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Abstract: Background: The present study aimed to explore and validate a prognostic immune signature, to formulate 
a prognosis for ccRCC patients combined with immune-infiltration analysis. Methods: Public datasets were used as 
our source of multi-omics data. Differential analysis was performed via the edgeR package. A prognostic immune 
signature was identified by univariate Cox analysis, and we constructed an integrative tumor-associated immune 
genes (TAIG) model from the multivariate Cox results. In order to interrogate and identify the related crosstalk, 
functional analysis was deployed. Significantly, we implemented the CIBERSORT algorithm to estimate the immune 
cell fractions in the ccRCC samples, and analyzed the differential abundance of tumor-infiltrating immune cells in 
two TAIG groups, using a Wilcoxon rank-sum test. The prognostic role of differential immune cells was further as-
sessed via a Kaplan-Meier analysis. In addition, we investigated the associations of a single immune signature with 
specific immune cells. Results: A total of 628 ccRCC patients were comprised in our integrative analysis, including 
537 ccRCC patients in the discovery group and 91 patients in the validation group. Fourteen key immune signatures 
were subsequently identified. A figure of 0.802 was registered for AUC, and worse prognosis was evinced for those 
patients with a higher TAIG. Correlation analysis indicated that TAIG correlated closely with both clinical variables 
and TMB. Moreover, functional analysis implicated the immune-related GO items or crosstalk. Hence, we were able 
to identify the relationships obtaining between tumor-infiltrating immune cells and TAIG. The differential abundance 
of immune cells showed a significant prognostic difference and consisted of memory-activated CD4+ T cells, T follic-
ular helper cells, T regulatory cells, and so on. Moreover, we also characterized the associations between identified 
signatures and specific immune cells. Finally, the five-year AUC in the ICGC cohort was 0.72, suggesting the robust-
ness of the TAIG that we constructed. Conclusions: Overall, our team characterized the tumor-associated immune 
signature in ccRCC, and further identified the prognostic tumor-infiltrating immune cells related to TAIG. This in turn 
provided a solid foundation for investigating individualized immunotherapy, as well as other relevant mechanisms. 
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Introduction

Cancer of the kidney may be defined as an 
expanding solid malignancy in the urology sys-
tem. Survival outcomes are poor; mortality lev-
els are high [1]. Generally speaking, clear-cell 
renal-cell carcinoma (ccRCC) is the most preva-
lent subtype of the condition, and represents 
almost 70% of cases [2, 3]. Despite relatively 
advanced strategies for detection or cancer 
management, the incidence of ccRCC has con-
tinued to increase, and the level of estimated 
cases in the United States rose to 73,820 in 
2019 [4]. The typical surgical treatment for 

ccRCC patients, thus far, remains radical 
nephrectomy or laparoscopic partial nephrec-
tomy. Nevertheless, since approximately 30% 
of cases inevitably progress into advanced 
pathological stages or tumor recurrence, ccRCC 
patients still suffer from poor overall survival 
prognosis. The current determinants of progno-
sis in ccRCC primarily comprise tumor size (T 
stage), pathological grades, and histological 
subtypes. Nevertheless, the fact that cases 
with clinically similar characteristics evince het-
erogeneous outcomes reflects the inadequacy 
of traditional prognostic methods. Hence, an 
increased emphasis is now warranted on the 
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identification of robust and stable biomarkers, 
with credible accuracy and sensitivity, that 
more comprehensively reflect the biological 
features of ccRCC. 

Aberrant immune regulation has been clearly 
recognized as a vital component in tumor 
microenvironments [5, 6]. It is, for instance, 
pertinent to tumorigenesis [7], as well as pro-
gression, and even metastasis [8]. Recently, 
immunotherapies have been highlighted as 
promising potential avenues for tumor treat-
ment, partly as a result of intensive research 
into immunity per se. Areas of interest include 
programmed death-1 (PD-1) [9-11] or pro-
grammed death ligand 1 (PD-L1) [9, 12]  
blockade. In particular, a large cohort has 
recently demonstrated that the combination of 
Avelumab (PD-L1 antibody) or Pembrolizumab 
(PD-1 antibody) with Axitinib evinced superior 
results, compared with Sunitinib alone [13, 14]. 
Nonetheless, the effectiveness of PD-1/PD-L1 
inhibitors was shown to be less than total in  
the case of patients with a varying range of 
objective response rates. This reflected, inter 
alia, the fact that the tumor immune environ-
ment should be carefully characterized. 

Previous studies have already reported that 
overall survival (OS) [15] and prognosis in 
patients could be influenced by fractions of the 
immune environment, including tumor-associ-
ated macrophage [16, 17], mast cells, or  
stromal cells. Nonetheless, less attention has 
been paid to immune gene biomarkers dis- 
covered via large samples. Meanwhile, the 
characterization of immune signatures in the 
tumor microenvironment was significant for  
our understanding of ccRCC. Moreover, the 
tumor-mutation burden (TMB) was also report-
ed as an effective biomarker for discriminating 
the responsiveness of immunotherapy in 
patients [18, 19]. Conversely, across a range of 
malignancies, there were inconsistent findings 
regarding the association of TMB with immuno-
therapy promotion or better prognoses. Taken 
together, these factors shed light on the dis- 
cussion regarding the potential associations  
of immune signatures in the tumor microenvi-
ronment with TMB, even in the case of immune-
infiltrating cells. 

In our study, we obtained transcriptome data 
and mutation profiles primarily from the Cancer 
Genome Atlas (TCGA) and the International 

Cancer Genome Consortium (ICGC) databases. 
This information was duly deployed in order  
to screen the most significant immune signa-
tures in ccRCC, in terms of prognosis forma-
tion. We revealed the links between the identi-
fied tumor-associated immune genes (TAIG) 
and certain clinical features. Moreover, we fur-
ther explored the relationships between TAIG, 
genomic alterations and TMB. In addition, we 
continued to characterize the differential 
immune infiltrates associated with TAIG, and 
the prognostic value of significant infiltration 
cells. The predictive reliability of the signature 
we identified was validated by recourse to 
another data set. Our team intended to explore 
the tumor-associated immune signature bio-
markers in the microenvironment, in order  
to make predictions regarding prognosis or 
immunotherapy. Meanwhile, we also sought to 
provide a thorough characterization of the 
immune components within ccRCC. The latter 
included immune infiltrates, the tumor-muta-
tion burden and, indeed, the potential connec-
tions between these elements. 

Methods and materials 

Data collection and pre-processing 

The transcriptome expression data of the 
ccRCC samples were obtained from the TCGA 
database (https://portal.gdc.cancer.gov/) and 
the ICGC database (https://icgc.org/). Mean- 
while, the somatic mutation data were down-
loaded from the “Masked Somatic Mutation” 
category in TCGA, and were analyzed via 
VarScan software. The edgeR package was 
used to conduct the normalization and differ- 
ential analysis of the transcriptome profiles. 
The files in Mutation Annotation Format (MAF) 
were prepared with the maftools package [20]. 
The latter is frequently deployed in the analysis 
of cancer genomics and comprises customiz-
able visualization functionality. 

A list of 4,678 immune signatures was acquir- 
ed from the InnateDB database (https://www.
innatedb.ca/), which is a publicly available 
resource for immunity research. Furthermore, 
clinical features of age, gender, TNM stages, 
tumor grades, and follow-ups, with vital status, 
were obtained from the database via the TCGA 
biolinks package. Patients were subsequently 
excluded if they evinced insufficient clinical 
data. 
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Screening of the hub immune signature and 
construction of a Tumor Associated Immune 
Signature (TAIG) model

The edgeR package was utilized to obtain the 
differentially expressed genes (DEGs) in normal 
samples, versus tumors. Subsequently, a uni-
variate Cox analysis was conducted using a  
survival package, with P < 0.01 to identify key 
prognostic immune genes. Then, we conducted 
a stepwise regression analysis to find the inde-
pendent prognostic factors in the multivariate 
Cox method, with P < 0.05. The process of 
selection was illustrated in a Venn graph via the 
VennDiagram package. 

The risk TAIG model, based on the hub immune 
signature, was thus constructed as follows: 
TAIG = ∑(βi * EXPi), where βi, the coefficients, 
signified the weight of each signature, and EXPi 
represented the expression data. Hence, by 
deploying the median TAIG score as a cutoff 
factor, we were able to classify each patient in 
one of two groups. We assessed the differen-
tial cluster of the hub signature in a heatmap 
plot in the two groups via the pheatmap pack-
age. In addition, the three-year and five-year 
aspects of the ROC curve were illustrated via 
the timeROC package. This was done in order 
to assess the predictive value of TAIG in the 
context of an OS prediction. A Kaplan-Meier 
analysis was conducted to compare the differ-
ences of OS in two TAIG levels. Similarly, we 
analyzed the clinical value of TAIG in tumor 
recurrence or progression.

Prognostic analysis of hub immune signature 
and correlation with other clinical variables

We extracted the expression data of each  
identified signature and merged these with OS 
time and PFS time for 537 ccRCC patients with-
in the TCGA cohort. To evaluate the prognostic 
discrepancy for each hub signature in either 
progression-free survival (PFS) or OS, a Kaplan-
Meier analysis with log-rank test was utilized. 
Meanwhile, we explored the potential associa-
tions of TAIG with clinical variables, whereby a 
Wilcoxon rank-sum test was utilized to compare 
differential levels of TAIG between two groups. 
In the context of three or more groups, con-
versely, a Kruskal-Wallis analysis was deemed 
appropriate. Moreover, we conducted a univari-
ate Cox regression analysis to determine the 
prognostic value of TAIG with other clinical 
characteristics, such as age, gender, AJCC- 

TNM stages, pathological stages or tumor 
grades. The N stage was discarded in subse-
quent analyses, since it comprised a substan-
tial number of missing cases. To ensure the 
TAIG level maintained an independent risk fac-
tor compared with other clinical variables, we 
selected the more significant ones, and per-
formed a multivariate Cox regression to assess 
the clinical significance of TAIG with P < 0.05. 

Tumor-mutation burden and correlation analy-
sis 

Since we had obtained the mutation profiles 
within ccRCC, we wrote the Perl scripts based 
on the JAVA platform to extract the specific 
genomic alterations for each patient. Insertions, 
deletions, and cross-base substitutions were 
among the mutants detected. Moreover, we 
defined the TMB as follows: TMB = (total count 
of variants)/(the whole length of exons). We 
implemented the maftools package to exhibit 
the mutation profiles in ccRCC by waterfall plot. 
Then, a TMB score was calculated for each 
patient, and the association with TAIG was 
determined via a Pearson correlation analysis 
with an estimated P value. A Wilcoxon rank-sum 
test was also deployed to interrogate the dif-
ferential TAIG distributions in the low- and high-
TMB groups. Additionally, the prognostic value 
of TMB in OS or PFS was evaluated by a Kaplan-
Meier analysis, as a supplementary analysis for 
TAIG. 

Functional analysis, GSEA

Based on the differential and prognostic  
analysis in Figure 1B, we selected the 53  
intersect genes to conduct the Gene Ontology 
(GO) analysis. The org.Hs.eg.db package was 
used to transfer the gene symbol with entre-
zIDs. Subsequently, to identify the significantly 
enriched GO items related to hub prognostic 
immune genes, we deployed the enrichplot, 
Profiler and ggplot2 packages. Given that we 
had classified the cohort into two groups, with 
high- and low-TAIG levels, we also conducted a 
GSEA between these two groups, using the 
TAIG as the phenotype. The GSEA software ran 
on the JAVA platform, and we obtained the “c2.
cp.kegg.v6.2.symbols.gmt gene sets” from the 
MSigDB database (http://software.broadinsti-
tute.org/gsea/msigdb). We deemed enriched 
pathways significant if they comprised FDR < 
0.05. 
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Estimation of tumor immune infiltrates through 
CIBERSORT or gene markers

CIBERSORT is a computational method devel-
oped to quantify cell fractions from bulk-tissue 
gene expression profiles. Flow cytometry with 
large tumor-biopsy samples provided good lev-
els of validation. We used the normalized 
expression data with the FPKM format in the 
TCGA cohort and obtained the COBERSORT R 
package from a public website (https://ciber-
sort.stanford.edu/). The inferred immune cell 
fractions were illustrated via boxplot. Moreover, 
a Wilcoxon rank-sum test was used to evaluate 

the differential abundance of immune infil-
trates in low- or high-TAIG levels. 

We additionally merged the immune fractions 
with survival information and performed a 
Kaplan-Meier analysis to discover whether the 
differentially distributed immune infiltrating 
cells in the two TAIG levels possessed prognos-
tic values. Meanwhile, we sought to minimize 
statistical bias in our cell-composition analysis. 
We did so by exploiting another commonly  
recognized method to quantify the tumor-
immune infiltrating cells, based on already 
identified marker genes listed via the GSVA 

Figure 1. Identification of hub tumor-associated immune signature and construction of TAIG in ccRCC. A. Volcano 
plot representing the differentially expressed genes. B. The screening procedure by Venn diagram for identifying 
hub prognostic immune signature. C. Hazard ratios with 95% CI of each hub signature from the stepwise regression 
model illustrated in forest plot. D. Cluster analysis revealing the differential distributions of immune signature in 
two TAIG groups. 
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package. In light of the matrix of immune cells 
and the expression data of the hub immune  
signature, we further discussed the specific 
associations of a single gene with tumor-
immune infiltrating cells. We deployed dotplot 
to illustrate the Spearman correlation analysis, 
together with the estimated P value. 

Validation of TAIG in another independent co-
hort

We had analyzed the clinical significance of 
TAIG and the association with TMB or immune 
infiltrates. We therefore set out to use an inde-
pendent data set to illustrate the robustness  
of the model. From the ICGC database, we 
acquired 91 ccRCC patients with complete  
survival information and transcriptome sequ- 
encing data. We extracted the expression pro-
files of the identified signature in TCGA and 
implemented the ROC curve to assess the pre-
dictive power of the TAIG model in the ICGC 
cohort. A Kaplan-Meier analysis with log-rank 
test was also used to compare the varying sur-
vival outcomes between the two TAIG levels 
within the ICGC cohort. 

Statistical analysis 

The Cox regression models and Kaplan-Meier 
analyses were conducted via the survival  
package. The student t-test was used for  
continuous variables, while categorical vari-
ables were dealt with via a Chi-square (χ2) test. 
A Wilcoxon rank-sum test was utilized to com-
pare ranked data. Meanwhile, comparisons 
between three groups or more were undertak-
en via a Kruskal-Wallis test. R Studio (Version 
3.5.2) was used for all statistical analysis; only 
P < 0.05 was seen as providing statistical 
significance. 

Results

Construction and assessment of TAIG in ccRCC 
patients

We obtained a total of 537 ccRCC patients 
from the TCGA database with transcriptome 
profiles, together with the mutation data of 336 
patients. The clinical baseline was summarized 
in Table 1. Differential analysis based on the 
edgeR package revealed a list of 826 DEGs, 
and we acquired 253 intersect immune signa-
tures from the InnateDB database. In order to 
locate the hub 53 prognostic immune signature 
(Figure 1A, 1B), a univariate Cox analysis was 
deployed. Further to screen the independent 
factors, a stepwise regression method was  
utilized, and we finally obtained the 14-hub 
tumor-associated immune signature. The latter 
was illustrated via forest plot, complete with 
corresponding 95% confidence interval (CI) and 
hazard ratio (Figure 1C). The TAIG was thus 

Table 1. Clinical features of patients included 
in this study
Variables TCGA (N = 537) ICGC (N = 91)
Age (Mean ± SD) 60.59 ± 12.14 60.47 ± 9.97
Follow-up (y) 3.12 ± 2.23 4.14 ± 1.73
Status
    Alive 367 (68.34) 61 (67.03)
    Dead 170 (31.66) 30 (32.97)
Gender
    Male 346 (64.43) 52 (57.14)
    Female 191 (35.57) 39 (42.86)
AJCC-T
    T1 275 (51.21) 54 (59.34)
    T2 69 (12.85) 13 (14.28)
    T3 182 (33.89) 22 (24.18)
    T4 11 (2.05) 2 (2.20)
AJCC-N
    N0 240 (44.69) 79 (86.81)
    N1 17 (3.17) 2 (2.20)
    Unknow 280 (52.14) 10 (10.99)
AJCC-M
    M0 426 (79.33) 81 (89.01)
    M1 79 (14.71) 9 (9.89)
    Unknow 32 (5.96) 1 (1.10)
Pathological stage
    I 269 (50.09) -
    II 57 (10.61) -
    III 125 (23.28) -
    IV 83 (15.46) -
    Unknow 3 (0.56) -
Grade
    G1 14 (2.61) -
    G2 230 (42.83) -
    G3 207 (38.54) -
    G4 78 (14.53) -
    Unknow 8 (1.49) -
TAIG score
    Low 265 (49.35) 46 (50.55)
    High 265 (49.35) 45 (49.45)
    Unknow 7 (1.30) 0
Data are shown as n (%). Abbreviations: TCGA, The Can-
cer Genome Atlas; ICGC, International Cancer Genome 
Consortium; AJCC, American Joint Committee on Cancer.
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established from the multivariate Cox analysis, 
as follows: TAIG = (-0.5526*AVPR1B - 0.7276* 
FCHO1 + 1.2240*HAPLN3 - 0.4534*HLA-G + 
0.5895*IL20RB - 1.0766*ISG20 - 1.1680* 
LILRA4 + 0.8415*LILRB3 + 0.7190*NOD2 - 
0.3117*PLG - 1.0108*PRDM16 + 0.4443* 
RPS6KA6 + 0.4492*SLC13A2 + 0.5179*UCN). 

We were able to observe the differentially 
expressed levels of signature in high- and low-
TAIG groups via heatmap (Figure 1D). The fact 
that higher-TAIG patients evinced elevated  
mortality levels was intuitively illustrated by the 
distribution plot (Figure 2A, 2B). Moreover, the 
AUC in three-year OS predictions was 0.778, 

Figure 2. Prognostic assessment of TAIG in ccRCC. A, B. The median cutoff of TAIG and the distributions of vital 
status according to TAIG scores. C. ROC curve conducted to show the power of 3-year or 5-year OS prediction. D. Ka-
plan-Meier analysis of ccRCC patients in two TAIG groups. E. ROC curve performed to show the power of 5-year PFS 
prediction. F. The ccRCC patients with high TAIG correlated with more hazards in tumor progression or recurrence.
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and that in five-year OS predictions was 0.802. 
This was indicative of superior predictive capac-
ity (Figure 2C). Correspondingly, the log-rank 
test showed patients with higher TAIG were at 
greater risk in the context of OS, with P < 0.001 
(Figure 2D). Furthermore, the TAIG also showed 
better predictive value in tumor progression, 
and the AUC of five-year PFS was 0.794 (Figure 
2E). 

Simultaneously, with P < 0.001 (Figure 2F), 
higher TAIG constituted a notably significant 
indicating factor for tumor recurrence or prog- 
ression. Given the obvious clinical significance 
of TAIG, we specifically continued to explore the 
prognostic value of the single hub gene in OS or 
PFS, and the log-rank test showed that nearly 
all hub genes were closely associated with OS 
or PFS in ccRCC patients (Figures 3, S1). 

Association of TAIG with other clinical variables 

Considering the potential clinical significance 
of TAIG in ccRCC, we wanted to clarify the cor-
relation of TAIG with other traditional clinical 
features, including tumor grades, pathological 
stages or TNM stages. Initially, TAIG was 
merged with other variables; a Cox analysis 
was subsequently undertaken. Then, the uni-
variate Cox analysis indicated that age (P < 
0.001), tumor grade (P < 0.001), T stage (P < 
0.001), M stage (P < 0.001) and TAIG score (P < 
0.001) were all risk factors. Nonetheless, the 
TAIG (P < 0.001), tumor grade (P = 0.003) or 
pathological stage (P = 0.016) still retained  
a robust significance in the multivariate Cox 
regression analysis. By contrast, the T and  
M stages evinced no statistical differences 
(Table 2). In addition to using the Cox analys- 
is to demonstrate the prognostic role of TAIG, 
we also investigated the underlying relation-
ships of TAIG with other variables. The correla-
tion analysis suggested that higher TAIG corre-
lated strongly with advanced T stage (P = 
4.032e-17), N stage (P = 2.351e-04), metasta-
sis (P = 8.708e-12), pathological stage (P = 
4.08e-19), and higher tumor grades (P = 7.03e-
15) (Figure 4A-E). 

TAIG correlated positively with TMB, indicating 
poor prognostic outcomes

We noted that the tumor-mutation burden was 
reported to be closely associated with immuno-
therapeutic response and tumor prognosis. 

Thus, we planned to interrogate the correlation 
between the identified immune signature and 
TMB. We illustrated the mutation profiling of 
ccRCC via waterfall plot, in which the different 
colors annotated at the bottom showed the 
various mutation types. Meanwhile, above the 
legend, the calculated TMB for each sample 
was presented (Figure 5A). In order to perform 
the correlation analysis, we integrated the 
matched TAIG with the TMB score, since we 
had only extracted mutation data for 336 
patients. A Wilcoxon rank-sum test illustrated 
the higher TMB levels in the high-TAIG group 
(Figure 5B), and the Pearson correlation analy-
sis provided supplementary proof with r = 
0.188 and P = 0.001 (Figure 5C). Furthermore, 
we discovered the prognostic value of TMB, 
and found that higher TMB was associated  
with poor OS outcomes (P = 0.035). It also  
correlated with greater risk in terms of tumor 
recurrence and progression (P = 0.01) (Figure 
5D, 5E). 

Immune-related GO items or crosstalk associ-
ated with immune signature and TAIG pheno-
type

We proceeded to implement a GO enrichment 
analysis (Figure 6A), since we had already  
generated a list comprising 53 prognostic  
differential immune signatures (Figure 1B). In 
the biological process group, immune DEGs 
were mainly enriched in the regulation of  
cell-cell adhesion or T-cell activation. In the  
cellular component category, these genes  
were associated with an extracellular matrix. 
Conversely, in the molecular-function group, 
these genes principally contributed to re- 
ceptor-ligand activity, cytokine activity and gly-
cosaminoglycan binding. Moreover, gene-set 
enrichment analysis, undertaken to compare 
immune phenotypes between the high- and 
low-TAIG groups, indicated that higher TAIG  
was associated with regulation of the chemo-
kine signaling pathway, the VEGF signaling 
pathway or the T-cell-receptor signaling path-
way. Meanwhile, it correlated negatively with 
lysine degradation, the PPAR signaling pathway 
and the TGF-β signaling pathway (Figure 6B). 

TAIG correlated with several prognostic im-
mune infiltrating cells 

Given the potential relationships of TAIG with 
TMB or several instances of immune-related 
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Figure 3. Kaplan-Meier analysis of 14 hub immune signature in ccRCC. 
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crosstalk, we considered whether TAIG influ-
enced the density levels of tumor-infiltration 
cells, and whether this constituted an impor-
tant role in the microenvironment. Based on 
signature expression data from ccRCC patients 
and the CIBERSORT algorithm, we estimated 
the specific fractions of 22 immune cells in 
each sample, as illustrated in Figure S2, where 
the sum of various immune types in boxplot 
equaled 100%. A Wilcoxon rank-sum test was 
subsequently deployed to illustrate the differ-
ential distributions of several immune cells 
within the two TAIG groups. A significant differ-
ence was found, in terms of a higher abun-
dance of memory-activated CD4+ T cells (P = 
0.002), T follicular helper cells (P = 0.002), T 
regulatory cells (P < 0.001), and M0 macro-
phages (P < 0.001) in the high-TAIG group. 
Conversely, M2 macrophages (P = 0.035), rest-
ing dendritic cells (P < 0.001), and resting mast 
cells (P < 0.001) showed lower infiltrating  

levels in the high-TAIG group (Figure 7A). In line 
with the previous findings, it was interesting to 
observe that the Kaplan-Meier analysis illus-
trated prognostic significance for the majority 
of these differentially distributed immune-infil-
tration cells, in the two TAIG groups. Within this 
context, higher levels of memory-activated 
CD4+ T cells (P = 0.022), T follicular helper cells 
(P = 0.003), T regulatory cells (P = 0.004) or M0 
macrophages (P = 0.029) correlated with poor 
OS outcomes. Conversely, the role of tumor 
suppressor in prognosis terms may be taken by 
resting mast cells (P < 0.001) with resting den-
dritic cells (P = 0.002) (Figure 7B-H). 

An alternate algorithm was utilized to enumer-
ate the tumor-infiltrating immune cells from 
transcriptomics data, constructed on the mark-
er genes. Subsequently, the output immune 
cell matrix was assimilated with extracted  
specific signature expression. Pearson correla-

Table 2. Univariate and multivariate Cox analysis for TAIG scores and other clinical characteristics in 
TCGA cohort

Variables
Univariate Cox regression Multivariate Cox regression

Hazard 
ratio

95% confidence 
interval P value Hazard 

ratio
95% confidence 

interval P value

Age 1.033 1.019 1.047 < 0.001 1.035 1.019 1.050 < 0.001
Gender 0.931 0.675 1.284 0.663 - - - -
Tumor grade 2.293 1.854 2.836 < 0.001 1.436 1.126 1.829 0.003 
Pathological stage 1.889 1.649 2.164 < 0.001 1.741 1.110 2.730 0.016 
T stage 1.941 1.639 2.299 < 0.001 0.852 0.563 1.290 0.449
M stage 4.284 3.106 5.908 < 0.001 1.121 0.570 2.204 0.740
TAIG score 1.107 1.085 1.130 < 0.001 1.060 1.034 1.086 < 0.001

Figure 4. Pearson correlation analy-
sis with estimated P value among 
TAIG with other clinical features. (A) 
High TAIG correlated positively with 
higher T stage (P = 4.032e-17), (B) 
higher N stage (P = 2.351e-04), 
(C) metastasis (P = 8.708e-12), 
(D) pathological stages (P = 4.08e-
19), as well as (E) advanced tumor 
grades (P = 7.03e-15).
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Figure 5. Landscape of mutation profiles in ccRCC and correlation with TAIG. A. Mutation profiling illustrated in the 
waterfall plot, where various colors with corresponding annotations represented the different mutation types. The 
barplot above the legend exhibited the mutation burden. B. TMB levels were significantly high in high-TAIG group by 
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tion analysis, with estimated P value depicted 
the statistical affiliations of single signature, 
with specific immune infiltrating cells, bestow-
ing an additional solid substantiation between 
our identified signature with the tumor immune 
cells (Figure 8). 

Validation of the robust TAIG in ICGC 

In ICGC cohort consisting of 91 ccRCC samples, 
we additionally validated the robust signature 
employing the Cox regression method, with the 
AUC of ROC curve being 0.72, inferring the sta-

Wilcoxon rank-sum test. C. Correlation analysis showed the associations between TMB and TAIG with P = 0.001. D, 
E. Prognostic analysis showed the high TMB correlated with poor OS outcomes (P = 0.035) and high risk in tumor 
recurrence (P = 0.01). 

Figure 6. Functional enrichment analysis. A. Enriched GO items for 53 prognostic immune genes associated with 
survival in three groups consisted of biological process (BP), cellular components (CC), and molecular function 
(MF) categories. B. GSEA conducted using the TAIG as the phenotype suggesting the upregulated or downregulated 
crosstalk associated with TAIG. 
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ble predictive power in an independent data set 
(Figure 9A). In the interim, a marginally statisti-
cal variance was observed in the Kaplan-Meier 
analysis with P value of log-rank test = 0.083, 
indicating the patients with high-TAIG suffered 
poor survival outcomes (Figure 9B).

Discussion 

Historic investigations in this field have endeav-
ored to examine the significant biomarkers in 
the prediction of the prognosis in ccRCC includ-
ing lncRNA [21], microRNA [22, 23], circRNA or 
high-frequency mutants [24]. Notwithstanding, 
however, the tumor associated immune signa-

ture has been significantly less testified. In our 
study, a total of 14 hub immune signatures, 
were identified, correlated with survival, and  
an integrative TAIG model was formulated  
from the multivariate Cox regression results. 
Methodically, the prognostic value of TAIG was 
evaluated, which was determined to be an 
autonomous prognostic factor, versus other 
risk clinical features via the Cox regression 
models. It was not simply those patients with a 
high TAIG that illustrated poor survival out-
comes, but the TAIG also correlated positively 
with the AJCC-TNM stages, pathological stages 
or tumor grades. Moreover, we further comput-
ed the TMB for each patient and depicted the 

Figure 7. Estimation of Tumor-infiltrating immune cells in ccRCC from the CIBERSORT algorithm. A. Wilcoxon rank-
sum test revealed the differential infiltration levels of immune cells in two TAIG groups. B-H. Survival analysis for 
all immune cells in ccRCC and selecting the significant ones, where the cells annotated in red represented the dif-
ferential distributions in two TAIG groups. 
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Figure 8. Inferred immune cell fractions based on another approach using marker genes. The Pearson correlation analysis and estimated P value revealed the 
specific associations between identified tumor associated immune signature with immune cells.
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mutation profiles in ccRCC. The Wilcoxon rank-
sum test demonstrated the exceptional depen-
dence between TAIG and TMB, and additionally, 
the high TMB levels projected unfavorable  
survival outcomes and progression. Given the 
high correlation of TAIG with TMB, and several 
immune-related crosstalk, enriched signifi- 
cantly in differential immune signatures, we 
attempted to determine whether these signa-
tures were concurrent with immune infiltrates 
in the ccRCC tumor microenvironment. To begin 
with, we anticipated the abundance of immune 
cells in each ccRCC sample, based on the 
CIBERSORT algorithm. Subsequently, we exe-
cuted the differential analysis, adopting the 
Wilcoxon rank-sum test. Succeeding this, the 
prognostic value of differentially distributed 
immune cells in two TAIG groups was ass- 
essed, and remarkably, we discerned that the 
preponderance of these differential immune 
infiltrating cells, possessed a significant prog-
nostic value in ccRCC, among which higher  
infiltrating density of memory activated CD4+ T 
cell, T follicular helper cells, T regulatory cell or 
M0 macrophage were hazard factors in high-
risk TAIG group, yet higher levels of resting mast 
cells with resting dendritic cells in low-TAIG 
group may contribute to tumor suppressors in 
ccRCC.

The tumor associated immune signature 
encompassed an aggregate of 14 genes with 

prognostic ability. It was determined that the 
majority of the genes were derived from cyto-
kines or their corresponding receptors, whilst 
the GO enriched items divulged that the affili-
ated pathways comprised of the regulation of 
cell-cell adhesion, activation of T cell or prolif-
eration. Previous studies have unveiled the 
imperative functions of cytokines or chemo-
kines, including IL-4, IL-18 or CXCL family [25-
28] in the promotion of tumor inflammatory 
response, associated with prognosis. Among 
these genes, HLA-G was reported as an 
immune checkpoint molecular and functioning 
an inhibitor particularly for cytotoxic activity of 
infiltrating NK cells through ILT2 [29], corrobo-
rating our results. In addition, we established a 
quantitative model named TAIG as an immune 
risk score to evaluate each patient’s hazard  
levels. The distributions of all identified 14 
immune signatures, in two TAIG groups, agreed 
with the subsequent Kaplan-Meier analysis. 
This illustrated that the hazard immune signa-
ture demonstrated higher expression profiles  
in the high-TAIG group. Notwithstanding, pro-
tective immune genes tend to reveal low 
expression levels and so although we comput-
ed the clinical significance of TAIG and the  
tight correlations with TNM stages or tumor 
grades, the question of whether the combina-
tion of TAIG, with other risk clinical features 
could further optimize the predictive model, 
necessitated vast samples to authenticate and 

Figure 9. Validation of TAIG in another ICGC cohort. A. The AUC of ROC curve in 3-year OS prediction was 0.72. B. 
Kaplan-Meier analysis with log-rank test showed the marginal survival difference in two TAIG groups using the me-
dian TAIG as the cutoff. 
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confirm clinical feasibility, therefore, repeat 
evaluations are required. It must be acknowl-
edged that the role of TMB in the prognosis of 
ccRCC was debated, along with an analysis  
of the associations of TMB with TAIG. It is 
renowned that a high TMB can yield many  
neoantigens to stimulate immune response, 
hereby correlating with an enhanced effect of 
immunotherapy. Given that previous studies 
across 33 cancer types have already alluded to 
higher-TMB patients achieving a more favor-
able prognosis if treated with immunotherapy, 
otherwise would reveal a more graver progno-
sis, compared with lower-TMB patients [30]. 
Consequently, we hypothesized that ccRCC 
patients with high TAIG and TMB levels might 
be considered the preferable options of 
immunotherapies. 

Aside from the process of categorizing the 
immune signature in the ccRCC, we also inves-
tigated the tumor-infiltrating immune cells that 
accounted for the indispensable components 
in the immune microenvironment. CIBERSORT, 
a newly computational approach, established 
by scholars in Stanford University [31], imple-
mented a deconvolution algorithm to charac-
terize diverse cell types, based on their gene 
signature matrix. Negating the limitations of 
vast material resources or time needed in flow 
cytometry and immunohistochemistry, we were 
able to determine the immune cell fractions in 
each patient, which was particularly appropri-
ate for dealing with large samples. In agree-
ment with research by Giraldo NA et al., reveal-
ing that tumor-infiltrating and peripheral blood 
T-cell immunophenotypes predict early relapse 
in localized ccRCC [32], our study was also 
capable of extricating the risk T cell subsets, 
including CD4+ T cell, T follicular helper cells,  
as well as T regulatory (Treg) cells. Since the 
tumor associated macrophage (TAM) was rec-
ognized as a catalyst in tumor progression  
and has been widely reported of late as being  
a prevailing predictors for outcomes with 
Tyrosine kinase inhibitors (TKI) therapy in 
ccRCC. The study also illustrated that the M0 
macrophage subset correlated positively with 
OS prognosis, which was less reported [33]. 
Resting mast cells and dendritic cells, however, 
depicted the protective factors in ccRCC, and 
the dendritic cells were reported as an immune 
enhancer utilized as baseline in immunothera-
py for solid tumors [34, 35]. More specifically, 
we also employed another technique to infer 
the fractions of immune cells, based on the 
characteristic immune cells marker gene [36]. 

From an alternate perspective, we elucidated 
the underlying affiliations between infiltrating 
immune cells with our identified signature,  
and we illustrated the specific associations 
between one gene with single cell subsets. 
These prognostic tumor-infiltrating immune 
cells all correlated with our immune signature, 
and we suggested the hypothesis that these 
immune signatures impact the differential infil-
trating density of immune cells, thus influenc-
ing the prognosis in ccRCC. 

Accordingly, we confirmed our risk signature in 
another data set from the ICGC, which is, in 
essence, a publicly available database that  
provides the international community with  
comprehensive genomic data for various can-
cer types. The predictive value of TAIG still 
remained superior with AUC = 0.72. Though  
the P value of the log-rank test in the Kaplan-
Meier analysis was 0.083, we decided that the 
marginal variance was caused from a smaller 
sample size, consisting of only 91 patients. 
Additionally, the median cutoff was defined 
improperly, and therefore needs to be opti-
mized, moving forward. Regarded in collabora-
tion, it was the initial endeavor to uncover the 
risk immune signature in ccRCC, based on  
large samples with high-throughput data. We 
also discussed the TMB and TAIG-related infil-
trating immune cells. Characterization of the 
immune landscape from tumor-associated 
immune gene signatures, to relative prognostic 
immune cell profiles, in microenvironments, 
support our comprehensive understanding  
of prognosis, even regarding immunotherapy 
strategies in ccRCC. 

There were, however, some considerable limita-
tions to our study. First, the correlation between 
TAIG with TMB or immune infiltrates was com-
puted based on statistics, whereas the actual 
regulatory mechanisms among them are war-
ranted for further demonstration. Second, the 
fractions or prognostic value of TAIG-related 
immune cells might be validated by flow cytom-
etry and finally, the clinical significance of TAIG 
must be established by our own cohort, this is 
an area we are formulating in preparation for 
our next study.

In conclusion, tumor-associated immune signa-
tures were screened and characterized in our 
study in ccRCC, along with an analysis of its 
potential prognostic association with TMB. 
Furthermore, we explicated the prognostic 
tumor-infiltrating immune cell related with TAIG, 
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providing a comprehensive foundation for 
investigating mechanisms or individualized 
immunotherapy. 
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Figure S1. Survival analysis for comparing the PFS difference of identified 14 hub immune signature.



Immune signature and infiltrations in kidney cancer

3 

Figure S2. Estimation of 22 immune cell subsets fractions using the CIBERSORT algorithm. Each Bar chart exhibited 
the cell proportions of each patient and various colors annotated below the legend represented the 22 immune 
cells. 


