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Abstract: Inflammatory bowel disease (IBD) is a chronic intestinal disease of unknown etiology. However, recent 
studies have established a pathological role of disordered intestinal microbiota and immune dysregulation. Clini-
cal studies have suggested that the reconstruction of the normal intestinal flora in patients with IBD can reverse 
the dysbiosis caused by genetic, environmental, dietary, or antibiotic factors to ameliorate the symptoms of IBD. 
Lactobacillus reuteri is widely present in the intestines of healthy individuals and regulates the intestinal immune 
system, reducing inflammation through multiple mechanisms. This review summarizes the current knowledge of the 
role of L. reuteri in maintaining intestinal homeostasis and considers its possible value as a new therapeutic agent 
for patients with IBD.
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Introduction

Inflammatory bowel disease (IBD), which in- 
cludes both ulcerative colitis (UC) and Crohn’s 
disease (CD), is characterized by chronic gut 
inflammation of unknown etiology. The main 
clinical symptoms of IBD are abdominal pain, 
diarrhea, and hematochezia, which seriously 
affect the quality of life of patients. Although 
IBD has long been associated with a Western 
lifestyle, its incidence has been on the rise in 
Asia in recent years. Current estimates specu-
late that the prevalence of IBD in China will 
increase to 0.1% within decades, with the num-
ber of patients exceeding 1.5 million in 2025, 
on par with the burden of disease in Western 
countries [1]. Factors influencing the occur-
rence and development of IBD include aberrant 
immune responses, genetic susceptibility, in- 
testinal dysbiosis, persistent intestinal infec-
tions, chronic intestinal mucosal barrier injury, 
poor diet, and others. Fecal microbiota trans-
plantation (FMT) is a novel therapeutic stra- 
tegy that has shown encouraging benefits in 
patients with IBD, refractory Clostridium diffi-
cile infection (rCDI), diarrhea-type and consti-

pation-type irritable bowel syndrome, insulin 
resistant diabetes, obesity, Parkinson’s disea- 
se, idiopathic thrombocytopenic purpura, and 
other related conditions [2]. FMT was first rec-
ommended for treating rCDI in the United 
States in 2013 [3] and was subsequently used 
in China to treat severe CD-complicated intes- 
tinal fistula infections [4]. Lactobacillus reuteri 
is a normal resident species of the healthy gut 
microflora that can prevent IBD by altering the 
intestinal micro-environment and the immune 
system [5, 6]. Recent studies have shown that 
L. reuteri promotes the clonal expansion of 
CD4+CD8αα+ double-positive intraepithelial T 
lymphocytes (DPIELs), a unique subset deriv- 
ed from CD4+ T cells, in the intestinal mucosa. 
DPIELs are immunotolerant cells that reduce 
inflammation due to active immune responses, 
and therefore can decrease intestinal inflam-
mation in IBD patients [7].

The intestinal microbiota and IBD 

Characteristics of the intestinal microbiota

The human gut has been estimated to harbor a 
complex community of approximately 100 tril-
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lion microbial organisms, including bacteria, 
viruses, fungi, and protozoa, which collectively 
constitute the microbiota (also referred to as 
the microbial fora). Although microbes outnu- 
mber the host cells 10 to 1 in the human gut, 
the total number of microbial genes is actually 
200-fold higher than human gene copies [8, 9]. 
Microbial colonization of the intestine begins at 
birth when infants acquire microbes from the 
birth canal, skin, feces, and breast milk [10, 
11]. More than 1,000 species of bacteria are 
estimated to reside in the human intestinal 
tract, predominantly consisting of obligate an- 
aerobes from the Firmicutes, Bacteroides, 
Proteobacteria, and Actinomycetes phyla [12]. 
The Gram-positive Firmicutes and Gram-ne- 
gative Bacteroides have been shown to ac- 
count for more than 90% of the intestinal flora 
[13]. The number and composition of the gut 
bacteria differ markedly from the esophagus to 
the rectum, with the density increasing from 
10/g in the esophagus and stomach to 1012/g 
in the colon and distal gut. Correspondingly the 
microbial diversity is lower in the upper seg-
ment of the stomach and small intestine com-
pared to the lower gastrointestinal tract. 

The gut microbiota exists as a complex multi-
cellular community that, in health, exists syner-
gistically with its host. This microbial communi-
ty plays an important role in influencing host 
physiology in health and disease [14]. The ben-
efits that a healthy gut microbiota provides for 
the human host can be grouped into three cat-
egories: nutrition, immune development, and 
host defense [15]. Bacteria produce short ch- 
ain fatty acids (SCFAs) via anaerobic fermen- 
tation of complex carbohydrates, regulate fat 
metabolism, metabolize xenobiotics such as 
drugs, pesticides, and carcinogens, and syn-
thesize vitamin K, group B vitamins, and amino 
acids that are essential for human nutrition 
[16, 17]. In addition, the gut microbiota helps 
maintain the structural integrity of the intesti-
nal mucous barrier by preventing colonization 
by pathogenic bacteria through the production 
of antibacterial compounds [18]. Finally, the 
proper functioning of the intestinal innate im- 
mune system strongly depends on the resident 
microflora; the gut microbiota modulates T-cell 
repertoires and regulates the T helper (Th)  
cell profile. Regulatory T cells (Tregs) are CD4+ T 
cells that have a role in regulating or suppress-
ing other cells in the immune system [15].

Associations between the intestinal microbiota 
and IBD

IBD is a multifactorial disease that is influenc- 
ed by environmental, genetic, immunological, 
and microbial factors [19]. Several indepen-
dent lines of evidence support the strong link 
between the composition of the intestinal 
microbiota and incidence of IBD, including the 
absence of colitis in germ-free animal models 
[20], decreased biodiversity and altered com-
position of the fecal and intestinal microbiota 
of IBD patients [21], clinical benefits from tre- 
atment of patients with IBD with probiotics 
such as VSL#3 (a mixture of four lactic acid 
bacteria, three bifidobacterial, and one strepto-
coccus) [22], and the therapeutic impacts of 
treatment with different antibiotics (metronida-
zole, amoxicillin, doxycycline, and vancomycin) 
in patients with severe refractory UC and IBD 
[23]. Furthermore, the global spread of IBD 
appears to be associated with the increasing 
westernization of dietary patterns and the over-
use of antibiotics, two factors that have been 
shown to affect the intestinal microbiome and 
to increase the risk of IBD in genetically suscep-
tible individuals [24, 25].

A sequencing-based comparison of the intesti-
nal microbiota of patients with IBD and healthy 
individuals revealed significantly less diversity 
among individuals with IBD. Importantly, the 
proportion of harmful bacteria such as Bacte- 
roides and Enterobacteria (including Escheri- 
chia coli) increased, however the relative abun-
dance of beneficial Firmicutes decreased [17, 
26]. In recent decades, E. coli and, in particular, 
adherent-invasive E. coli (AIEC) pathotype, has 
been implicated in the pathogenesis of IBD 
[27]. Reduced abundance of microbes that pro-
duce SCFAs have been observed in patients 
with IBD [28]. A systematic review of 73 con-
trolled studies describing the fecal and intesti-
nal microbiota of patients with CD found a sig-
nificant decrease in the microbial richness of 
the lumen and mucous membranes, mainly 
due to a decrease in Firmicutes species. On the 
other hand, the numbers of Bacteroides and 
Enterobacteriaceae species were significantly 
increased, especially E. coli [29]. In this review, 
we have summarized recent research on the 
differences in microbial composition between 
patients with IBD (either UC or CD) and healthy 
controls, as summarized in Table 1 [30-36]. 
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Table 1. Microbial alterations in inflammatory bowel disease
Object 
of study

Cohort  
description Sample type Outcomes Reference

Adult 121 CD, 75 
UC, 27 control

Mucosal biop-
sies and Fecal 
samples

CD 
•Roseburia, Phascolarctobacterium, Ruminococcaceae, Faecalibacteria prausnitzii (ileal disease) ↓
•Enterobacteriaceae ↑
UC 
•Roseburia, Phascolarctobacterium, Leuconostocaceae, Odoribacteriaceae ↓

Morgan et al. 
[30]

Adult 15 UC, 15 
control

Feces UC 
•Ruminococcus bromii, Eubacterium rectale, Roseburia sp. and Akkermansia sp ↓
•Fusobacterium sp., Peptostreptococcus sp., Helicobacter sp., Campylobacter sp. and Clostridium difficile ↑

Rajilic-Stoja-
novic et al. [31]

Pediatric 243 CD, 73 
UC, 43 control

Mucosal ileal 
biopsies

CD 
•Neisseriaceae, Gemellaceae, Fusobacteriaceae, Veillonellaceae, Pasturellaceae, Enterobacteriaceae and Epsilonproteobacteria ↑
•Bifidobacteriaceae and Firmicutes including Lachnospiraceae, Clostridiales and Erysipelotrichaceae ↓
UC 
•Limited changes noted

Haberman et 
al. [32]

Pediatric 13 CD, 10 UC, 
12 control

Mucosal ileal  
biopsies

CD 
•Limited changes noted 
UC 
• Microbial richness ↓

Alipour et al. 
[33]

Adult 28 CD, 30 UC, 
30 control

Mucosal  
colonic biopsies

CD
•Faecalibacterium prausnitzii, Bacteroides, Blautia, Ruminococcus, Roseburia, Coprococcus, Lachnospiraceae ↓
UC
•Limited changes noted

Rehman et al. 
[34]

Adult 35 CD, 15 
control

Mucosal  
colonic biopsies 
and subgroup 
of fecal 
samples 

CD
•Enterobacteriaceae, Fusobacteriaceae in mucosal colonic biopsies ↑
•Enterobacteriaceae, Pseudomonadaceae, Streptococcaceae and Erysipelotrichaceae in subgroup of fecal samples ↑
•Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae and Veillonellaceae in mucosal colonic biopsies and in fecal samples ↓
•Microbial richness in subgroup of fecal samples ↓

Eun et al. [35]

Pediatric 13 CD, 12 UC, 
12 control

Mucosal 
biopsies

CD 
•Microbial richness ↓
•Faecalibacteria prausnitzii ↑
UC 
•Limited changes noted

Hansen et al. 
[36]

Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis.
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Fundamentally, an altered intestinal microecol-
ogy forms the pathological basis of IBD, and 
although the specific etiological species have 
not been confirmed, probiotics have provided 
clinical benefits for IBD patients. Together, this 
work suggests that the dysbiosis that contri- 
butes to the development of disease will be- 
come increasingly treatable as our microbio-
logical understanding of IBD continues to im- 
prove.

Application of FMT in treating IBD

The underlying motivation for FMT is a need to 
restore the balance in intestinal flora that has 
been disrupted by antibiotics, most strongly 
exemplified by its role in treating rCDI. FMT can 
improve the disordered intestinal microecology 
of IBD patients, compensate for the reduced 
symbiosis, restore barrier function and perme-
ability, and maintain immune function of the 
intestinal mucosa. This technique was first us- 
ed by Eiseman in 1958 to successfully treat 
four patients with fulminant pseudomembra-
nous colitis and was administered via enema 
[37]. In the past few decades, FMT has been 
used to treat rCDI and, more recently, has 
emerged as a potential treatment option for 
IBD. The first case report of using FMT for IBD 
was published in 1989 by Bennet and Brink- 
man, who used it to treat a patient with chronic 
UC that was refractory to sulfasalazine and ste-
roids. Colonoscopy after 3 months of retention 
enema transplants of stool from a healthy 
donor showed that the acute inflammation  
had subsided, and the patient remained free  
of symptoms through 6 months [38]. However, 
because IBD alternates between periods of ac- 
tive disease and remission, the single 6-month 
follow-up did not necessarily confirm the long-
term efficacy of FMT. A retrospective analysis 
conducted in 2003 showed that six patients 
with refractory UC achieved complete, medica-
tion-free remission after FMT with no recur-
rence after 1-13 years of follow-up, indicating 
the potential long-term efficacy of FMT [39]. 
Table 2 summarizes the main published case 
series and reports of FMT in IBD [40-48]. 
Collectively, these studies were typified by 
small sample sizes and inconsistent outcomes. 
Therefore, two recent randomized trials were 
designed to rigorously evaluate the clinical effi-
cacy of FMT treatment for UC. Moayyedi et al. 
studied the benefits and risks of administrati- 

on of fecal enema or placebo to patients with 
UC once a week for 6 weeks and found that 9 
out of 38 (24%) patients in the FMT group and 
2 out of 37 (5%) patients in the placebo group 
were in remission. However, the improvements 
in symptoms and quality of life were similar for 
patients in both groups. Notably, those pati- 
ents with UC with a history of less than 1 year 
of disease were more likely to enter remission. 
Following FMT treatment, all subjects showed a 
greater diversity of intestinal microorganisms 
that was similar to the diversity of the donor 
samples [49]. In another randomized controlled 
study conducted at the Amsterdam Academic 
Medical Center, secondary FMT was performed 
within 3 weeks of the first round of treatment in 
IBD patients by placing nasal intestinal tubes. 
While 30% of the patients receiving donor FMT 
were in remission at week 12, only 20% of 
patients receiving placebo (autologous feces) 
were in remission. There was no statistically 
significant difference in clinical and endoscopic 
remission between the two groups, which may 
be due to limited numbers. Patients who exhib-
ited a clinical improvement in disease in both 
groups were found to have increased diversity 
of fecal microorganisms at week 12, in contrast 
with the non-responders in both groups [50]. 

A review of 12 reports on a total of 111 adult 
IBD patients that received FMT reported an 
overall therapeutic success rate of 77.8%. In 
addition, FMT has been shown to have a 90% 
therapeutic success rate for patients with UC, 
as defined by the cessation of symptoms or 
reduction in ulcerative colitis activity index 
(UCAI) [51]. A meta-analysis of the four random-
ized controlled trials that have been conducted 
to date demonstrated that clinical remission 
was achieved in 39 of 140 (28%) UC patients  
in the donor FMT groups compared with 13 of 
137 (9%) patients in the placebo groups (P< 
0.01). However, there was significant variability 
in the designs of these four clinical trials, rang-
ing from differences in the route of administra-
tion of FMT, methods for FMT preparation, the 
total number of FMTs administered, and differ-
ences in definition of primary outcomes [52]. 
Some of this variability reflects the real-world 
difficulties associated with standardizing a 
newly emerging therapy that is dependent on 
inherently variable donor samples. Data on the 
benefits of FMT for patients with CD are some-
what more limited than UC. Case reports have 
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Table 2. Main case series and reports of fecal microbiota transplantation in inflammatory bowel disease

IBD type Patients Route Infusion volume Number of  
infusions Outcome characteristics  Reference

UC 1 Enema NR 1 Documented remission for 6 mo and ceased medications Bennet et al. [38]

UC 1 Enema NR NR Documented remission for 6 mo and ceased medications Borody et al. [40]

CD 1 Enema NR NR Symptoms-free and receiving no medications 4 mo after FMT

UC 6 Enema 200-300 g/200-300 mL 6 Documented remission from 1 to 13 yr and ceased medications Borody et al. [39]

CD 1 Colonoscopy + Enema 200-400 mL 1 + 9 CD related improvement was not reported Grehan et al. [41]

UC combined with CDI 4 Colonoscopy 220-240 mL 1 Colitis activity was improved, and CDI was cured Hamilton et al. [42]

CD combined with CDI 6 Colonoscopy + Enema 220-240 mL 1 or 2 Two cases underwent a second FMT due to CDI recurrence, but the 
efficacy of FMT on CD was not reported

UC combined with CDI 1 Colonoscopy 300 mL 1 Documented symptom-free for 8 mo without CDI recurrence Zainah et al. [43]

UC 3 Repeated rectal infusions NR Daily infusion for 2 
to 6.5 mo

Documented improvement from 1 to 36 mo Borody et al. [44]

CD combined with CDI 3 Colonoscopy 18-397 g/180-600 mL 1 Symptoms such as diarrhea improved or resolved 3 mo after FMT Patel et al. [45]

CD combined with CDI 2 Colonoscopy 
Upper endoscopy

18-397 g/180-600 mL 2 CDI recurred in one case after the first FMT by colonoscopy, and a 
second FMT was performed by upper endoscopy; but the efficacy of 
FMT on CD was not reported

UC 6 Colonoscopy 300-500 mL 1 Documented improvement, but no remission within 2 wk after FMT Kump et al. [46]

UC 10 Enema 165 mL 5 78% and 67% subjects achieved clinical response within 1 wk and 1 
mo after FMT, respectively

Kunde et al. [47]

CD 1 NR NR NR Response to FMT for 6 mo followed by relapse Gordon et al. [48]

CD 1 Gastroscope 150 mL 1 Documented clinical remission for more than 9 mo Zhang et al. [4]
Abbreviations: FMT, fecal microbiota transplantation; UC, ulcerative colitis; CDI, Clostridium difficile infection; CD, Crohn’s disease; NR, not reported.
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shown mixed results, with some suggesting 
clinical and endoscopic remission and others 
demonstrating no effect [53]. A study of a co- 
hort of 30 patients with refractory mid-gut CD 
found a 77% rate of clinical remission at one 
month following a single FMT administered via 
the nasoduodenal route [54]. Taken together, 
FMT may be a valuable treatment for refractory 
IBD compared to traditional therapies such as 
anti-inflammatory steroids and immunosup-
pressive agents; however, its definitive clinical 
benefits are currently difficult to estimate gi- 
ven the significant heterogeneity of clinical st- 
udy designs and methods used for therapeutic 
preparation and administration.

L. reuteri and IBD

Characteristics and clinical efficacy of treat-
ment with L. reuteri

L. reuteri is a Gram-positive facultative anaer-
obe of the genus Lactobacillus. It is a slightly 
irregular campylobacter with rounded ends and 
is widely present in the intestines of verte-
brates wherein it ferments sugar to lactic acid, 
acetic acid, and ethanol [55]. It is one of the 
few lactic acid bacteria that have adapted to 
survive in the human stomach and can grow in 
the presence of gastric acids and bile salts. In 
addition, L. reuteri has been detected in the 
upper regions of the small intestine, where it 
colonizes the mucosal layer.

L. reuteri, when administered as a probiotic, 
helps to restore the balance of intestinal flora 
and to inhibit diarrhea through multiple mecha-
nisms. It produces metabolites such as organic 
acids, hydrogen peroxide, bacteriocins, and 
other antagonistic substances that inhibit the 
growth and reproduction of harmful bacteria 
and prevent antibiotic-induced diarrhea [6]. In 
addition, L. reuteri colonies in the digestive 
tract form a biological barrier that blocks the 
adhesion of pathogenic bacteria to the gastro-
intestinal mucosa, inhibits pathogenic growth 
by competing for nutrients, and neutralizes ba- 
cterial toxins. L. reuteri metabolizes glycerin to 
produce reuterin and 3-hydroxypropionaldehy- 
de (3-HPA), which is a low molecular weight, 
neutral, and soluble bacteriocin that exists as  
a mixture of its hydrate and dimeric forms. Low 
doses of reuterin have been shown to inhibit 
the growth of various pathogens, such as E. 
coli, Salmonella typhimurium, Candida albic- 

ans, Bacillus subtilis, Aspergillus flavus, Cam- 
pylobacter jejuni, and Clostridium sporogenes 
[56]. Importantly, L. reuteri also modulates the 
host immune response by decreasing the pro-
duction of proinflammatory cytokines and pro-
moting the development of Tregs [6]. Recent 
mechanistic studies have suggested that L. 
reuteri CCM 3625 produces tyramine under 
certain culture conditions and that L. reuteri E 
and L. reuteri KO5 produce biogenic amines, 
including histamine and tyramine, which may 
reduce the inflammatory response in the gas-
trointestinal tract [55]. Consistent with this 
finding, L. reuteri can prevent intestinal ana-
phylaxis and regulate the intestinal immune 
response [57]. It has been shown that feeding 
newborn rats with L. reuteri DSM 17938 can 
prevent necrotizing enterocolitis (NEC) and in- 
hibit Treg-deficiency-associated autoimmunity 
in the newborn rats. Feeding L. reuteri did not 
affect clinical phenotype or inflammatory bio- 
markers in plasma and stool, but L. reuteri 
increased the proportion of Foxp3+ Tregs in the 
intestine. L. reuteri also exerts a major influ-
ence on the plasma metabolome, upregulating 
amino acid metabolites formed via the urea, 
tricarboxylic acid, and methionine cycles and 
increasing tryptophan metabolism [58].

The anti-inflammatory effects of L. reuteri in 
IBD

IBD is a chronic gastrointestinal disease that 
results from a dysregulated immune response 
to specific environmental triggers in a geneti-
cally predisposed individual. Increasing evi-
dence has suggested a central role for dysbio-
sis of the gut microbiota in contributing to th- 
is immune-mediated intestinal inflammation 
[26]. Although the relationship between L. reu- 
teri and IBD has gained considerable attention 
in recent years, the results of studies to date 
are not conclusive. The intestinal microbiome 
of patients with IBD and healthy individuals 
show qualitative and quantitative differences. 
Typically, the relative abundance of Escheri- 
chia, Fusobacterium, and Proteobacteria gen-
era are increased, and Bacteroides, Bifidobac- 
terium, and Clostridium groups IV and XIVA are 
decreased in patients with IBD and in mouse 
models of colitis [59]. Of note, these microbi-
ome changes are correlated with inflammati- 
on of the intestinal mucous membrane [59]. It 
has been reported that treatment with L. reu- 
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teri R2LC or 4659 significantly reduced inflam-
mation of the intestinal mucosa in a mouse 
model of dextran sodium sulfate (DSS)-induc- 
ed UC, acting by decreasing the expression of 
proinflammatory markers like MPO, IL-1B, IL-6, 
and mKC (mouse keratinocyte chemokines). In 
addition, probiotic treatment with L. reuteri re- 
verses the DSS-induced thinning of the intesti-
nal mucus and promotes the synthesis of con-
nective tissue tight junction proteins at the  
bottom of the colon recess [60]. Petrella et al. 
have demonstrated therapeutic benefits follow-
ing administration of L. reuteri ATCC PTA 4659 
(of human origin) and L. reuteri R2lc (of rodent 
origin) in a rat model of UC [61]. Impressively, 
continuous supplementation with L. reuteri al- 
most completely prevented the occurrence of 
DSS-induced UC in rats, likely due to sustained 
colonization of the intestinal tract by the probi-
otics. A recent study demonstrated that the 
prophylactic administration of L. reuteri F-9- 
35 had anti-inflammatory effects in the DSS-
induced mouse model of colitis [5]. This pre-
ventive effect was attributed to the reduced 
transcription of mRNA for COX-2, TNF-α, and 
IL-6 as well as the restoration of the intestinal 
balance between Firmicutes and Bacteroidet- 
es [5]. Taken together, the data from these 
studies suggest that probiotic treatment with  
L. reuteri has an anti-inflammatory effect on 
the gut that may provide therapeutic benefits in 
IBD.

The immune-regulatory effects of L. reuteri in 
IBD 

The vast intestinal microbial community se- 
cretes effector molecules and physically inter-
acts with host pattern receptor proteins to initi-
ate a complex, two-way regulation of the local 
immune system and the dynamics of the micro-
bial population. Innate immune responses are 
elicited by the recognition of bacterial patho-
gen-associated molecular patterns (PAMPs) by 
the host pattern recognition receptors (PRRs) 
present on leukocytes, including Toll-like recep-
tors (TLRs), NOD-like receptors (NLR), and C-ty- 
pe lectin receptors (CLRs), canonically forming 
the proinflammatory response that is thought 
to be the pathogenic basis of IBD [62]. Studies 
of animal models with decreased expression/
activation of NOD-like receptor or TLR signaling 
have revealed a complex and context-depen-
dent role of innate immunity in colitis, rang- 

ing from protective to proinflammatory [63]. A 
recent study showed that L. reuteri DSM 17938 
attenuates experimental NEC by inducing to- 
lerogenic intestinal dendritic cells (DCs) and 
Tregs, which in turn reduce the proliferation of 
proinflammatory lymphocytes and production 
of inflammatory cytokines via a mechanism 
that is dependent on TLR2 [64]. In the healthy 
gut, these immune responses are kept in check 
through various regulatory pathways, and any 
disruption to this tightly controlled system can 
trigger an inflammatory response. Indeed, re- 
ports have suggested that mucosal immune 
system dysfunction plays an important role in 
IBD pathogenesis [6, 65]. Intestinal immuno-
modulation is mainly regulated by intraepitheli-
al T lymphocyte subsets [66]. Because DPIELs 
are common to mice and humans, preclinical 
studies of the effects of treatment L. reuteri on 
this immune cell type may provide new insights 
into IBD treatment.

Indeed, in 2017, a study showed that L. reuteri 
is an intestinal microbe that can regulate DPI- 
ELs. In that work, rats were randomly divided 
into two groups: a high-DPIEL group and a 
group without DPIELs. The intestinal flora of the 
DPIEL group was transferred to the other group 
of mice. Strikingly, the recipient mice then gen-
erated a considerable amount of DPIELs, which 
then disappeared after treatment with antibiot-
ics, indicating that the intestinal flora plays an 
important role in the regulation of intestinal 
immunity. In addition, the researchers trans-
planted Gram-positive, neomycin-resistant ba- 
cteria into rats and found that none of the oth- 
er five types of Bacteroidetes had this effect 
[7], whereas L. reuteri influenced whether CD4+ 
T cells could differentiate into DPIELs. Disor- 
dered intestinal flora can further aggravate a 
pre-existing inflammatory condition in order to 
induce IBD [18]. 

Tryptophan (Trp) is an anti-inflammatory es- 
sential amino acid that supports the intestinal 
flora. A recent study found that Trp supplemen-
tation in a mouse model of colitis reduced the 
levels of threonine, methionine, and proline, 
which in turn decreased the colonic concentra-
tion of IL-22 and altered the intestinal microbi-
ome [67]. Interestingly, Trp concentration in the 
intestinal lumen may be related to Lactobacil- 
lus-mediated regulation of intestinal immunity. 
Marco Colonna et al. were the first to show that 
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L. reuteri promotes the differentiation of T cells 
into DPIELs by metabolizing Trp to indole-3-lac-
tic acid, which then activates the aryl hydrocar-
bon receptor (AhR) on CD4+ T cells to downre- 
gulate the transcription factor Thpok and ulti-
mately induce their differentiation into DPIELs 
[7] (Figure 1). This finding is consistent with 
prior reports of the molecular implications of 
the down-regulation of Thpok [68]. To further 
study the relationship between L. reuteri and 
Trp in the generation of DPIELs, the research-
ers fed normal and gnotobiotic mice lacking 
intestinal bacteria with high, medium, or low 
doses of Trp for 4 weeks. Although even high-
dose Trp failed to induce DPEIL production in 
the aseptic mice, it significantly increased the 
amount of DPIELs measured in the normal mice 
in a dose-dependent manner. Taken together, 
these studies suggest that the beneficial bacte-
ria residing in the healthy intestines require Trp 
to carry out their immunomodulatory functions. 

This is further corroborated by the higher inci-
dence of intestinal inflammation in individuals 
with genetic defects in Trp-metabolizing enzy- 
mes [7]. 

A recent study showed that the R2lc and 2010 
strains of L. reuteri activated AhR through the 
cluster of polyketone synthase (PKS), a path-
way that is unrelated to Trp metabolism. Ac- 
tivation of AhR is important for the production 
of interleukin-22 (IL-22), which can enhance the 
innate immune response by inducing produc-
tion of antimicrobial peptides (Reg3-lectins) to 
fight off intestinal pathogens and to protect 
intestinal tissues from inflammation damage  
by inducing tight junction proteins [69] (Figure 
1). Researchers also demonstrated that a defi-
ciency in Foxp3+ Treg cells results in dysbiosis 
of the gut microbiome and a dramatically in- 
creased likelihood of developing autoimmunity 
in scurfy (SF) mice. However, remodeling the 

Figure 1. The immune-regulatory role of L. reuteri in IBD. L. reuteri provides indole derivatives of dietary Trp, such as 
indole-3-lactic acid, which activate AhR and lead to the down-regulation of Thpok and subsequent reprogramming 
of CD4+ IELs into DPIELs. The R2lc and 2010 strains of L. reuteri activated AhR through the cluster of polyketone 
synthase (PKS), a pathway that is unrelated to Trp metabolism. Activation of AhR promotes the production of inter-
leukin-22 (IL-22), which enhances the innate immune response by inducing production of antimicrobial peptides 
(Reg3-lectins) to fight off intestinal pathogens and to protect intestinal tissues from damage due to inflammation by 
increasing the expression of tight junction proteins.
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microbiota with additional L. reuteri prolonged 
survival and reduced multiorgan inflammation 
in these SF mice. L. reuteri appears to help 
improve the metabolomic profile that is disru- 
pted by Treg cell deficiency, for example by 
restoring levels of the purine metabolite ino-
sine [70]. In an in vitro experiment, treatment 
with L. reuteri DSM 17938 cell-free superna-
tant (L. reuteri-CFS) was shown to induce an 
immunotolerant phenotype in retinoic acid 
(RA)-driven mucosal-like dendritic cells, which 
had subsequent effects on Tregs. Indeed, tre- 
atment with L. reuteri-CFS further influenced 
the tolerogenic phenotype of RA-DC by down-
regulating many genes involved in antigen up- 
take, antigen presentation, and signal trans-
duction, as well as several chemokine recep-
tors, while upregulating the production of IL- 
10, a tolerogenic cytokine [71]. Other studies 
have indicated that L. reuteri 5289 causes DCs 
to release IL-10 and inhibits the production of 
IL-12 by DCs in response to co-culture with 
other bacteria that typically induce production 
of IL-12; remarkably, they observed that the L. 
reuteri-mediated inhibition of IL-12 production 
was associated with prolonged ERK1/2 MAP 
kinase phosphorylation [72]. The role of L. 
reuteri in intestinal immunity is not yet fully 
understood. Significant detailed mechanistic 
studies are needed to better understand how 
L. reuteri contributes to a healthy intestinal 
environment.

The anti-osteoporosis effects of L. reuteri in 
IBD

Approximately 10% to 40% of IBD patients may 
suffer from at least one extraintestinal mani-
festation, sometimes including metabolic bone 
diseases such as osteopenia and osteoporosis 
[73]. A study showed that both osteopenia and 
osteoporosis are strongly associated with IBD, 
ranging from 32% to 36% for osteopenia and 
from 7% to 15% for osteoporosis [74]. A Swiss 
IBD cohort study of 877 patients found a pre- 
valence of bone density alteration in 20% of 
IBD patients and identified, by multivariate 
logistic regression analysis, that an extended 
history of disease, perianal disease, and corti-
costeroid use were independent risk factors  
of bone density loss [75]. Bone alterations in 
patients with IBD appear to have a staggering- 
ly complex multifactorial etiology: disruption of 
gut-bone immune signaling interactions, infla- 

mmation-related bone resorption loss, genetic 
factors, interactions between microbiota and 
pathogenic microorganisms, multiple intestinal 
resections, steroid treatments, reduced absor- 
ption of minerals, and vitamin D deficiency are 
all possible factors which may, together or indi-
vidually, contribute to the alteration of bone 
mineral density [76]. Indeed, it is not clear 
whether inflammation directly causes the loss 
of bone mineral density or if other intermediary 
factors contribute to the decline of bone min-
eral density in patients with IBD.

Probiotic bacteria supplementation has been 
demonstrated to be beneficial for bone health 
[77, 78]. A study found that treating healthy 
mice with L. reuteri enhances bone density in 
male mice, but not in females. This work sh- 
owed that probiotics increased mineral density 
in the distal femur metaphyseal region as well 
as in the lumbar vertebrae and increased 
osteoblast serum markers in male mice [79]. 
However, the host and bacterial mechanisms 
responsible for mediating these effects howev-
er are not well understood. 

A recent study found that L. reuteri secretes 
factors that regulate T lymphocytes, which play 
an important role in mediating positive bone 
density outcomes. In that work, researchers 
administered L. reuteri via drinking water for  
4 weeks to male wild-type or RAG knockout 
(which lack mature T and B lymphocytes) mice. 
Although L. reuteri treatment increased bone 
density in wild type mice, no significant incre- 
ases were seen in RAG knockout mice, sug-
gesting that lymphocytes are indeed critical  
for the L. reuteri-mediated beneficial effects on 
bone density. Ex vivo studies using whole mes-
enteric lymph nodes (MLN) as well as CD3+ T 
cells, demonstrated that the administration of 
live L. reuteri and its secreted factors have  
concentration-dependent effects on the expr- 
ession of cytokines, including the anti-inflam-
matory cytokine IL-10. Further, they found that 
the effects of L. reuteri on lymphocytes are 
negatively regulated by a RIP2 inhibitor, sug-
gesting a role for NOD signaling in this regula-
tory network. Finally, this study showed that T 
cells from MLNs treated with L. reuteri super-
natants secrete factors that enhance the ex- 
pression of osterix, a transcription factor invol- 
ved in osteoblast differentiation, in MC3T3-E1 
osteoblasts [80]. Despite these informative 
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findings, the exact mechanisms by which L. 
reuteri in the intestinal tract exerts a systemic 
effect to promote bone health remains to be 
fully elucidated. Although these findings high-
light just several potential mechanisms by 
which L. reuteri is able to improve bone health, 
they pave the way to potential targets for fu- 
ture therapeutic research on disease outcomes 
related to IBD.

The antifungal effects of L. reuteri in IBD

An increased relative abundance of intestinal 
fungi has long been suspected to play a role in 
the pathogenesis of IBD [81]. Gastrointestinal 
fungi may be beneficial or detrimental to the 
host [82, 83], but relevant data are currently 
scarce. Several IBD-associated genes, such as 
CARD9, are involved in immune responses to 
fungi [84]. Moreover, mice lacking major genes 
responsible for fungi sensing, such as CARD9 
or DECTIN1, have an increased fungal micro- 
biota load and are more susceptible to colitis 
[85, 86]. These data suggest a link between 
fungal microbiota and IBD pathogenesis.

Several studies have shown an increased level 
of Candida albicans in patients with IBD [81, 
87]. It has been shown that the fungal microbi-
ota is skewed in patients with IBD, with an 
increased Basidiomycota/Ascomycota ratio, a 
decreased proportion of Saccharomyces cere-
visiae, and an increased proportion of Candida 
albicans, relative to healthy subjects [81]. A 
recent study found an elevation of (1→3)-β-D-
glucan (BG, a component of the fungal cell-wall) 
in the serum of patients with IBD and endo-
scopic moderate colitis in clinical remission, 
supporting a possible role for gut fungi in IBD. 
In mice, the administration of Candida by oral 
gavage was found to worsen the increase mor-
tality, was associated with more severe colon 
histology findings, and increased gut leakage. 
Treatment of mice with DSS + Candida induced 
higher proinflammatory cytokines both in intes-
tinal tissue and in blood. However, treatment 
with Lactobacillus rhamnosus L34 attenuated 
the effects of both DSS + Candida and DSS 
alone through the attenuation of gut local 
inflammation, reversal of gut-leakage, correc-
tion of fecal dysbiosis, and a reduction in sys-
temic inflammation [87]. A study found that pro-
biotic treatment with L. rhamnosus GR-1 and L. 
reuteri RC-14 strains led to potent protection 

against all of the tested Candida glabrata st- 
rains. Treatment with these lactobacilli reduced 
fungal aggregation, inhibited fungal growth, 
and eventually led to death of Candida glabra- 
ta [88]. Based on the above results, we specu-
late that L. reuteri may play an additional thera-
peutic role in IBD through its effects on fungi. 
However, specific studies aimed to assess that 
hypothesis are required.

Therapeutic potential of L. reuteri in IBD

Treatment via FMT can reconstruct and restore 
the healthy intestinal microbial flora, maintain 
intestinal homeostasis, decrease the secretion 
of inflammatory factors, and regulate intestinal 
mucosal immunity, each of which can amelio-
rate the symptoms of IBD. As discussed in this 
review, L. reuteri not only inhibits the growth of 
harmful bacteria and fungi as well as reduces 
intestinal inflammation, but it also up-regulates 
the differentiation of DPIELs in the small intes-
tines, which in turn maintain the intestinal 
microecology and dampen immune responses 
[5, 7, 57]. Impressively, significant research has 
shown that L. reuteri has anti-osteoporotic and 
antifungal effects in IBD. Together, these find-
ings suggest that L. reuteri has considerable 
potential as a targeted therapeutic intervention 
for patients with IBD.

Conclusion and outlook

L. reuteri prevents intestinal disturbances su- 
ch as diarrhea by restoring the intestinal mic- 
robial flora and regulating intestinal immune 
function. Although the mechanisms by which L. 
reuteri influences these outcomes have be- 
come increasingly clear with recent research, 
further biochemical and genetic analyses are 
required to fully understand its potential as a 
treatment for IBD.
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