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Abstract: Cancer-testis antigens (CTA) are tumor antigens, present in the germ cells of testes, ovaries and tropho-
blasts, which undergo deregulated expression in the tumor and malignant cells. CTA genes are either X-linked or 
autosomal, favourably expressed in spermatogonia and spermatocytes, respectively. CTAs trigger unprompted hu-
moral immunity and immune responses in malignancies, altering tumor cell physiology and neoplastic behaviors. 
CTAs demonstrate varied expression profile, with increased abundance in malignant melanoma and prostate, lung, 
breast and epithelial cell cancers, and a relatively reduced prevalence in intestinal cancer, renal cell adenocarci-
noma and malignancies of immune cells. A combination of epigenetic and non-epigenetic agents regulates CTA 
mRNA expression, with the key participation of CpG islands and CpG-rich promoters, histone methyltransferases, cy-
tokines, tyrosine kinases and transcriptional activators and repressors. CTA triggers gametogenesis, in association 
with mutated tumorigenic genes and tumor repressors. The CTAs function as potential biomarkers, particularly for 
prostate, cervical, breast, colorectal, gastric, urinary bladder, liver and lung carcinomas, characterized by alternate 
splicing and phenotypic heterogeneity in the cells. Additionally, CTAs are prospective targets for vaccine therapy, 
with the MAGE-A3 and NYESO-1 undergoing clinical trials for tumor regression in malignant melanoma. They have 
been deemed important for adaptive immunotherapy, marked by limited expression in normal somatic tissues and 
recurrent up-regulation in epithelial carcinoma. Overall, the current review delineates an up-dated understanding of 
the intricate processes of CTA expression and regulation in cancer. It further portrays the role of CTAs as biomarkers 
and probable candidates for tumor immunotherapy, with a future prospect in cancer treatment.
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Introduction

Resistance to chemotherapy, radiation therapy 
and monoclonal antibody-based therapy is 
common in cancers, malignancies and meta-
static conditions in children, as well as adults, 
with very few therapeutic alternatives. On the 
other hand, immune-based treatments have 
led to the concept of T lymphocyte-mediated 
cancer antigen specificity, where Cancer testis 
antigen (CTA)-based therapy appeared impor-
tant for treating cancers. Most importantly, the 
T lymphocytes were capable of recognizing 
CTAs, and the latter induced strong antitumor 
immune responses [1, 2]. 

CTAs comprise an assembly of tumor-associat-
ed proteins, which undergo tumor-restricted 
expression and further elicit unprompted im- 
mune responses in cancer patients [3, 4]. 
Tumor mutation burden (TMB) bears a strong 
relationship with response and prognosis of 
cancer immunotherapy, and CTAs demonstrate 
a significant increase in patients with elevated 
TMB [5, 6]. CTAs are localized on the X chromo-
some, over-expressed in male germ cells and 
generally expressed by gametes and tropho-
blasts [7, 8]. CTA family members are prevalent 
in cancerous cells from varied histological 
types, and exhibit non-specific expression and 
distribution in different cell lineages. Several of 
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them show partial or significant sequence 
homology as well [7]. They are aberrantly acti-
vated in diverse human malignant cells and 
rarely in the reproductive cells. Additionally, 
they show strong link with hormone imbalances 
associated with aggressive forms of cancers, 
mainly in patients with reduced chances of sur-
vival [5]. 

The CTAs are predominantly suppressed th- 
rough DNA methylation in vegetal cells and 
undergo epigenetic activation in malignant 
tumors [9]. The epigenetic processes up-regu-
late after chemotherapy, promoting CTA-spe- 
cific vaccine-mediated reduction in tumor grow- 
th and survival [10]. Moreover, these tumor-
associated antigens, although do not directly 
participate in disease development and pro-
gression, play a key role in signal transmission 
gene orchestration and oncogenic modulation 
[11, 12]. The CTAs provide signals for cell di- 
vision, proliferation, growth and aggressive 
tumor behaviour [12-14]. By altering the tran-
scriptional and post-transcriptional machinery, 
CTAs regulate gene expression for germ cell 
multiplication [15, 16]. CTAs present specific 
features of neoplasia, including immune res- 
ponse evasion, perpetuity, DNA hypomethyl-
ation, epigenetic abnormality, invasiveness  
and destruction of healthy tissues [17, 18]. 
Moreover, the cancer-immune interactions in- 
crease metastatic spread and communication 
to new hosts [19].

The CTA concept first appeared in 1960s with 
the serological recognition of liver cancer and 
the ovarian or testicular germ cell tumor mark-
er, alpha-fetoprotein [20]. In line with this, mice 
with human carcinoembryonic antigen (CEA) 
transgene served as preclinical models for 
immunotherapy, particularly at the luminal epi-
thelial cells of cecum and colon [21]. However, 
only during 1990s, the idea of adaptive immu- 
ne responses received recognition, and Boon  
and colleagues in 1991 identified the first  
CTA, Melanoma-Associated Antigen 1 (MAGEA-
1), via cloning of genes encoding T-cell epitopes 
[24].

In this review article, we summarize the current 
role of CTA in oncogenesis, and discuss the par-
ticipation of CTA-based approach, individually 
and in combination with other immunothera-
pies, as a novel therapeutic strategy for cancer. 
We enlighten the urgent need to explore novel 

opportunities for early detection and prognosis 
for cancers, where CTAs may play a critical role. 
We also illustrate the advances made over the 
years towards development and improvement 
of CTA-based therapies, and the need for newer 
and more specialized CTAs, specific for certain 
cancers and malignant subtypes. 

CTA: types and characteristics

CTA genes are generally located on the X-chro- 
mosome, and form 10% of its coding sequence 
[25]. They bear germ-cell specificity and have 
the ability to provoke humoral and/or cell-medi-
ated immune responses [26]. Several CTAs 
have been discovered by T-cell epitope cloning, 
which mainly belong to the Chromosome X-en- 
coded (CT-X) category (Table 1). CT-X antigens 
are primarily expressed during embryonic 
growth and spermatogenesis [27]. They help in 
spermatozoa development from mitotic and 
proliferating germ cells in columnar Sertoli cells 
of the testis. Several of them bunch together  
at the telomeric long arm (q) ends, between 
q24-28, and protect the male germline against 
stress [27-29]. Genomic analysis reveals that 
‘inverted’ or ‘direct’ repeat sequences flank the 
Xp11 and Xq26-q28 domains of CTX genes. 
These repeat sequences are widely distributed 
in the non-XT CTAs as a single copy in abnormal 
conditions. Conversely, CT-X genes are precise-
ly expressed in the seminiferous tubules of tes-
tis at the earlier stages of spermatogenesis 
[26].

The CTAs comprise a total of more than 200 
proteins, namely, GAGE, synovial sarcoma-X 
chromosome (SSX), MAGE, SAGE, CTA-45 (CT- 
45), etc. They are found in pre-meiotic germ 
cells in adult testis, post-meiotic germ cells, 
placenta and trophoblastic tissues, where they 
play a critical role in modulating cancer initia-
tion and progression [12]. MAGE-1 was the  
first identified CTA from melanoma patients. 
Following this, the other immunogenic CTAs 
came into prominence, detected via molecular 
characterization of T-cell clones that react with 
autologous human tumors, as well as serologic 
tests of cDNA and DNA-cloning methodology 
[30-32]. MAGE-like genes have been detected 
in non-mammalian species, such as fruit fly and 
Zebra fish, and not in Roundworm and yeast, 
suggesting the evolutionary conservation of the 
gene [17, 33]. Via interaction with pro-caspases 
and the ‘Really Interesting New Gene’ domain 
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Table 1. Important CT-X types of CTA, expression site and functions
CTA-Type Expression site in normal tissue Expression site in malignant tissues Function
MAGEA Less in normal tissues Human neoplasms of breast, skin, glioma, neuroblas-

toma, non-small cell lung cancer, intestine, colorectal, 
ovary and the kidney

For early diagnosis of site specific 
malignancy and immunotherapeutic 
target

NY-SO-1 Synovial membrane and placenta Breast, neuroblastoma, leukemia, advanced mela-
noma, urinary bladder, Bone, esophagus, liver and 
head and neck cancers, non-small cell lung cancer 
and ovarian cancers

Functions in cell cycle evolution and 
development

SSX Testis germline tissue, mesenchymal 
stem cells and melanoma stem cells

Testis, at the spermatogonia stage, synovial sarcoma, 
head and neck cancer, urinary bladder, ovary, ma-
lignant melanoma, prostate gland, colon, intestine, 
breast, lung, glial, neuronal, endometrial and kidney 
cancers

Important target for tumor immuno-
therapy

SAGE1 Central nervous system, hip and 
thigh bone marrow

Head and neck squamous cell carcinoma, bone and 
connective tissue, ovaries and testes, myeloma and 
digestive tract cancers

Detect of malignant squamous le-
sions, and functions as biomarker

CT45 Spermatogonia and spermatocytes Hodgkin’s lymphoma, ovarian cancer, germ cell 
tumors and multiple myeloma

Stage specific biomarkers for site 
specific malignancies

PAGE5 Hepatic cell, epithelial layers of skin 
and placenta

Testis and liver cancers and advanced melanoma Promotes survival of melanoma cells 
and hence, a potential drug target

NXF2 Bronchial region, pulmonary tissue, 
placenta and epithelial layers of skin

Lung, urinary bladder, bone and soft connective tissue 
cancers

Linked with the cell nucleus, and 
hence functions as effective nuclear 
targets in cancer therapy

SP17 Male germinal cells Ovary, breast, esophagus, glial and neuronal cancers 
and multiple myeloma

SP17-specific cytotoxic T lymphocytes 
inhibit breast cancer cell proliferation 
and promote cell death

(zinc finger type), MAGE-I proteins modulate E3 
ubiquitin ligase activity. The MAGE-RING ligase 
assembly further participates in several cellu-
lar processes, including membrane trafficking, 
DNA damage repair and signaling mechanisms 
[34]. Some supplementary CTAs, such as, 
BAGE, HAGE, Sperm Protein 17 (SP17) etc. are 
common across angiosperm genomes. They 
are generally localized on the autosome pairs, 
bear homologous alleles and are of same size 
[35]. The additional subclass of CTAs, com-
posed primarily of proteins encoded by single-
copy genes located on the autosomes, are 
mainly expressed in the meiotic and post-mei-
otic male germ cells and participate in gene 
transcription [35, 36]. They play a key role in 
spermatogenesis and male fertility [37]. The 
New York esophageal squamous cell cancer-1 
(NY-ESO-1) type of CTA retains robust sponta-
neous immunogenicity, elicits cellular and 
humoral responses and exhibits restricted 
expression pattern [38]. Moreover, the atypical 
expression of Non-XTs in malignant cancer cells 
results in chromosomal abnormalities [39]. The 
Non-XT types of CTA, such as, SPO11, A disinte-
grin and metalloproteinase (ADAM) domain 2 
(ADAM2), centrosomal protein of 55 KDa 
(CEP55), Kinetochore protein Nuf2 and TTK 
protein kinase (Table 2) are normally dispersed 
along the whole genome, and fail to localise in 

long repeats of genomic sequences and estab-
lish gene families. They are mainly located in 
the testes at the advanced stages of spermato-
genesis and participate in male germ cell dif-
ferentiation at seminiferous tubules. CEP55 
takes part in spermatogenesis, and ADAM2, in 
association with the other ADAMs, contributes 
towards Nuf2-regulated oocyte meiosis and 
sperm-egg adhesion and fertilization [40-42]. 
The X-CT and non-XT groups of CTA, generally 
expressed at discrete stages of spermatogen-
esis, engage in the diverse cellular events relat-
ed to spermatogenesis [7, 43]. 

Additionally, based on expression and localiza-
tion, CTAs have been categorized as testis-spe-
cific (such as, MAGE-A1 and MAGEA2), testis-
selective (in testis and a maximum of two more 
tissues, BAGE and NY-ESO-1) and testis and 
central nervous system (MAGE-A9)-specific 
[44]. Malignancies have also been categorized 
as CT-rich (urinary bladder, skin, ovarian can-
cers and Non-small-cell lung carcinoma), 
CT-intermediate (breast and prostate cancers) 
and CT-poor (hypernephroma, bowel cancer 
and leukemia), depending on CT-enrichment 
[45]. Currently, tumorigenesis and oncogenicity 
are considered as key characteristics of CTA. 
CTAs are tumor-specific and immunogenic, and 
generally increase the proliferative, anti-apop-
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totic, invasive, metastatic and pro-angiogenic 
features of cancer cells. Thus, it has been 
hypothesized that CTA-based vaccination, 
adoptive T-cell therapy or CTA in combination 
with chemotherapeutics may serve as potential 
approaches for cancer treatment.

Modulation of CTA expression

The appearance of CTA in cancers depends on 
its gene status, or more specifically, transcript 
condition. In chronic myelogenous leukemia 
(CML), specific CTA genes undergo up-regula-
tion from early stages to the blast phase of the 
disease [26, 46]. The CTAs exhibit tumor-specif-
ic expression, showing less than 20% of 
MAGE-A1 levels in primary malignant melano-
ma and >50% in metastatic skin cancer [47]. 
The expression of MAGE-A1 has a significant 
link with growth and metastasis of malignant 
melanoma, patient survival rate and gene 
expression of the leucine-rich members of 
Preferentially Expressed antigen In Melanoma 
(PRAME) family [48, 49]. Notably, CTA expres-
sion levels do not necessarily correlate with the 
oncogenicity, exemplified by the disparate 
expression patterns of MAGE-A1 in early and 
late stage skin cancer, while NY-ESO-1 level 
remains unaltered [31]. 

The CTAs are mainly meiotic germ cell antigens, 
expressed primarily in seminiferous tubules of 
testis at the formative stages of spermatozoa 
and in male gametocytes [50]. However, an 
inadequate expression of CTA has been report-

ed in the cytoplasm of male germ cells [7]. 
Compared to mRNA, studies on CTA proteins 
are very rare, and owing to well-controlled post-
transcriptional and translational machinery, a 
>10% expression of particular CTA mRNA guar-
antees significant protein levels. CTA expres-
sion shows uniformity in clonal and subclonal 
expansions, while an assorted CTA expression 
involves epigenetic changes in the cancerous 
cells [17, 28]. Hence, a combination of epi-
genetics and immunotherapy serves as a 
potent cancer management strategy [51].

CTA genes bear intertumor diversity, owing to 
the global pattern of DNA methylation or gene-
specific promoter methylation, specific gene 
activation and repression at discrete steps in 
gametogenesis and trophoblast maturation 
[52]. A complex interface among the DNA sites, 
together with distinct nucleic acid-associated 
histones and transcriptional activators drive 
the CTA gene transcription. Moreover, cell or 
tissue-specific configurational alteration of 
DNA along with chromatin condensation and 
CpG island methylation by DNA methyltran- 
sferase enzymes and S-adenosyl-methionine  
regulate transcription and translation of CTA. 
Histone methylation and acetylation direct 
trascriptional activation of CTA genes, via his-
tone methyltransferases, histone deacetylase 
enzymes (HDACs) and methyl-CpG binding  
proteins. Additionally, histone deacetylation 
restricts the RNA polymerase reaction and 
transcriptional events, attenuating CTA expres-

Table 2. Important Non-XCT types of CTA, expression site and functions

CTA type Expression site in normal 
tissues

Expression site in malignant tis-
sues Function

SPO11 Central nervous system, 
epithelial cells and muscle 
tissue

Melanoma, lung, cervical and 
breast cancers

Regulates genomic stability during 
tumorigenesis, and these proteins, 
therefore, represent promising tar-
gets for novel therapeutic strategies

ADAM2 Prostate gland, central ner-
vous system, epithelial cells 
and muscle tissue

Head and neck squamous cell 
carcinoma, colorectal cancer, 
leukemia, prostate, glioma and 
connective tissue cancers

Functions as a cell matrix protease 
in the growth, development and 
propagation of cancers

CEP55 Spermatocytes, prostate 
gland and testis

Breast, colorectal, liver, lung, en-
dometrial and prostate cancers

Mitosis and cytokinesis in carcino-
genesis

NUF2 Prostate gland cells Metastatic prostate and lung 
cancers

Target for immunotherapy

TTK Normal colon epithelium Esophageal squamous cell carci-
noma (ESCC), multiple myeloma, 
lung, breast and colorectal cancer

Cytotoxic activity against ESCC cells
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sion. The methylated promoters also control 
the expression of C-T genes [9, 31, 53]. 

Epigenetic mechanisms regulate the func- 
tions of cytotoxic T lymphocyte (CD8+) or helper 
(CD4+) T-cells, increasing probability of CTA-
targeted immunotherapy in patients diagnosed 
with melanoma [54]. In fact, promoter demeth-
ylation increases the expression of NY-ESO-1 
and MAGE-A3, which correlate with mitotic  
and meiotic deformities and irregularities in 
myeloma. Overall, global hypomethylation and 
repeated DNA elements in the malignant cells 
and tissues highlight the critical participation of 
DNA methylation in modulation of CTA expres-
sion. This draws support from transfection-
based reporter gene expression studies, dem-
onstrating the precise role of epigenetic regula-
tory mechanisms for CTA expression in normal 
and abnormal tissues [26]. 

Tumors predominantly express CTAs, with the 
epigenetic pathways being key interconnecting 
regulators. A few non-epigenetic conditions, 
particularly the signaling pathways, modulate 
CTA levels as well. The notable ones include the 
cytokines, interleukin (IL)-7 and Granulocyte-
Macrophage Colony Stimulating Factor, that 
enhance the CTA, SPAN-xb and SEMG1 levels 
[55]. CTA genes themselves also control the 
transcription of other CTA genes. It has been 
observed that Brother of the Regulator of 
Imprinted Sites (BORIS) plays an important role 
in testes-specific protease 50 (TSP50) expres-
sion. CTA activation also causes a shift in 
between the activator and repressor proteins  
in gametogenesis pathway. Additionally, the 
Cyclic-Adenosine monophosphate, Krüppel-like 
factor and Specificity protein family of tran-
scription factors direct MAGE11 and NY-ESO-1 
expression. CTA even functions as the master 
gene during cell development by controlling 
gametic meiosis and mitosis [56, 57].

However, even though CTAs have been consid-
ered as potential targets for cancer immuno-
therapy, methylation and demethylation often 
suppress the expression of CTA genes. Hence, 
a regulated methylation of CTA gene promoters 
and histone post-translational modification 
appears essential for cancer immunotherapy.

CTAs: role and functions

Synaptonemal complex protein 1 (SCP-1) is a 
member of the CTA family, which participates in 

chromosome pairing, synapsis and recombina-
tion. It bears critical and specific functions dur-
ing meiosis in the neoplasms and malignancies 
of the brain, breast, urinary bladder and epithe-
lial ovarian cancer. SCP-1 expression is regu-
lated by MiR-124 expression, particularly in the 
neuroglial cells [58]. 

P-element induced wimpy testis (PIWI), first 
identified in Drosophila melanogaster, is a 
class of gene encoding regulatory proteins that 
maintain the differentiation and self-renewal 
status in stem cells [7]. PIWI is classified as CTA 
and is also considered a pro-malignant gene. It 
mediates its functions via anti-apoptotic and 
pro-proliferative mechanisms (Figure 1), involv-
ing the Signal Transducer and Activator of 
Transcription-3-regulated mitochondrial B-cell 
lymphoma-extra large pathway. PIWI, and spe-
cifically piwi-like RNA-mediated gene silencing 
2 (Piwil2), induces changes in chromatin com-
paction and alters DNA repair mechanisms. An 
up-regulated Piwil2 also reduces cellular sensi-
tivity to anti-neoplastic drugs, and mainly che-
motherapeutic cisplatin [59, 60]. Hence, sup-
pression of Piwil2 reduces oncogenesis and 
the unrestricted proliferation of cancerous 
cells, and has been proposed as a prospective 
immunotherapeutic target and biomarker. PIWI 
belongs to the Argonaute protein family, which 
is highly conserved among species and func-
tions as the catalytic component of the RNA-
induced silencing complex that sustains cell 
homeostasis [61]. Argonaute proteins interact 
with the small non-coding RNAs such as 
microRNAs (miRNAs), small interfering RNAs 
(siRNAs) and Piwi-interacting RNAs (piRNAs). 
PIWI is abundant in the male reproductive cells, 
mainly confined to the undifferentiated male 
germ cells (spermatogonia) and early male 
gametocytes. PIWI is also well-expressed in 
germ cell tumors of the testicle and infrequent-
ly in the mediastinum and extra-gonadal  
locations [62]. PIWI participates in malignant 
growth of prostate, breast, intestine, ovary and 
uterine cancers. Even the murine homolog of 
Piwi (Miwi) shows distinct expression in the 
cytoplasmic domain of primary spermatozoa, 
playing an important role in evolution of haploid 
spermatozoa from testicular somatic cells [63, 
64]. However, advancement in the field of next-
generation sequencing technology may be uti-
lized for understanding the divergent expres-
sion of piRNAs/piwi proteins, which could dis-
tinguish between malignant and benign stages 
[60].
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CTAs: gametogenesis and malignancy

Growth and development of germ cells and 
tumor follow a common pattern, giving rise to 
John Beard’s ‘trophoblastic theory of cancer’. 
The theory predicts that CTAs originate from 
germ cells, mainly found in melanomas and 
varieties of other tissues, and are absent in 
normal tissues other than testis [64]. Although, 
the key relation between gametogenesis and 
cancer remains obscure, “genome instability in 
cancer” is termed as one of the critical links. A 
shared process has been observed among the 
ploidy sets in cell division, with elevated genom-
ic content in well-developed tumorous and can-
cer cells that typically mark the CTAs [65]. CTAs 
are exclusively evident in the undifferentiated 
spermatogonia and seminomas, while having 
no expression in the Leydig and Sertoli tubular 
cells and non-seminomas [33]. The CTA expres-
sion levels vary with the spermatogenic phas-
es. CTA also participates a wide range of func-

tions, ranging from mitotic cell cycle progres-
sion, spermatogonia, meiotic prophase during 
the first cycle of spermatogenesis and complet-
ing sperm capacitation and acrosome reaction 
(Figure 2) [7, 66].

The abnormal expression of germline genes 
during cancer results from the formation of 
mature haploid gamets, associated with the 
up-regulation of the otherwise silent germline 
appearances that drives the process of tumor 
generation [67]. CTA genes have key functions 
in malignant as well as testicular germ cells, 
with distinct regulatory activities governed by 
overlapping molecular mechanisms [16]. The 
common traits in cancer as well as germ cells 
and in gamete and trophoblast differentiation 
processes include cell replication, transforma-
tion, migration, aneuploidy, meiosis and an ulti-
mate metastasis. Additionally, the key features 
of cancer cells and primordial germ cells com-
prise stage-specific demethylation, blood ves-

Figure 1. Mechanisms of CTA-based Oncogenesis. The CTAs induce growth and proliferation of tumorigenic cells, 
reduce cell death via decreased apoptosis, disrupt the genomic strength and promote cellular migration, promoting 
cellular malignancy and metastasis of malignant cells.
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Figure 2. Stage-wise CTA expression during Spermatogenes. The CTAs (LHS) that contribute to the step-wise genesis 
from germ cells to Spermatozoa (RHS).

sel formation, suppressed immune responses 
and expression of human placental hormones 
after implantation [68]. 

With the help of demethylating agent, 5-aza-
2-deoxycytidine (5DC) that sequesters DNA, 
CTA could be induced in the cancerous cells, 
indicating the necessity of down-regulated 
methylation and transcriptional processes for 
reduced CTA expression [69]. HDAC inhibitors 
along with 5DC further up-regulated expression 
levels of CTAs, with the induction of MAGE, SSX 
and NY-ESO-1 family members [22]. Epigenetic 
modifications helped in the expression of CTAs 
and had key functions as adjuvants for tumor 
vaccine therapies. Hence, an increased gamet-
ic recapitulation could arbitrate cancerous phe-
notype, even without the oncogenes and anti-
oncogenes [70].

A significant variation exists in the expression 
of X-types of CTA, showing higher expression in 

the urinary bladder, lung, ovary, liver and mela-
nocyte cancers, and lesser abundance in kid-
ney, intestine, stomach and lymphocyte can-
cers.  The normal somatic cells undergo activa-
tion via CpG island hypomethylation, and the 
CTX genes regulate gene expression and modu-
late the sensitivity of malignant cell lines to cell 
growth, cell multiplication, toxic influences and 
cell death [71]. Here, methylation has been 
considered as a possible mechanism for con-
trolling tissue-specific expression of CTA genes. 
Starting from the primordial state, germ cells 
grow and extend along dorsal mesogastrium 
into the fetal gonads during development of 
internal genital tract and external genitalia [7]. 
Moreover, primordial germ cells turn into pros-
permatogonia via testicular somatic cell regula-
tion and secretion and transfer of nutrients and 
regulatory factors [72, 73].

SCP-1 is a type of CTA that participates in the 
gametogenesis process for synapsis during cell 
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division. OY-TES-1 functions in acrosin zymogen 
packaging and concentration in the acrosome 
of sperm heads. SPO11 initiates DNA double 
strand breaks in meiosis and BORIS regulates 
MAGES and drives tyrosine kinase activity in 
multilayered germinal epithelium containing 
spermatogenic and sertoli cells. CTAs act as 
strong targets for immunotherapies and have 
been considered for clinical trials in vaccine 
therapies, particularly because of their immu-
nogenic properties and tumor-dependent ex- 
pressions [7]. Members of ADAM family also 
function in sperm-egg contacts, intracellular 
signaling, cytoskeletal organization of cell-cell 
and cell-matrix interactions, including sperm-
egg fusion, muscle hypertrophy and neural 
stem cell to neuron generation [74]. The CTA, 
SP17, found in multiple myeloma, ovarian can-
cer, brain cancer, throat cancer, endometrial 
cancer, cervical cancer, glioma and squamous 
cell carcinoma, does not express in the non-
metastatic parental line. Being evident in the 
human spermatozoa, SP17 undergoes expres-
sion in the fibrous sheath of the tail. A-kinase 
anchoring protein 3 (AKAP3) in the sperm fla-
gella functions along with SP17, which when 
expressed in tumors results in grave prognosis 
and remote chances of survival, particularly in 
ovarian cancer [10]. AKAP usually forms a com-
plex with the SP17 auto-antigen, helping in site-
specific sequestration of signaling molecules in 
both the germ cells and malignant cells. SP17 
together with AKAP participates in the fertiliza-
tion of sperm and ovum during acrosomal reac-
tion at the zona pellucida surrounding the 
developing oocyte. It also enhances the pro-
cess of cell-cell matrix interaction, adhesion 
and migration [10]. SP17 had been initially con-
sidered as a prime therapeutic target for gynae-
cological cancers; nonetheless, its prominent 
expression in the reproductive as well as non-
reproductive cells, such as respiratory epitheli-
al cells, inflammatory cells inside synovial joints 
and dermal melanophages in both male and 
females predicted its use as an immunotarget 
for gyencological cancers only [33].

CTAs are inherently disordered proteins, and 
participate in a range of functions, including 
cell signaling, cell differentiation, cell cycle reg-
ulation and several other functional pathways. 
CTA-mediated actions are well-synchronized, 
being accurately and compactly controlled and 
directed by a wide-range of post-translational 

processes, such as, phosphorylation, acetyla-
tion and glycosylation, and most importantly 
alternative splicing [75]. CTAs are capable of 
intramolecular interaction, resulting in assimi-
lating and construing physiological inputs in a 
dose-dependent pattern, which are also well-
controlled by the conformational dynamics  
and ensemble of CTAs. These post-translation-
al modifications are critical in helping CTAs to 
distinguish and separate the different stages of 
cancers [76].

NY-ESO-1, first detected in a New York City-
based lady suffering from squamous cell  
carcinoma of the oesophagus, is abundantly 
expressed in the undifferentiated male germ 
cells and in diploid primary spermatocytes  
within the testis, and absent in post-meiotic 
haploid male gametids [77]. Phase-1 clinical tri-
als on histidine-labeled recombinant NY-ESO-1 
showed its increased levels in the serum of 
lung cancer, thyroid cancer, ovarian cancer, 
breast cancer, urinary bladder cancer, esopha-
geal cancer and melanoma patients [77]. 
Moreover, a combination of the cancer-target-
ed monoclonal antibody, ipilimumab, with 
NY-ESO-1 vaccine had a synergistic therapeutic 
effect in advanced metastatic skin cancer [38]. 
It has also been seen that vaccinating NY-ESO-1, 
together with the target specific adjuvants and 
potent Type 1 T helper-like immune enhancers, 
promoted longevity in patients with skin, lung, 
ovarian, breast and even bone and soft connec-
tive tissue cancers [78]. Nonetheless, another 
clinical study using hydrogel nanoparticles  
of hydrophobized cholesterol-bearing pullulan 
and NY-ESO-1 protein vaccine demonstrated 
increased thymus specific CD4 and CD8 T cell 
subsets and associated immune responses. It 
also showed enhanced expression of several 
other tumor antigens in the peripheral blood, 
and had no therapeutic effect on tumor  
volume. Additionally, the patients exhibited 
increased death rate, proving the combination 
treatment as futile [79].

CTAs help in cellular migration, proliferation, 
tumor invasion and penetration, and an ulti-
mate secondary metastatic growth. Notably, 
NY-ESO-1 undergoes significant up-regulation 
in advanced skin cancer. Moreover, SSX and 
N-RAGE-CTAs demonstrate an enhanced ex- 
pression in multipotent stromal mesenchymal 
stem cells and suppression in differentiated 
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daughter cells [80]. SSX expression governs 
the shift between epithelial cell layer and mes-
enchymal stromal cell formation. Here, reduced 
SSX together with decreased vimentin struc-
tural protein and matrix metalloproteinase  
2 promote cellular invasion and attenuate  
carcinogenesis. The proto-oncogene, CTA45, 
(expressed in the breast cancer cells) and relat-
ed CTAs, such as MAGE-D4B, piwil2, SSX, CAGE 
and CT45A1 that activate mitogen-activated 
protein kinase and cAMP Response Element-
Binding Protein induce epithelial-mesenchymal 
transition and augment carcinogenesis and 
metastasis [81].

Thus, methylation/demethylation, vasculogen-
esis and immune evasion are some common 
characteristics of gametogenesis and tumor 
formation. The CTAs, expressed in the sper-
matogonia, spermatocytes and spermatids, 
play a contributory role in malignancy and 
metastasis. Hence, genetic alterations in can-
cer and CTA gene expression activate the germ-
line expression process, triggering tumor pro-
gression and oncogenesis. 

CTAs as potential biomarkers for detection 
and diagnosis of cancers 

A custom DNA microarray showed an increase 
in MAGE-A/CSAG in castrate-resistant prosta- 
te cancer (PCa), and the CT-X antigen prosta- 
te-associated gene 4 (PAGE4) exhibited aug-
mented expression in primary PCa [82]. Cor- 
respondingly, MAGE-C2/CT10 appeared as a 
marker for relapsing prostate cancer post-radi-
cal prostatectomy, evident in around 3% of pri-
mary PCa cases only [83]. These findings indi-
cated the possibility of developing CTA-based 
“gene signature” for prostate cancer patients. 
It also underscored the need for multi-function-
ality as a key characteristic of CTAs, which may 
serve as potential biomarker candidates [75]. A 
PCR-based assay, involving a list of 22 CTAs on 
a high-risk cohort with advanced tumorous 
prostate cancer, demonstrated that the non-X 
CTAs increased, while the CT-X antigen, PAGE4, 
decreased in the aggressive form of PCa,  
following prostate gland and associated ti- 
ssue removal. The study pointed to the sta- 
ge specific expression of CTAs in prostate  
cancer [84]. Corroborating this, a sensitive, 
consistent, descriptive, integrated and highly 
intricate nCounter Analysis System through 
mRNA-based assay identified CEP55, NUF2, 

TTK, PDZ-Binding Kinase (PBK) and PAGE4 as 
undergoing distinctive expression in benign, 
primary, non-metastatic and metastatic forms 
of prostate cancer [85].

CTAs served as prominent participants in the 
process of cell cycle progression and cell pro- 
liferation. Notably, MAGEC2-specific immuno-
therapies removed malignant myeloma tumors. 
Here MAGEC2 silencing suppressed the cell 
number in S phase, inhibited G0/G1 and G2/M 
and enhanced apoptotic cell death via en- 
hanced cell population in sub-G0/G1 diploid 
phase [86]. Sustaining the characteristics of an 
inherently chaotic protein, PAGE4 functions as 
a mutated oncogene via enhanced activity of 
Activator Protein-1 transcription factor and 
phosphorylation, involving the homeodomain-
interacting protein kinase-1 and CDC-like 
kinase-2 [87]. Hence, PAGE4 shows normal 
expression in benign prostate glands and an 
aberrant expression in androgen-dependent 
and non-androgen-independent prostate can-
cers. In fact, PAGE4-AP-1-AR-CLK2 pathway 
drives the androgen-dependent and -indepen-
dent conditions in prostate cancers [88]. 
Hence, phosphorylation and the shift between 
androgenicity and non-androgenicity confer 
PAGE4 sensitivity to prostate cancer, overall, 
implying its potential as a novel biomarker and 
therapeutic target for prostate cancer. These 
observations highlight the functional relevance 
of CTAs as biomarkers in specifying status of 
the disease, as well as inducing a balanced cell 
cycle regulation, equilibrium and cellular pro-
tection. An additional advantage of PAGE4 as a 
marker for prostate cancer stems from the fact 
that unlike the serum prostate serum antigen 
(PSA), PAGE4 is undetectable in the normal 
prostate glands. PAGE4 plays a prominent role 
in distinguishing different types and grades of 
benign prostate hyperplasia that associate 
with chronic bladder obstruction, urinary reten-
tion, renal failure, persistent urinary tract infec-
tions, renal bleeding and urinary tract and kid-
ney stones [87]. Hence, regulated, PAGE4 
expression represents a novel strategy for gen-
erating personalized medicine against prostate 
cancer. The serum PAGE4 levels also help dis-
cerning the androgen receptor-reliant castra-
tion-resistant prostate cancer and metastasis 
and androgen receptor-independent forms of 
prostate cancers. The phospho-PAGE4 inter-
acts with AP-1, triggering an androgen receptor-
mediated mechanism, which functions as a 
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critical therapeutic target for prostate cancer 
and metastasis [89]. The androgen receptor-
independent form primarily involves glucocorti-
coid receptor signaling and tumoral immune 
resistance, with the participation of neuroendo-
crine cell population that influences prostate 
cancer development and growth. Because the 
shift between phosphorylated and non-phos-
phorylated forms of PAGE4 plays a key role in 
the prostate cancer fate, monoclonal antibod-
ies against the diverse phospho-PAGE4 forms 
and RNA-Seq methods based on PAGE4 RNA 
help detecting the different stages of prostate 
cancer progression [76, 90]. Hence, differential 
PAGE4 phosphorylation and its link with andro-
gen dependence regulate the phenotypic het-
erogeneity of prostate cancer [87]. Unlike kalli-
krein proteases, PAGE4 is an enriched and 
intrinsically disordered protein that bears ver-
satile conformational dynamics for binding with 
a wide-range of proteins. The conformational 
ensembles are more prominent in malignant 
rather than benign conditions, bearing dispa-
rate sensitivities to therapies [91, 92]. Addi- 
tionally, conformational plasticity of the intrinsi-
cally disordered protein forms of PAGE4 proto-
oncogene leads to its different mutated forms 
at diverse stages and conditions during pros-
tate cancer progression [93].

Cervical cancer and HNSCC involve an abnor-
mal methylation of CpG islands, indicating  
epigenetic changes. Moreover, the Nucleolar 
Protein 4 (NOL4) gene promoter associates 
with about 80-90% of cervical and HNSCC [94]. 
Alternate splicing plays a key role in biological 
functionality of NOL4, causing discrete regula-
tion of the downstream transcription factors 
that control varied cell specific activities [75, 
95, 96]. The post-translational modification of 
NOL4 in association with alternate splicing 
guide site-specific molecular interaction and 
nuclear localization signals that affect cervical 
cancer and HNSCC conditions [75].

CEP55 is normally present in the testis and thy-
mus, but is detected in significant amounts in 
the tissues of breast carcinoma, colorectal, 
lung, colon and bladder cancers. CEP55 plays 
an important role in cell fate determination in 
breast cancer and functions as a prognostic in 
NSCLC. It associates with the clinicopathologi-
cal features of bladder cancer, determines the 
sensitivity of colon cancer to T cell responses 
and appears as common methylation clusters 

in colorectal cancer [97-101]. CEP55 serves as 
a biomarker for estrogen-responsive breast 
cancer and HNSCC, where it facilitates cancer 
development via abnormal triggering of the 
Forkhead box proto-oncogene family of tran-
scription factors [102, 103]. In intestinal can-
cer, CEP55 increases the physical process of 
cell division via an intricate pathway involving 
the tumorigenic peptidyl-prolyl cis/trans-isom-
erase (Pin1) binding to inhibitory Polo-like 
kinase 1 (Plk1) in cellular mitosis and prolifera-
tive AKT1 signaling pathway. A deficiency or 
mutation in tumor suppressor, BRCA2 (DNA 
repair associated), deregulates the normal 
CEP55 complexation with the apoptotic pro-
teins that promote cytokinetic abscission  
[104]. The process also entails alternative 
splicing and reduced kinase activity or removal 
of phospho-domains and molecular recognition 
features that alternate between ordered and 
disordered conditions, while interacting with 
their suitable stipulated proteins. Hence, dis-
tinct protein isoform products of alternate RNA 
splicing and posttranslational modification of 
NOL4, PAGE4 and CEP55, which induce highly 
dynamic conformational ensembles and func-
tional changeability in the CTA proteins, desig-
nate them as next generation biomarker candi-
dates for the different stages and forms of can-
cer [75].

Structural plasticity and multifunctionality of 
CTAs have rendered them as appropriate bio-
marker candidates for detection and confirma-
tion of cancers. CTAs interact with DNA, in- 
duce epigenetic changes, cell proliferation and  
cell cycle progression and alter protein regula-
tion, affecting the process of carcinogenesis. 
Nonetheless, wide clinical studies are essential 
for considering CTAs as ideal biomarkers for 
discerning stage-specific prognosis in diverse 
forms of cancer.

CTAs, tumor vaccine and immunotherapy

Tumor immunotherapy has advanced signifi-
cantly with the development of hybridoma tech-
nology and antigen processing and presenta-
tion. Discovery of the strongly immunogenic 
CTAs contributed to tumor vaccine develop-
ment, having been considered as perfect tar-
gets for immunotherapy. CTA peptides and clini-
cal trials with the CTA multipeptide vaccines 
have led to the way for novel personalized CTA 
peptide vaccines [105]. CTAs have been regard-
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ed as perfect targets for cancer vaccines, 
owing to their significant expression in various 
humor tumors compared to benign cells [106]. 
CTA-based vaccine treatment appeared very 
helpful in breast cancer patients with other-
wise fewer options for therapy, especially those 
with triple-negative breast cancer [5]. CTAs are 
important for the testicles that fail to mount 
immune responses and are devoid of adaptive 
immunity and blood-testis barrier that seques-
ter germ cells [22]. They offer an immune-privi-
leged microenvironment, towards completing 
the process of meiosis [33]. The CTA genes are 
abundant in the testis, and participate in meio-
sis during spermatogenesis and tumorigenesis 
having shared features [107]. Owing to their 
extremely systematic and precise characteris-
tics, CTAs function as biomarkers for early 
detection of cancer and are suitable for immu-
notherapeutic approaches. It has also been 
seen that patients failing to respond to the first- 
and second-line cancer therapies could benefit 
from CTA-dependent immunotherapy [105]. 
CTAs also contributed significantly to cancer 
vaccination and adoptive transfer of the chime-
ric receptor-based peripheral blood-derived T 
lymphocytes [108]. The immune responses 
usually involved induction of effector and mem-
ory CD8+ (cytotoxic) and CD4+ Helper T cells in 
the tumor micro-environment, with the activa-
tion of tumor specific antigens [109, 110]. For 
the last few years, progress in the domain of 
CTA as a mode of immunotherapy has led to its 
importance as replacement for conventional 
cancer treatment [26, 111, 112]. Accordingly, a 
marked effort towards developing proficiency 
and cautiousness for the generation and appli-
cation of the ideal CTA (to avoid the risk of 
metastasis) for clinical testing in cancer is cur-
rently underway [26]. CTAs have been reckoned 
for protective cancer immunotherapy, owing to 
their extensive role in attenuating tumor [105]. 
Hence, a broad range of peptides, proteins, 
DNA, RNA and viral and bacterial vector-based 
vaccine strategies with distinct affinity for CTAs 
is under development and considered for differ-
ent clinical trials [106].

Generally, clinical trials in melanoma patients 
showed involvement of dendritic cell-depen-
dent vaccines or human leukocyte antigen-
based antigenic determinants in relation to 
MAGE-A1- and MAGE-A3-positive cancer types. 
The Phase I trial on vaccination demonstrated 

a prominent increase in the CD8+ antigen-spe-
cific T-cell clones targeting MAGE-1, GP100 
peptide vaccine and human epidermal growth 
factor receptor-2 [113, 114]. MAGE-3 exhibited 
spontaneous immune responses in cancer pa- 
tients, and hence, immunization with MAGE-A3 
and clinical trials with MAGE-A3 vaccines laid 
claim to its use in cancer immunotherapy [115]. 
NY-ESO-1-based patient studies involved the 
human leukocyte antigen-specific antigenic 
determinants, recognized by the immune sys-
tem or total protein. The treatment often includ-
ed an adjuvant that suppressed secondary 
tumor formation, post-vaccination. The adju-
vant treatment promoted antibody-mediated 
cellular immunity, generally used at several 
doses and mixtures, targeting dendritic cells in 
patients with NY-ESO-1-marked tumors [116, 
117]. The therapeutic process involved an anti-
gen-specific immune response, with prominent 
CD8+ and CD4+ T cell infiltration. The NY-ESO-
based peptides together with adjuvants stimu-
lated prominent CD8+ and CD4+ T-cell immune 
reactions in melanoma patients, validating the 
potential of the immunotherapeutic strategy 
[118]. Patients treated with whole protein and/
or adjuvant showed diverse immune respons-
es, and varied reactions are also detected in 
clinical cases showing cancer relapse [106].

A combination of CTA-based therapy and che-
motherapeutic agent, like decitabine, that 
causes epigenetic stimulation has been consid-
ered as a major strategy for tumor therapy. Via 
suppressed hypermethylation (that inhibited 
CTA expression) and enhanced demethylation, 
decitabine stimulates MAGE-A1, MAGE-A3 and 
NY-ESO-1 genes in malignant cells in a number 
of tumor cell lines, such as, esophageal carci-
noma, malignant melanoma, glioma, etc. [119, 
120]. Decitabine, plays an important role in 
promoting clinical potential of MAGE-A3, MA- 
GE-A1 and NY-ESO-1-specific therapy by up-
regulating transcription of essential target 
genes [119, 120]. CTA over-expression and 
treatment with decitabine successfully leads to 
the death of tumorous cells, and the combina-
tion serves as a key anti-tumor strategy for 
treating patients with recurring cancer and 
metastasis [106, 114, 121, 122]. Moreover, 
MAGE-A1, MAGE-A3 and NY-ESO-1-specific T 
cells in combination with decitabine helped in 
the expansion of Cancer Germline antigen-Spe-
cific Cytotoxic T Lymphocytes for vaccine and 
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immunotherapy [123]. An expansion in the 
tumor reactive T cells for adoptive immunother-
apy in combination with CTA-based vaccine 
therapy is a potential immunotherapeutic strat-
egy for cancer. This alters tumor immune inva-
sion and enhances the tumor-reactive T cell 
count. The CTAs are appropriate targets for 
high tumor-specificity and induction of humoral 
and cell-mediated immune responses, and a 
combination of vaccination and adoptive trans-
fer serves the purpose [124]. While vaccines 
together with adjuvants increase the inherent 
immune responsive property of CTA, CTA-based 
T cell expansion for adoptive transfer has been 
hypothesized as a prospective procedure for 

reducing the risk of cancer metastasis (Figure 
3).

Conclusion

Identification of CTA-expressing cancer cells is 
a key factor in CTA-dependent vaccine and 
immunotherapy, particularly against the wide-
spread epithelial cancers. The CTAs that per-
fectly exhibit these immunotherapeutic func-
tions need to be target-specific, expressed in 
abundance in tumor and rarely in normal cells, 
and stably and consistently present in the 
malignant cells. CTAs are expected to have 
defined functional characterization and onco-

Figure 3. CTA in Cancer Immunotherapy. CTA vaccination (A) and strategy involving Adoptive transfer of CTA-specific 
T cells (B) induce immunity & cancer therapy. CTA vaccination (A), Step 1: Detection of CTAs in Tumors; Step 2: 
Treating patient with CTA-dependent protein/peptide/genetic variant along with pharmacological or immunological 
agents or Antigen Presenting Cells; Step 3: CD4, CD8 T cell and antibody response in vaccinated patient; Step 4: 
Spontaneous immunity in patient with advanced malignancy & metastasis. Adoptive transfer of CTA-specific T cells 
(B), Step 1: Detection of CTAs in Tumors and isolation of peripheral blood mononuclear cells (PBMCs); Step 2: Trans-
fer Recombinant specific T cell receptors to PBMCs; Step 3: Expansion of T cells; Step 4: T cell treatment in patient; 
Step 5: Spontaneous immunity in patients with advanced malignancy & metastasis.
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genicity, capable of attenuating tumorigenic 
potential and reducing chances of metastasis. 
Nonetheless, hardly any CTA yet satisfies these 
ideal features, and hence CTA-mediated clinical 
trials appear as a distant fact. Combination 
therapy of CTA with decitabine and chemother-
apy may partially solve the problem; however, 
exclusive use of CTA for the purpose needs 
severe investigation and thorough research. 
Moreover, specific targets, appropriate clinical 
settings for patient trials and availability of suit-
able combination therapies are challenges in 
the field of CTA peptide-based vaccines for can-
cer immunotherapy. Notably, it has been pre-
dicted that CTA peptides in association with 
immunogenic adjuvants and adoptive transfer 
of T cells may develop as personalized vac-
cines, towards treating malignant tumors indi-
vidually and an ultimate patient survival.
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