
can be transported to the ER and further turned to PC or specially, turn to PS in liver. Accumulation of CL could in-
hibit release of PA by negative feedback. In addition, Mitochondrial oxidative stress induces release of CL, and thus 
causes mitochondrial-dependent apoptosis.



The PRELI-like family in cancer

6019 Am J Transl Res 2020;12(10):6015-6026

porter to preserve mitochondrial structure and 
function.

Embryogenesis and lymphocyte differentiation

Yeast LEA-like domain binding to a dynamin- 
like GTPase Optic Atrophy-1 (OPA1) protein has 
been demonstrated to protect against cell de- 
ath induced by oxidative stress [15, 16]. With a 
N-terminal mitochondrial targeting signal, the 
LEA proteins acted as a biochemical hub that 
explained the link between bioenergetics and 
cell responses to stress and death signaling  
[1, 21]. PRELI homologous protein were ex- 
pressed highly in the blood island and liver of 
avian embryonic, and also ubiquitous in Dro- 
sophila melanogaster embryonic, especially in 
the central nervous system [22-24]. PRELID2 
was also ubiquitously, continuously expressed 
and unmethylated during mid-later-gestation 
mouse embryogenesis [25].

PRELID1 could be used to maintain Mitochon- 
dria energy metabolism. High PRELID1 expres-
sion in human fetal liver indicated their impor-
tant roles in germinal center B lymphocytes, 
which protected B lymphocytes differentiation 
and maturation during lymphocyte selection 
pressure [5]. Overexpression of PRELID1 incre- 
ased the ROS production in primary Th cells 
and inhibited Th cell differentiation through 
down-regulating STAT6 [26]. By a yeast two-
hybrid screen, SEC14L1 was found that bound 
to RIG-I after virus infection, to regulate innate 
antiviral response negatively [27]. Therefore, 
the PRELI-like proteins were involved in em- 
bryogenesis and lymphocyte differentiation.

Intracellular transport system

PRELID4A and PRELID4B is a pair of paralog 
genes. They were first speculated to partici- 
pate in intracellular transport system because 
of their homolog proteins-yeast SEC14 and 
Japanese flying squid RALBP [11]. The fold of 
Sec14p consisted twelve α-helices, six β- 
chains and eight 310-helices, which could hold 
up to one phospholipid molecule [28]. In addi-
tion to lipid binding sites, there was a tripod-
shaped motif, which played a vital role in tar- 
geting Golgi membrane [28]. As a member of 
lipid-binding transfer proteins family, the yeast 
phosphatidylinositol-transfer protein (Sec14) 
could accommodate phosphatidylinositol with-
in the C-terminal domains by forming a large 
hydrophobic pocket, involving in the exchange 

of phosphatidylinositol and phosphatidylcho-
line between membrane bilayers and the pro-
cess of Golgi complex vesicle budding [29, 30].

Additionally, SEC14L1 presented to be co- 
located with VAChT or CHT1 depending on the 
GOLD domain [31]. Overexpression of prelid4A 
decreased choline uptake by changing lipid 
composition in endosomes and vesicles and 
CHT1 trafficking [31].

Although several studies have reported that  
the PRELI-like family proteins are involved in 
lipid transport, the biological functions and 
underlying mechanisms of them in lipid metab-
olism are less clear.

Lipid metabolism and cancer 

Lipids, including triglycerides, glycerolipids, ste-
rols and sphingolipids, play important roles 
within all living organisms. The organism de- 
grades triglycerides (TGs), releases fatty acids 
and oxidizes fatty acids to provide energy. 
Glycerolipids, sterols and sphingolipids parti- 
cipate in the formation of biofilms. Besides, lip-
ids are also involved in metabolism as second 
messengers and hormones. The excess lipids 
in the cell are mainly stored as droplets.

To sustain a high cellular proliferative capacity 
and metabolic rate, tumor cells develop meta-
bolic reprogramming to fulfills their need of 
nutrients and energies [32]. Besides “Warburg 
effect”-the most famous of metabolic changes 
in cancer cell, disorder of lipid metabolism is a 
novel hallmark of cancer [6, 33]. Cancer cells 
achieve high metabolic activity through activat-
ing their endogenous synthesis or increasing 
the uptake of exogenous (or dietary) sources 
[34]. Moreover, cancer cells may uniquely rely 
on fatty acids de novo synthesis to provide 
more lipids for generating and maintaining cell 
membrane and energy supply of cancer cells 
[6, 35].

On one hand, when the cancer cells were cul-
tured in a medium lacking lipoprotein, they 
would occur growth inhibition or even death 
[36]. Therefore, replenishment of these lipo- 
proteins would reverse this phenomenon [36]. 
On the other hand, more and more epidemio-
logical data showed that there was a positive 
correlation between cancer and dyslipidemia, 
such as multiple and invasive tumors and car-
diovascular disease, obesity, type 2 diabetes 
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and hyperinsulinemia [37]. Obesity impacted 
cancer phenotype, disease signaling pathways, 
and drug sensitivity. Lipid metabolism might  
be also related to the insensitivity of chemo-
therapy treatment [38]. 

Phospholipids (PLs) are important components 
of cell membranes and second messengers in 
cellular signal transduction pathways. Analysis 
of 179 phospholipid species in malignant and 
matched non-malignant lung tissue of 162 
Non-small cell lung cancer patients identified 
91 differential phospholipids [39]. Similarly,  
the same phenomenon happened in Colore- 
ctal cancer cells, Hepatocellular Carcinoma 
Cells, et al. [40, 41]. Ferlin family proteins were 
reported that they could be interacted with 
phospholipids and involved in multiple mem-
brane processes [42]. Targeting myoferlin was 
a novel measure to exert the anti-tumor effi-
ciency in breast cancer which had an effect  
on membrane biological behavior [43]. In addi-
tion, some studies have revealed that the  
levels of DSPC (such as phosphatidylcholine) 
could be regulated to affect growth factor sig-
naling pathways in tumor cells [44]. Certain 
phospholipids were also found to induce can-
cer multidrug resistance by altering membrane 
phospholipids composition of plasma mem-
brane and triggering multiple signaling cas-
cades [45]. In short, changes in the phospho-
lipid composition were closely associated with 
tumor initiation and progression.

Taken together, these studies provided com- 
pelling evidences of a mechanistic link bet- 
ween changes of lipid metabolism and malig-
nant tumors.

Lipid biosynthesis pathway in cancer cells

Metabolic disorders are induced by cancer 
mutations of proteins in Lipid biosynthesis 
pathway or altering related gene epigenetic 
mechanisms [46]. Lipid metabolism regulators 
would be inhibited or activated by regulation  
of signaling pathways involved in tumorigene-
sis. Sterol regulatory element binding proteins 
(SREBPs) and PPARγ were two key regulators  
of adipogenesis promotion. SREBP1, the core 
protein of lipid metabolism, were significantly 
up-regulated in human cancer [47]. SREBP1 
was regulated by the mTOR signaling to enhan- 
ce lipogenesis in nasopharyngeal carcinoma 
and liver cancer [48, 49]. The Wnt/β-catenin 

signaling pathway down-regulated PPAR pro-
duction in preadipocytes by activating TCF/ 
LEF, which thereby inhibited fat formation and 
colorectal cancer cell growth [50]. In addition, 
other signaling pathways involved in Lipid bio-
synthesis pathway also play a regulatory role 
for cancer cells metabolic reprogramming.

Expressions of metabolic enzymes had also 
evolved with oncogenesis. For instance, muta-
tion of the IDH1 leaded to the accumulation of 
the oncometabolite 2-hydroxyglutarate (2-HG), 
which contributed to change oxoglutarate-de- 
pendent dioxygenases activity and control the 
methylation state of histone in glioblastomas 
[51]. ATP-citrate lyase (ACLY) was an enzyme 
which linked glucose to de novo FA synthesis  
of lipid metabolism, epigenetically potentiated 
oxidative phosphorylation to promote melano-
ma growth [52]. Clinically, the overall survival  
of patients with high ACLY expression was sig-
nificantly worse than their low expression in 
lung cancer [53]. These results have illustra- 
ted that the regulation of metabolic enzymes 
were stably associated with tumor microenvi- 
ronment.

Lipid transporters in cancer celsl

Distribution of lipid molecules across the mem-
brane bilayer are normally asymmetrically, par-
ticularly in the plasma membrane and mito-
chondrial membranes. Lipids are made by 
membrane-embedded synthases. Lipid trans-
port systems transfer lipid precursors to spe-
cific site for lipid synthesis. Newly synthesized 
lipids are then secreted by membrane vesicles 
or lipid transfer proteins. The lipid composi- 
tion of cellular membranes modulated by lipid 
transport system is associated to protein sort-
ing and membrane dynamics in the endocytic 
pathway. Lipid transport proteins also regulat-
ed the lipid second messengers [54].

It has been proved that lipid transfer proteins 
were closely associated with cancer progres-
sion and outcomes. NIR2, a phosphatidylinosi-
tol (PI)-transfer proteins (PITPs), coupled PA to 
phosphoinositide signaling through binding PA 
and transferring PI [55]. The overexpression of 
NIR2 enhanced EMT in breast cancer cells, 
while depletion of Nir2 had the opposite effect 
[56]. In animal models and immunohistoche- 
mical analysis of breast cancer tissue sam- 
ples, high Nir2 levels correlated with advanced 
tumor stage and poor prognosis [56]. CERT, 
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which could transfer ceramide from the ER to 
the Golgi, promoted triple-negative breast can-
cer (TNBC) progression [57]. Besides, deple- 
tion of CERT was helpful for colorectal cancer 
cells death [58]. The mitochondrial protein 
mitofusin 2 specifically binds to PS and facili-
tates PS transfer to mitochondria [59]. Hepatic 
MFN2 deficiency drives defective PS metasta-
sis and impaired PE synthesis, which leads to 
endoplasmic reticulum stress and other Mem- 
brane-dependent cellular function disorders 
[60, 61]. Recombinant mitochondrial phospho-
lipid causes liver disease and even liver cancer 
[61].

The negative feedback regulation mechanism 
of lipid synthesis fails in tumor cells. Lipid  
metabolic reprogramming provides material 
and energy for the rapid proliferation of tumor 
cells. Generally, lipid metabolism involved in 
the occurrence and development of cancer 
remains to be elucidated. In distinctive types  
of cancer cells, lipid metabolism disorders in- 
duce different appearances and effects, their 
unknown mechanism needs to be more ex- 
plored. Because of the important role of lipid 
metabolism in biogenesis, it is crucial for us  
to find new and effective targets for tumor 
biotherapy.

The PRELI-like family and tumor

As regulators of lipid metabolism and signaling 
pathways, the PRELI-like family proteins have 
been reported to be correlated with several 
types of diseases and malignant tumors (Table 
2).

PRELID1 and tumor

TRIAP1/PRELI complexes supplied phosphatid-
ic acid (PA) for cardiolipin (a mitochondria-spe-
cific glycerophospholipid) synthesis in the mito-
chondrial intermembrane space. Deletion of 
PRELID1 would release cytochrome c from mi- 
tochondria, and thus promote apoptosis during 

conditions of cell stress. By comparing human 
primary breast tumor specimens and matched 
normal tissue, Kim BY, et al. have found that 
there was an alternative polyadenylation (APA) 
event in the PRELID1 mRNA, affecting its sta- 
bility and translational efficiency. In the cellu- 
lar response to stress (nutrient deprivation), 
knockdown of TRIAP1 or PRELID1 consistently 
inhibited breast cancer cell growth. In ER+ 
breast cancers, the expression of PRELID1 
maintained efficient mitochondrial respiration. 
Besides, knockdown of PRELID1 in ER- breast 
cancer cells increased mitochondrial ROS pro-
duction. ROS mediated activation of HIF and 
NFκB, which driving breast cancer cells prolif-
eration. Moreover, alternative polyadenylation 
and expression of PRELID1 were significantly 
correlated with outcomes in 14 of the cancers 
contained in TCGA [4]. In addition, knockdown 
of PRELID1 caused up-regulation of caspase- 
3 expression and down-regulation of SOD-1 
level in Hep2014G2 cells, which then induced 
mitochondrial apoptosis or senescence dur- 
ing Oxidative stress [62]. Therefore, PRELID1 
could inhibit apoptosis in hepatoma cells in 
vitro through regulating expression of SOD-1 
and caspase-3 genes, and stabilizing mito-
chondrial membrane potential.

Together, PRELID1 influenced mitochondrial 
ROS signaling level and increased cellular buf-
fer stress. PRELID1 was also involved in the 
inhibition of mitochondrial apoptosis and cell 
injury induced by oxidative stress. These re- 
sults might explain that PRELID1 contribute to 
regulation of cancer progression.

PRELID2 and tumor

RNA-Seq analysis of three paired NPC patients 
with pre-radiotherapy and post-radiotherapy of 
peripheral blood mononuclear cells, PRELID2 
was suggested as one of 45 genes associated 
with HNSCC radiotherapy response. This reve- 
aled possible relationships between PRELID2 
and radiotherapy resistance [63].

Table 2. The PRELI-like family involvement in biology process and clinical prognosis in different can-
cers
Cancer type Target gene Biological process Cancer therapy and prognosis References
Breast tumor PRELID1 promote proliferation [4]

PRELID4A lymphovascular invasion status [66, 67] 

Hepatoma PRELID1 inhibit apoptosis [62]

Nasopharyngeal carcinoma PRELID2 radiotherapy resistance [63]

Prostate cancer PRELID4A promote proliferation high tumor grade, advanced stage and early recurrence [68]
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PRELID3B and tumor

As a solid tumor, Pancreatic ductal adeno- 
carcinoma cells (PDACs) are under a hypoxia 
tumor microenvironment [64]. Reduction in 
mitochondrial PE levels following knockdown  
or knockout of PRELID3B. The levels of mito-
chondrial PE have been suggested to be de- 
creased in hypoxic or nutrient-deficient cells. 
Further study observed that its reduction may 
activate proteolysis using YME1L, leading to a 
remodeling of mitochondrial proteome [20]. 
Thus PDACs survival is supported by limiting 
mitochondrial lipid metabolism including a re- 
ducing effect of PRELID3B [20].

PRELID4A and tumor

Human SEC14L1 localized to a discrete region 
of 17q25 which was a suppressor region that 
mutated frequently in breast and ovarian can-
cer patients. Moreover, the CRAL/TRIO domain 
of SEC14L1 was also found in cellular retinal- 
dehyde-binding protein (CRALBP), and retinoids 
have previously been shown to inhibit breast 
cancer cell proliferation. Altering expression of 
PRELID4A was related to carcinogenesis and 
prognosis of breast cancer [65]. By analyzing 
genomic data of invasive breast cancer pati- 
ents, alterative expression of PRELID4A mRNA 
was found to be linked with lymphovascular 
invasion status, which indicated that PRELID- 
4A might serve as an independent prognostic 
indicator for breast cancer patients [66]. PRE- 
LID4A was associated with poor clinical fea-
tures in patients with prostate cancer, inclu- 
ding high tumor grade, advanced stage and 
early recurrence [67]. Up-regulation of prelid4A 
was particularly relevant to Ets-related gene 
fusion–positive subtypes of prostate cancers 
[68]. These results proved that PRELID4A pro-
mote tumor cell proliferation by reducing oxi- 
dative stress, regulating lipid metabolism and 
maintaining genome stability. 

Phospholipids are important biological compo-
nents of tumor cells, PEs and/or CLs biosyn- 
thesis pathway may affect different biological 
processes in cancer cells. Regulating the 
LACTB-PISD-LPE/PE signaling axis, for exam-
ple, can realize changes in mitochondrial lipid 
metabolism and thus inhibit the differentiation 
of breast cancer cells [69]. Phosphatidyleth- 
anolamine is required for hepatoblasts differ-
entiation, synthesis mechanism of PE is a new 
direction for hepatocellular carcinoma with tar-

geted therapy [70]. However, there are relative-
ly few studies in relevance between the PRELI-
like family proteins and cancer (Table 2). It 
remains to be seen whether some family pro-
teins have function in tumor microenvironment 
and tumor progression. What’s more, the me- 
chanisms of the PRELI-like family proteins re- 
gulating cancer progression and associating 
with poor prognosis in different types of cancer 
need to be further studied.

Conclusion and perspectives

Evidence is emerging that the PRELI-like family 
proteins play vital roles in cancer progression. 
However, we are just beginning to understand 
the functions and underlying molecular mecha-
nisms of the PRELI-like family proteins in hu- 
man cancers. Lipid metabolism-related genes 
regulate the transport of lipid and thus provide 
lipid synthesis with precursors or affect lipid 
localization and quantity. However, there are 
numerous questions to be answered. For ins- 
tance, how could the PRELI-like family genes 
choose their ligands and decide their modes  
of the motion and localization? What deter-
mines activation or deactivation states of the 
lipid transporters? What we understand about 
spatiotemporal regulation of lipid metabolism 
was not enough to completely and clearly in- 
vestigate the lipid transporters’ biological func-
tions. Besides as lipid transporters, the PRELI-
like family proteins also participate in the con-
trol of mature B lymphocyte differentiation and 
selection, T-helper cell differentiation. It is also 
likely that they relate to tuberculosis, multidrug 
resistance in parasites, for instance, the PR- 
ELI-like was found associated with P. falcipar- 
um parasites drug resistance [71]. Meanwhile, 
Sec14p influenced virulence of the pathogenic-
ity of fungi such as Cryptococcus neoformans 
[72]. However, its biological functions have not 
yet been fully elucidated.

The development and progression of cancer 
depend on metabolic reprogramming. In can-
cer cells, Metabolic changes are mediated by 
intrinsic factors such as cells and tissues and 
external influencing factors include tumor mi- 
croenvironment and patient status [73]. It is 
unknown whether the relationship between 
lipid metabolic disorder and tumor progres- 
sion, which is related to heterogeneity of tumor 
type or individuality. How dodifferent types of 
lipid metabolism have a collaborative effect  
on regulating the proliferation, invasion and 
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metastasis of cancer cells? Though the PRELI-
like family proteins were reported to associate 
with occurrence, development and prognosis  
of tumors, current knowledge of the PRELI-like 
family proteins is mainly restricted to basic 
structure and function, while it has been scar- 
ce to explore in-depth mechanisms of the rela-
tionship between the PRELI-like family proteins 
and tumorigenesis. 

Apparently, it is imperative to fully understand-
ing of the roles of the PRELI-like family proteins 
and lipid metabolism-related proteins in can-
cer, and identifying novel metabolic markers 
and molecular targets for individualized treat-
ment of cancer. The Emerging precise genomic 
view of tumors also provides means to reach a 
solution.
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