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Abstract: Concerns about the potential neurotoxicity of general anesthesia to the developing brain have been in-
creasing in recent years. Animal studies have shown that neonatal exposure to general anesthesia causes both 
acute neurotoxicity and behavioral abnormalities later in life. In the present study, we observed over-activation 
of neuronal apoptosis in the brain of neonatal mice after a single exposure to anesthesia with sevoflurane for 6 
hours at the age of 7 days. More importantly, we found that insulin administered through intranasal delivery prior 
to anesthesia prevented anesthesia-induced over-activation of neuronal apoptosis. This study provides experimen-
tal evidence for a potential effective, yet simple, method to prevent anesthesia-induced neurotoxicity in children, 
especially in infants.  
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Introduction

General anesthesia is essential for many surgi-
cal procedures in children, but the impact of 
anesthesia on the developing brain is poorly 
understood. Clinical studies have shown that 
general anesthesia in children younger than 3 
years of age increases the risk of developmen-
tal disorders and deficits in language/abstract 
reasoning [1-3]. Anesthesia in neonatal mice 
has been reported to induce apoptosis, neuro-
inflammation, and alterations of synaptic pro-
teins in the brain in addition to respiratory and 
metabolic changes, as well as behavioral defi-
cits later in life [4-13]. However, no strategy is 
available for preventing the developing brain 
from anesthesia-induced damage. 

We previously reported that anesthesia of adult 
and aged mice with sevoflurane, a commonly 

used inhalation anesthetic, induces brain ch- 
anges and spatial memory deficits and that pre-
anesthesia intranasal administration of insulin 
can prevent such anesthesia-induced abnor-
malities [14-16]. Intranasal administration can 
bypass the blood-brain barrier and deliver insu-
lin directly to the brain [17]. Intranasal adminis-
tration of insulin is currently being investigated 
in clinical trials for its efficacy to treat Alzhei- 
mer’s disease [18-21]. In a recent study, we 
found that intranasal administration of insulin 
prior to anesthesia can reduce chronic behav-
ioral abnormalities and neuronal apoptosis 
induced by repeated exposure to anesthesia in 
neonatal mice [22]. Here, we report that a sin-
gle 6-hr exposure of neonatal mice to general 
anesthesia with sevoflurane, the most com-
monly used inhalation anesthetic for pediatric 
anesthesia, also induced marked activation of 
neuronal apoptosis and, more importantly, that 

http://www.ajtr.org


Insulin prevents sevoflurane-induced apoptosis

8176 Am J Transl Res 2020;12(12):8175-8184

a single dose of insulin administered intrana-
sally prior to anesthesia prevented the over-
activation of neuronal apoptosis.

Materials and methods

Materials and reagents

Sevoflurane was purchased from Henry Schein, 
Inc. (Melville, NY, USA), and insulin (Humulin R 
U-100) from Eli Lily (Indianapolis, IN, USA). 
Primary antibodies used in this study are listed 
in Table 1. Peroxidase-conjugated anti-mouse 
and anti-rabbit IgG were obtained from Jackson 
ImmunoResearch Laboratories (West Grove, 
PA, USA). The enhanced chemiluminescence 
(ECL) kit was from Pierce (Rockford, IL, USA). 
Other chemicals were from Sigma-Aldrich (St. 
Louis, MO, USA) unless otherwise stated. 

Animals and animal treatments

The breeding pairs of C57BL/6J mice were ini-
tially obtained from Jackson Laboratory (New 
Harbor, ME, USA). The mice were bred in our 
air-conditioned animal facility and housed with 
a 12/12 hr light/dark cycle and with ad libitum 
access to food and water. The housing, breed-
ing, and animal experiments were approved by 
the Institutional Animal Care and Use Com- 
mittee of the New York State Institute for Basic 
Research in Developmental Disabilities and 
were in accordance with the PHS Policy on 
Human Care and Use of Laboratory Animals 
(revised March 15, 2010). 

Induction of anesthesia was carried out by 
placing neonatal mice at the age of postnatal 
(P) days 7 in an anesthesia chamber (25 cm × 
15 cm × 13 cm) filled with 5% sevoflurane in a 
mixture of O2 and N2 (50%/50%). The sevoflu-
rane concentration was reduced to 2.5% after 
the induction period of 3 min and was main-
tained for 6 hr. The air flow rate was 0.9-1.0 L/
min during anesthesia. A small petri dish of 
water was placed into the anesthesia chamber 
to maintain moisture. At the end of anesthesia, 
the sevoflurane was turned off, and the mouse 
pups were kept in the same chamber with O2 
and N2 for one hour to allow their recovery from 
anesthesia. A warm pad was placed in the 
anesthesia chamber to maintain the body tem-
perature of the neonatal mice to 35-36°C dur-
ing the procedure. After they awakened from 
anesthesia, the mouse pups were returned to 

their parents’ cages. Neonatal mice of control 
groups were removed from the parents’ cages 
and left in the experiment room for the same 
periods of time as the anesthetized group. 

Neonatal mice received a total of 7.0 μl insulin 
(140 mU/mouse) or saline treatment through 
intranasal delivery 30 min before the beginning 
of anesthesia. The manual intranasal adminis-
tration method was modified from that for adult 
mice reported previously [23]. Briefly, the P7 
mouse pups were held in a supine position in 
hand, and 1.0 μl insulin or saline was delivered 
into the left nare by using a 2.5-μl Eppendorf 
pipette. The pups were given 15-20 sec to allow 
the fluid to be inhaled before repeating the 
administration six times. 

Neonatal mice (P7, both male and female) from 
various litters were randomly assigned into four 
groups: (1) control (Con) group, which received 
intranasal administration of saline instead of 
insulin and were not anesthetized; (2) sevoflu-
rane (Sevo) group, which received intranasal 
saline followed by anesthesia with sevoflurane; 
(3) sevoflurane plus insulin (Sevo+Ins) group, 
which received both; and (4) control insulin (Ins) 
group, which received insulin but not sevoflu-
rane. Mouse pups at the age of P7 with body 
weight less than 3.0 grams were excluded from 
the study. A total of 10 and 6 mouse pups were 
included in each group and time point for 
Western blot analyses and immunohistochem-
istry, respectively. To eliminate any potential 
bias caused by litter variations, a similar num-
ber of mouse pups from each litter was 
assigned to each group, and each group includ-
ed pups from several litters.

Western blot analysis

The mouse pups were sacrificed by decapita-
tion, and the forebrains were removed and 
homogenized in pre-chilled buffer containing 
50 mM Tris-HCl (pH 7.4), 50 mM GlcNAc, 20 µM 
UDP, 2.0 mM EGTA, 2.0 mM Na3VO4, 50 mM 
NaF, 20 mM glycerophosphate, 0.5 mM AEBSF, 
10 µg/ml aprotinin, 10 µg/ml leupeptin, and 4 
µg/ml pepstatin A. Protein concentrations of 
the homogenates were determined by using 
the Pierce 660-nm Protein Assay (Rockford, IL, 
USA). The homogenate samples were resolved 
by 10% SDS-PAGE and electro-transferred onto 
Immobilon-P membrane (Millipore, Bedford, 
MA, USA). The blots were then probed with pri-
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mary antibodies and developed with the corre-
sponding horseradish peroxidase-conjugated 
secondary antibodies and enhanced chemilu-
minescent kit.

Immunofluorescence  

Mouse brains were immersion-fixed in 4% para-
formaldehyde at 4°C for 24 hr, followed by 
dehydration in 30% sucrose at 4°C for 48 hr. 
Coronal brain sections (40-µm thick) were cut 
by using a freezing sliding microtome. The sec-
tions were stored in antifreeze solution, con-
sisting of glycerol, ethylene glycol, and phos-
phate-buffered saline (PBS) at the ratio of 
3:3:4, at -20°C till immunofluorescence stain-
ing at a later time.

Coronal mouse brain sections at the same 
plate, as evidenced by the identical hippocam-
pal size and structure in the sections, were cho-
sen for immunofluorescence studies. The brain 
sections were first washed with PBS three 
times, 15 min each, followed by incubation in 
0.5% Triton X-100 in PBS for 20 min. The sec-
tions were then washed with PBS for another 
10 min and blocked in PBS containing 5% nor-
mal goat serum and 0.1% Triton X-100 for 30 
min, followed by incubation overnight at 4°C 
with antibody against cleaved caspase-3. After 
washing with PBS again, the sections were 
incubated with Alexa 488-conjugated goat anti-
mouse IgG (1:1000) at room temperature for 2 
hr. The sections were washed for a last time, 
mounted, and cover-slipped by using Prolong ® 
gold anti-fade mountant (Invitrogen, Carlsbad, 
CA, USA). The immunostaining was analyzed by 
using a laser scanning confocal microscope 
(PCM 200, Nikon). The immuno-positive cells 
were counted manually from three sections per 
mouse brain and six brains per group.

Statistical analysis

The quantitative data were analyzed by one-
way ANOVA plus post hoc test, if applicable, by 

using Graphpad. All data are presented as 
means ± SEM, and P < 0.05 was considered 
statistically significant.

Results

Anesthesia of neonatal mice with sevoflurane 
have been shown to induce synaptic abnormali-
ties [7, 8, 11, 22, 24], neuroinflammation [6], 
neuroapoptosis [4, 5, 22], and behavioral defi-
cits at a later age [4, 6-11, 22], but inconsistent 
results were often reported. Thus, we first veri-
fied the above changes in the brains of neona-
tal mice immediately and 6 hr after awakening 
from 6-hr anesthesia with sevoflurane. The pre-
synaptic proteins synapsin and synaptophysin 
and the postsynaptic protein PSD95 were used 
to study the synaptic changes. Neuroinfla- 
mmation markers included microglial marker 
Iba1 and astrocyte marker GFAP. Apoptosis 
was assessed by the level of cleaved/activated 
caspase-3. Western blots of the brain homoge-
nates indicated a marked increase in cleaved 
caspase-3 level at 6 hr, but not immediately (0 
hour), post anesthesia (Figure 1). These results 
indicate a marked activation of apoptosis in 
neonatal mouse brains hours after sevoflurane 
exposure. Except for a mild increase in Iba1 
level immediately post anesthesia, we did not 
observe any significant changes in the synaptic 
proteins or neuroinflammation markers post 
anesthesia (Figure 1). These results indicate 
that anesthesia in neonatal mice with sevoflu-
rane for 6 hr induces immediate mild neuroin-
flammation and a marked increase of apopto-
sis hours later. 

To investigate whether pretreatment of neona-
tal mice with insulin can prevent sevoflurane-
induced brain changes, we administered insu-
lin intranasally 30 min before anesthesia with 
sevoflurane and then determined the levels of 
Iba1 and cleaved caspase-3, both of which 
were found to be changed after exposure to 

Table 1. Primary antibodies used in this study
Antibody Type Source (Catalog#)
Anti-synapsin Polyclonal Enzo Life Sciences, Inc. (ADI-VAP-SV060)
Anti-synaptophysin Monoclonal Millipore (MAB5258)
Anti-PSD95 Monoclonal Cell Signaling Technology (3450S)
Anti-Iba1 Polyclonal Abcam (ab5076)
Anti-GFAP Monoclonal (Rabbit) Sternberger (SM122)
Anti-cleaved aspase-3 Monoclonal (Rabbit) Cell Signaling Technology (#9664)
Anti-GAPDH Polyclonal Sigma-Aldrich (G9545)
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Figure 1. Effect of sevoflurane on synaptic proteins, glial markers, and apoptosis marker in the neonatal mouse 
brain. P7 mice were sacrificed at the end of anesthesia (0 hr post anesthesia) or at 6 hr post anesthesia with 2.5% 
sevoflurane (Sevo) for 6 hr. The mouse forebrains were dissected, homogenized, and analyzed by Western blots 
developed with antibodies indicated at the right side of the blots (A). The blots were then quantified, and the relative 
levels of each protein (means ± SEM) are shown (B). *, P < 0.05 vs. control as analyzed using one-way ANOVA (n = 
10 mice/group). 

sevoflurane under the used conditions. We also 
studied PSD95 in this cohort because a de- 
crease in its level after anesthesia of neonatal 

mice with sevoflurane was previously reported 
[7, 22]. We found that the insulin treatment did 
not prevent the transient increase in Iba1 
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induced by sevoflurane (Figure 2), but it pre-
vented the sevoflurane-induced elevation of 
cleaved caspase-3. As a control, intranasal 
insulin did not significantly alter the level of 
cleaved caspase-3 in the brains of control neo-
natal mice without anesthesia. Again, the brain 
PSD95 level was not affected by either anes-
thesia or insulin treatment in this cohort (Figure 
2). These results suggest that administration of 

apoptotic neurons in the neocortex and the hip-
pocampus, respectively, after anesthesia with 
sevoflurane (Figure 3B, 3C). Importantly, the 
pre-treatment of neonatal mice with intranasal 
insulin reduced the sevoflurane-induced in- 
crease in apoptotic neurons remarkably both in 
the neocortex and the hippocampus (Figure 
3B, 3C). These results are consistent with the 
above Western blot data.

Figure 2. Effect of intranasal insulin on PSD95, Iba1, and apoptosis marker 
in neonatal mouse brains exposed to sevoflurane. P7 mice received intrana-
sal administration of insulin (Ins) or, as a control, saline, followed by inha-
lational anesthesia with 2.5% sevoflurane (Sevo) for 6 hr beginning 30 min 
after intranasal administration. Some mouse pups were sacrificed at the 
end of anesthesia (0 hr post anesthesia), and the others at 6 hr post anes-
thesia. The mouse brains were homogenized and analyzed by Western blots 
developed with antibodies indicated at the right side of the blots (A). The 
blots were then quantified, and the relative levels of each proteins (means 
± SEM) are shown (B). *, P < 0.05 vs. control; #, P < 0.05 vs. Sevo group, 
as analyzed using one-way ANOVA plus post hoc tests (n = 10 mice/group). 

insulin before anesthesia can 
prevent sevoflurane-induced 
activation of apoptosis in the 
neonatal brain. 

To verify the sevoflurane-in- 
duced apoptosis activation 
and to learn the topographic 
distribution of the apoptosis 
activation, we immunostained 
coronal sections of neonatal 
mouse brains with antibody 
against the cleaved/activated 
caspase-3. We found that, as 
expected for developing brain, 
there were immuno-positive 
apoptotic cells scattered th- 
roughout the brains of neona-
tal mice without exposure to 
sevoflurane. A marked increa- 
se in the number of immuno-
positive apoptotic cells was 
seen in the brains of neonatal 
mice after exposure to sevo-
flurane (Figure 3). The apop-
totic cells in the neonatal br- 
ains after exposure to sevoflu-
rane were mainly distributed 
in the outer layers of the neo-
cortex, followed by the hippo-
campus, amygdala, and hypo-
thalamus, as represented by 
the red dots in Figure 3A. Ex- 
amination of the immuno-pos-
itive cells under high magnifi-
cation indicated that most, if 
not all, of the apoptotic cells 
were neurons based on their 
morphology and size (Figure 
3A, enlarged c’ and h’). Qu- 
antification of the immuno-
positive neurons in the brain 
sections indicated > 1-fold 
and > 20-fold increase of the 
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Discussion

Potential damage of general anesthesia to the 
developing brain has received considerable 
attention in recent years. Many animal studies 
have demonstrated neurotoxicity of anesthet-
ics to the neonatal brain [4, 6-12, 22]. Human 
studies also have alerted to the potential 

adverse impact of pediatric anesthesia [1-3]. 
By studying a single exposure of P7 neonatal 
mice to anesthesia with sevoflurane for 6 hr, we 
found here that the most noticeable acute 
brain change post anesthesia was activation of 
neuronal apoptosis. These results are consis-
tent with those from our recent studies of neo-
natal mice post-repeated anesthesia, which 

Figure 3. Immunofluorescence of cleaved caspase-3 of neonatal mouse brains after sevoflurane exposure and intra-
nasal insulin treatment. (A) P7 mice received intranasal administration of insulin or, as a control, saline, followed by 
inhalational anesthesia with 2.5% sevoflurane for 6 hr, beginning 30 min after intranasal administration. The mice 
were sacrificed at 6 hr post anesthesia, and the brains were fixed and immunostained by using antibody against 
cleaved caspase-3 (green) and counter-stained with nuclear marker TO-PRO (blue). The red dots in the mouse brain 
diagram in (A) represent the relative intensities of cleaved caspase-3-positive cells in various regions of the mouse 
brains after exposure to sevoflurane. (B, C) Neurons positive to cleaved caspase-3 in the cerebral cortex (B) and in 
the hippocampus (C) were counted separately and are shown as cleaved caspase-3-positive neurons per section 
(mean ± SEM, n = 6 mice/group). *, P < 0.05; **, P < 0.01; ***, P < 0.001, as analyzed using one-way ANOVA plus 
post hoc tests.



Insulin prevents sevoflurane-induced apoptosis

8181 Am J Transl Res 2020;12(12):8175-8184

also showed mild reduction of brain PSD95 and 
activation of microglia marker Iba1 [22]. More 
importantly, we found that intranasal insulin 
administered prior to anesthesia can prevent 
sevoflurane-induced over-activation of neuro-
nal apoptosis.  

The molecular mechanisms by which sevoflu-
rane induces increased neuronal apoptosis 
and insulin prevents it are not understood at 
present. Apoptosis is a natural process for 
development of the mammalian central ner-
vous system. Many factors can affect neuronal 
apoptosis. However, increased neuronal apop-
tosis after sevoflurane exposure appears to be 
a result of anesthesia or sevoflurane itself rath-
er than other factors, such as stress or fasting, 
because these factors were also present in the 
control group. Anesthesia of neonatal mice 
with sevoflurane or isoflurane can induce 
severe, reversible hypoglycemia [12, 13, 25], 
but it is unlikely to be responsible for the 
increased neuronal apoptosis, because similar 
apoptosis was observed when blood glucose 
was maintained with injection of dextrose [25]. 
Previous studies suggest that sevoflurane-
induced neuronal apoptosis may involve a 
downregulation of cAMP/CREB and BDNF/TrkB 
signaling [26] and of neuropeptide Y expres-
sion [27]. The present study does not provide 
mechanistic information about how insulin pre-
vents sevoflurane-induced elevation of neuro-
nal apoptosis. Because insulin delivered into 
the brain through intranasal administration is 
expected to promote brain insulin signaling, 
leading to PI3K/Akt/mTOR activation, and 
because this signaling is involved in the preven-
tion of sevoflurane-induced apoptotic activa-
tion with epigallocatechin-3-gallate in neonatal 
mouse brains [26], the preventive action of 
insulin observed in the present study might be 
through promotion of brain insulin signaling.

Although most biochemical and immunohisto-
chemical studies of the immediate impact of 
anesthesia on the developing brain found some 
changes [4-8, 11, 12, 22, 24], the results of the 
majority of these studies are not consistent. 
The inconsistency appears to result from differ-
ent species/strains of animals, different ages, 
anesthetics, anesthesia regimens used, and 
the time points when the brains were investi-
gated. When we anesthetized P7 neonatal mice 
with sevoflurane for 2-3 hr and studied the 

brain levels of synaptic proteins and markers of 
neuroinflammation and neuroapoptosis by 
Western blots, we did not find any significant 
changes after anesthesia (data not shown). 
Continuous anesthesia with sevoflurane for 6 
hr induced marked activation of neuronal apop-
tosis detectable 6 hr post anesthesia, but this 
activation was not detectable immediately post 
anesthesia. The present study, together with 
previous studies of neonatal rodents, suggests 
that (1) the anesthesia-induced brain damage, 
such as over-activation of neuronal apoptosis, 
is dynamic, which may be detectable only dur-
ing small time windows, and (2) the adverse 
impact of anesthesia for a shorter period (e.g., 
< 3 hr) may be limited, and anesthesia for a 
longer period increases the risk of neurotoxicity 
to the developing brain. Nevertheless, the tem-
porary brain damage induced by anesthesia 
exposure during the neonatal period appears 
to have a long-term impact on the brain, 
because behavioral impairments are detect-
able after the mice reach adulthood [22].  

Neuronal apoptosis is critical for normal brain 
development and maturation. Any disruption of 
the normal level of apoptosis and its dynamics 
would interfere with normal brain development, 
which can lead to the long-term consequences 
seen in the adult age. For instance, deficient 
apoptosis in the anterior neural ridge during 
early development results in brain malforma-
tions [28]. Over-activation of apoptosis in the 
developing brain such as widespread apoptotic 
death of neurons and oligodendroglia triggered 
by alcohol during gestation, is associated with 
brain changes, including overall or regional 
reductions in brain mass, and long-term neu-
robehavioral disturbances [29]. Over-activation 
of neuronal apoptosis induced by general anes-
thesia in the developing brain might underlie 
the long-term behavioral and cognitive impair-
ment observed at adulthood in these animals 
[4, 5, 22, 30, 31].  

The most important finding of the present study 
is the prevention of sevoflurane-induced activa-
tion of apoptosis with a single dose of intrana-
sal insulin administration. Recent studies have 
demonstrated many important roles of insulin 
in the brain, including neurotrophic and neuro-
protective activities, regulation of neural devel-
opment and plasticity, and a role in learning 
and memory [32-34]. Neurons in the mamma-
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lian brain can synthesize insulin [35, 36], but 
the majority of brain insulin is believed to derive 
from the periphery via receptor-mediated trans-
port [37]. It is obviously challenging to adminis-
ter insulin into the brain because the peripheral 
administration could lead not only to hypoglyce-
mia, but also to very limited amounts in the 
brain. Intranasal administration appears to be 
an effective and practical method for delivering 
insulin directly into the brain without detectable 
hypoglycemia. We have recently reported that 
intranasal insulin can restore insulin signaling, 
increase the levels of synaptic proteins, and 
reduce Aβ level and microglia activation in adult 
3xTg-AD mouse brains, as well as prevent anes-
thesia-induced cognitive impairment and 
chronic neurobehavioral changes in adult mice 
[15, 16, 38]. 

Potential prevention of anesthesia-induced 
neurotoxicity and behavioral deficits has been 
reported in a few animal studies. Yonamine et 
al. reported that the sevoflurane-induced neu-
roapoptosis and subsequent behavioral defi-
cits can be suppressed by co-administration of 
hydrogen gas as part of the carrier gas mixture 
in mice [4]. Boscolo et al. reported that the anti-
oxidative agents EUK-134 and R(+)-pramipexole 
can reduce anesthesia-induced neuronal loss 
in neonatal rats [39]. Anti-inflammatory treat-
ment of neonatal mice may also ameliorate 
sevoflurane-induced cognitive impairment [6]. 
Treatment of neonatal mice with erythropoie-
tin, a potent neuroprotective agent, immediate-
ly after exposure to sevoflurane was reported to 
reduce both activation of neural apoptosis and 
cognitive impairment [5]. However, there have 
been no follow-up studies or clinical studies 
testing these potential preventive approaches 
against anesthesia-induced neurotoxicity to 
the neonatal brain.

In conclusion, we found that a single anesthe-
sia exposure with sevoflurane of P7 neonatal 
mice, which is within the period of brain devel-
opment spurt, induced marked over-activation 
of neuronal apoptosis in the brain and that 
prior administration of intranasal insulin pre-
vented the over-activation. Because the well-
regulated neuronal apoptosis is critical to nor-
mal brain development, effective prevention of 
anesthesia-induced over-activation of neural 
apoptosis may be able to prevent the anesthe-
sia-induced neurotoxicity in the developing 

brain. These findings, together with our recent 
findings in neonatal mice after repeated expo-
sure to anesthesia [22], provide an initial indi-
cation for the development of a simple and 
effective preventive method against anesthe-
sia-induced neurotoxicity and probably also 
against the increased risk of developing learn-
ing disabilities in children.
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