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Abstract: The purpose of this study is to evaluate the protective effect of 4-hydroxy-2(3H)-benzoxazolone from Acan-
thus ilicifolius (HBAI) on acute liver injury induced by acetaminophen in mice and its mechanism. Mice were continu-
ously treated with HBAI (200, 100, 50 mg/kg) once a day for 10 days. After that, the mice were fasted for 8 hours, 
followed by intraperitoneal injection of acetaminophen (300 mg/kg). The results showed that HBAI pretreatment 
significantly reduced acetaminophen-induced liver tissue congestion, hepatocyte apoptosis and necrosis, and in-
flammatory cell infiltration. HBAI could effectively reduce the levels of serum alanine aminotransferase, aspar-
tate aminotransferase, total bilirubin, reactive oxygen species and malondialdehyde. Interestingly, the activities of 
liver catalase, superoxide dismutase, glutathione and glutathione reductase were enhanced by HBAI pretreatment. 
Moreover, HBAI pretreatment alleviated acetaminophen-induced hepatocyte apoptosis by regulating the expression 
of Bcl-2 family proteins and the mitochondrial function. Further study showed that HBAI pretreatment effectively 
promoted the expression of Nrf2 and its signal downstream HO-1, NQO1, GCLC, GCLM, and MGST-1, suggesting 
the activation of the Nrf2/HO-1 signaling pathway. Meanwhile, HBAI attenuated the phosphorylation of NF-κBp65, 
IKKα/β, and IκBα, as well as the expression of NF-κBp50, which indicated that HBAI blocked the signal transduction 
of NF-κB pathway. In conclusion, HBAI protects against acetaminophen-induced acute liver injury by inhibiting the 
NF-κB and activating Nrf2/HO-1 signaling pathways.
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Introduction

Liver acts as metabolic detoxification in human 
organs, which is vulnerable to different de- 
grees of damage during drug metabolism. 
Drug-induced hepatotoxicity may have different 
characteristics such as inflammation, fibrosis, 
hepatic steatosis, oxidative stress, necrosis 
and apoptosis [1]. The most common damage 
is acute liver injury, and acetaminophen is  
considered as a typical drug to cause acute 
liver injury [2, 3]. 

Appropriate dose of acetaminophen is relative-
ly safe in antipyretic and analgesic treatment 
and absorbed rapidly in vivo, most of which is 
metabolized by liver [4]. However, the intake of 
large doses of acetaminophen will produce free 
radicals in the process of liver metabolism, 

leading to lipid peroxidation of liver cell mem-
brane, and the accumulation of metabolites  
will directly attack liver cells, resulting in con-
tinuous liver damage, liver cell necrosis and 
eventually liver dysfunction [5, 6]. The inherent 
hepatotoxicity of acetaminophen comes from 
its toxic metabolite N-acetyl-p-benzoquinone 
imine (NAPQI) in vivo. Excessive NAPQI accu- 
mulation can deplete glutathione, promoting 
the production of reactive oxygen species [7,  
8]. When the production of reactive oxygen  
species exceeds the scavenging capacity of 
antioxidant enzymes, mitochondria will be  
damaged and lead to apoptosis [9]. During  
oxidative stress, nuclear factor erythrocyte 2 
related factor 2 (Nrf2) was isolated from Kelch-
like ECH-associated protein 1 (Keap1) to regu-
late the expression of a variety of antioxidant 
genes, including heme oxidase-1 (HO-1) [10, 
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11]. Nuclear factor κB (NF-κB) is a pleiotropic 
transcription factor, which also plays an impor-
tant role in oxidative stress and inflammatory 
response [12]. It has been reported that inhibit-
ing the activation of NF-κB and activating the 
Nrf2/HO-1 signal pathway may be a potential 
strategy to alleviate acute liver injury [13, 14].

Acanthus ilicifolius is a mangrove plant of  
acanthaceae, which mainly grown in the inter-
tidal zone of southeast coastal areas of China; 
it widely used in folk treatment of lymph node 
enlargement, hepatitis, stomachache, cough, 
asthma [15, 16]. 4-hydroxy-2(3H)-benzoxazo-
lone is an important pharmacological active 
component of Acanthus ilicifolius. Previous 
studies have shown that 4-hydroxy-2(3H)-ben-
zoxazolone has a variety of biological effects 
such as anti-inflammatory and anti-oxidant. It 
also has a protective effect on liver fibrosis 
caused by carbon tetrachloride [17]. But, its 
effect on drug-induced liver damage remains 
unclear. Therefore, 4-hydroxy-2(3H)-benzoxazo-
lone was used to treat mice to explore whether 
it has protective effect on acute liver injury 
induced by acetaminophen in this study. The 
study also investigated whether 4-hydroxy-
2(3H)-benzoxazolone alleviates liver damage  
by regulating the NF-κB and Nrf2/HO-1 signal-
ing pathways.

Material and methods

Experimental animals and reagents

Male C57BL/6J mice (6-8 weeks old and wei- 
ghing 18-22 g) were required from the Hunan 
slack Jingda Experimental Animal Co., Ltd. 
(Hunan, China). 

The 4-hydroxy-2(3H)-benzoxazolone (HBAI) with 
purity over 98% was manufactured by the 
Department of Pharmaceutical Chemistry of 
Guangxi Medical University [18]. Acetamino- 
phen was purchased from Aladdin (Shanghai, 
China). Bifendate Pills were purchased from 
Beijing Union Pharm (Beijing, China). Two-site 
sandwich enzyme-linked immunosorbent as- 
say (ELISA) for mouse reactive oxygen sp- 
ecies (ROS) was purchased from Jianglai 
Biotechnology (Shanghai, China). Carmellose 
Sodium (CMC-Na) was purchased from Xi- 
long Scientific (Guangzhou, China). Glutathione 
(GSH), glutathione peroxidase (GSH-PX), malo-
ndialdehyde (MDA), Superoxide Dismutase 
(SOD) and Catalase (CAT) were all purchased 

from Nanjing jianCheng Bioengineering Com- 
pany (Nanjing, China).

Experimental design

This study was approved by the Institutional 
Ethics Committee of Guangxi Medical Uni- 
versity. The male C57BL/6J mice were allowed 
to live in an environment with a humidity of 
about 70% and a constant temperature of  
23 ± 2°C. Mice were randomly divided into six 
groups with ten mice per group: the normal 
group (receiving 0.6% sodium carboxymethyl 
cellulose solution), model group (receiving  
0.6% sodium carboxymethyl cellulose solu- 
tion), positive group (receiving 150 mg/kg 
bifendate) and HBAI pretreatment groups 
(receiving 200, 100, 50 mg/kg HBAI). Mice 
were administered by intragastric gavage for 
10 continuous days. After the end of pretreat-
ment, the normal group was given the same 
amount of normal saline, and all the other 
groups were given intraperitoneal injection of 
acetaminophen (300 mg/kg) [19]. Six hours 
later, blood was taken from the eyes of mice 
and liver samples were collected for subse-
quent experiments.

Histopathology and TUNEL staining

The liver samples that were cut from the same 
site of the liver were fixed in 10% formalin  
solution, embedded in paraffin, and cut in 
5-μm-thick sections. Hematoxylin and eosin 
(H&E) staining was performed to observe the 
pathologic changes, and TUNEL (TdT-mediated 
dUTP Nick-End Labeling) assay was used to 
analyze cell necrosis as previously described 
[20].

Serum biochemistry

The serum levels of total bilirubin (TBIL), ala-
nine aminotransferase (ALT) and aspartate 
aminotransferase (AST) were measured by a 
biochemical autoanalyzer.

Liver enzymatic activity

Around 10% liver tissue was homogenized with 
normal saline and centrifuged with 4000 g at 
4°C for 30 min. The supernatant was used to 
evaluate the levels of CAT, GSH, GSH-PX, SOD 
and MDA in liver tissue. The level of ROS in  
liver tissue was measured with commercially-
available ELISA kit according to the manu- 
facturer’s instruction.
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Western blotting

The total protein of liver tissue was isolated  
by protein extraction kit (Solarbio Biotech- 
nology Company, Beijing, China), and the total 
protein concentration was determined by BCA 
protein detection kit (Beyotime Biotechnology 
Company, Shanghai, China). The protein was 
separated by 10% SDS-PAGE electrophoresis 
and transferred to PVDF membrane (Millipore, 
Bedford, MA, USA). After washing the mem-
brane with 0.1% Tris buffer salt Tween 20 
(TBST) for 3 times, the membrane was incu- 
bated with the corresponding primary anti- 
bodies overnight at 4°C: NF-κBp65, p-NF-
κBp65, NF-κBp50, IκBα, p-IκBα, IKKα/β, 
p-IKKα/β, Nrf2 (Cell Signaling Technology, 
Danvers, MA, United States); GAPDH, HO-1, 
Keap1, Bax, Bcl-2 (Wuhan Sanying Biote- 
chnology Company, Wuhan, China) and Cyt C 
(Beyotime Biotechnology Company, Shanghai, 
China). After washing with TPST for 3 times, the 
membrane was incubated with the secondary 
anti-goat antibody (Santa Cruz Biotechnology 
Company, California, USA) in a shaking table  
at room temperature for one hour. Eventually, 
the membrane was washed again and the  
protein band analysis was carried out by 
enhanced chemiluminescence detection sys-
tem (Millipore, Billerica, MA, United States).

Real-time quantitative PCR

Total RNA was extracted from liver tissue  
samples with Trizol reagent (Invitrogen of 
Carlsbad, California, USA). According to the 
manufacturer’s instructions, the main script RT 
kit (Takara, Kyoto, Japan) was used for cDNA 
synthesis. The expression of mRNA was esti-
mated by using 7300 RT-PCR detection system 
(Applied Biosystems Company, Foster City, 
California, USA) and SYBR Green I (Takara, 
Kyoto, Japan). GAPDH was an internal control 

for measuring the expression of 
related genes. Table 1 Primer 
sequences used in the study.

Statistical analysis

Statistical analysis was con-
ducted using SPSS 22.0 (SPSS, 
Chicago, IL, USA). One-way vari-
ance (ANOVA) was used to ana-
lyze the differences between 
the groups, and Tukey’s post-

Table 1. The sequences of primers used for real-time quantitative 
PCR
Genes Forward primers (5’-3’) Reverse primers (5’-3’)
HO-1 TGCAGGTGATGCTGACAGAGG GGGATGAGCTAGTGCTGATCTGG
NQO1 CAGCCAATCAGCGTTCGG CTTCATGGCGTAGTTGAATGATGTC
GCLC AGGCTCTCTGCACCATCACTT CTCTGGGTTGGGTCTGTGTTC
GCLM AGTTGGAGCAGCTGTATCAGTGG TTTAGCAAAGGCAGTCAAATCTGG
MGST-1 TTTCAGTCAACTGGTGGGCATC AAGGCCATCAACACCTCATTGTC
GAPDH TGTGTCCGTCGTGGATCTGA TTGGTGTTGAAGTCGCAGGAG

hoc multiple comparison test was used to com-
pare them at the same time. All experimental 
results were expressed as mean ± standard 
deviation (S.D.), P value less than 0.05 was 
considered statistically significant.

Results

HBAI could lessen the acute liver injury caused 
by acetaminophen

In order to evaluate the protective effect of 
HBAI on acetaminophen-induced acute liver 
injury, the liver morphology was firstly ob- 
served. The liver in the normal group had rud- 
dy appearance, smooth surface coating, good 
elasticity and normal size and shape (Figure 
1A1). The liver of the model group showed 
rough surface coating and low elasticity, and 
there were extravasated blood and punctate 
spots of different sizes and colors on the  
tissues (Figure 1A2); however, these condi-
tions were ameliorated by HBAI in a dose-
dependent manner (Figure 1A4-6).

The histopathological changes were further 
observed by H&E staining. As shown in Figure 
1B, there were no obvious degeneration or 
necrosis or any other pathological changes in 
normal group, and its hepatic lobule had a  
clear structure; the hepatocytes were arrang- 
ed orderly with the same size (Figure 1B1). 
Nevertheless, the hepatic tissue in the model 
group was infiltrated by inflammatory cells; the 
liver cords were disordered; the hepatocytes 
were swollen to varying degrees, accompanied 
by focal necrosis (Figure 1B2). Intriguingly, 
HBAI and bifendate treatment could reduce  
the degree of liver cell damage, suggesting  
the liver was effectively protected (Figure 
1A3-6 and 1B3-6). Overall, these results indi-
cated that HBAI could alleviate the symp- 
toms of liver injury.
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HBAI reduced serum TBIL, ALT and AST activi-
ties

Pretreatment with HBAI protected against acet-
aminophen-induced hepatotoxicity in mice. As 
shown in Figure 2, the results showed that the 

serum levels of TBIL, ALT and AST in the model 
control group were markedly increased, but 
were significantly decreased by HBAI treat-
ment, suggesting that HBAI could reduce liver 
damage by reducing the activity of total biliru-
bin and transaminases.

Figure 1. Pretreatment with HBAI alleviated hepatic damage caused by acetaminophen. The typical images were  
selected from each experiment group (n = 10). (A1-6) in (A) and (B1-6) in (B) represented the normal, model, 
positive, high-, medium-, and low-dose of HBAI groups. (A) The appearance of liver tissue. (B) Liver histology was 
observed by H&E staining (× 200).
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HBAI alleviated oxidative stress in liver tissue

As shown in Figure 3, a rapid increase was 
found in the levels of ROS and MDA in  
liver tissue of the model group, while the levels 
of SOD, CAT, GSH and GSH-PX were decreased 
greatly. Compared with the model group, HBAI 
exerted an inhibitory effect on the activity of 
ROS and MDA, and increased the levels  
of SOD, CAT, GSH and GSH-PX. These data sug-
gested that HBAI could suppress oxidative 
stress and recruit the anti-oxidative system, 
ameliorating oxidative damage.

HBAI mitigated apoptosis and mitochondrial 
dysfunction 

TUNEL staining was used to indicate apoptosis 
in liver tissue samples. There were little apop-
totic cells in the normal liver tissue (Figure 
4A1). After acetaminophen treatment, more 
apoptotic cells could be seen in the model 
group, which was significantly different from 
the normal group (Figure 4A2). Compared with 
the model group, the proportion of TUNEL  
positive region in HBAI pretreatment group  
was significantly reduced (Figure 4A4-6). To 
further explain the effect of HBAI on acetamin-
ophen-induced apoptosis, the expressions of 
Bcl-2 family proteins were also tested. The 
result showed that the expression of Bcl-2  
in the HBAI pretreatment groups was signifi-
cantly increased, while the expression of Bax 
protein was decreased (Figure 4B). Moreover, 
our result also showed that the expression of 
Cyt C in model group was increased after  
acetaminophen challenge, and this abnormal 
change was reversed by HBAI pretreatment, 

Figure 2. Pretreatment with HBAI suppressed the activity of TBIL, ALT and 
AST in acetaminophen-induced acute liver injury. The experimental data 
were all expressed as mean ± SD (n = 10). *P < 0.05 vs. the normal group; #P 
< 0.05 vs. the model group.

suggesting the protective ef- 
fect of HBAI on mitocondria. 
Taken together, these data 
demonstrated that HBAI alle-
viated hepatocyte apoptosis 
through regulating Bcl-2 fami-
ly proteins expression and 
improving the mitochondrial 
function. 

HBAI activated the Nrf2/HO-1 
signaling pathway

As shown in Figure 5A, acet-
aminophen significantly at- 
tenuated the expression of 

protein Nrf2, keap1 and HO-1. While HBAI pre-
treatment effectively increased the expression 
of these proteins. Similarly, HBAI promoted 
gene transcription of genes downstream of 
Nrf2 (Figure 5B). Therefore, these data indi- 
cated that the hepatoprotective effect of HBAI 
may be related to the activation of the Nrf2/
HO-1 signaling pathway.

HBAI inhibited NF-κB activation

Due to the vital role of NF-κB activation in 
inflammatory, the present study further in- 
vestigated the NF-κB pathway. In the Figure 6, 
the result showed that acetaminophen treat-
ment led to a significant increase in the phos-
phorylation of IKKα/β, NF-κBp65 and IκBα, 
whereas HBAI decreased these phosphoryla-
tion levels, suggesting that HBAI inhibited the 
activation of the NF-κB pathway.

Discussion

The current study revealed that HBAI has sig-
nificant protective effect on the liver injury 
caused by acetaminophen as evidenced by  
the improvement of histopathological chang- 
es, which provided the direct evidence for the 
treatment of HBAI on acetaminophen-induced 
toxicity. When liver injury occurred, the perme-
ability of hepatocyte membrane was incre- 
ased; glutamic oxaloacetic transaminase and 
glutamic pyruvic transaminase were released 
into the blood, suggesting that elevated levels 
of transaminase were an important signal of 
liver damage [21]. High total bilirubin was  
also an abnormal indicator of inflammation, 
necrosis and toxicity in the liver. The study 
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showed that HBAI pretreatment protected mi- 
ce from the effects of acetaminophen hepato-
toxicity by refraining the levels of serum TBIL, 
AST and ALT. 

Oxidative stress contributes to the patho- 
genesis and progress of liver diseases, which 
can lead to lipid peroxidation [22, 23]. It has 
been reported that glutathione and gluta- 
thione peroxidase can scavenge free radicals 
produced by active metabolites, protecting  
liver from oxidative stress [24]. Catalase and 
superoxide dismutase are the important anti-
oxidant enzymes in oxidative stress, which can 
effectively remove reactive oxygen species. 
Malondialdehyde is one of the important prod-
ucts of lipid peroxidation, which is also involved 
in oxidative stress and exacerbates the pro-
gression of liver injury [25]. It has been found 
that reactive oxygen species (ROS) plays a  
central role in cell signaling, mitochondrial 
damage and the apoptosis mediated by death 
receptors. When the content of reactive oxy- 
gen species in cells is too high, it will cause 
damage to the body, leading to hepatocyte 
apoptosis [26]. In the present study, aceta- 
minophen stimulation caused a significant 
decrease in the SOD, CAT, GSH and GSH-PX, 

but led to an increase in MDA and ROS. 
However, pretreatment with HBAI could reverse 
these abnormal changes induced by acetamin-
ophen, indicating that HBAI ameliorated liver 
injury partially due to its antioxidant capacity.

A growing body of evidence suggested that 
acute liver injury was associated with apopto-
sis. Cell apoptosis is a kind of terminal path- 
way of cell death, which is a typical form of  
programmed cell death [27]. In the present 
study, apoptosis of liver cells was observed by 
TUNEL staining. The results showed that the 
apoptosis of hepatocytes was serious in the 
acute liver injury induced by acetaminophen, 
while the apoptosis was reduced in the HBAI 
pretreatment group. Apoptosis is regulated by 
death receptor-mediated pathways and mito-
chondrial pathways [28]. Bcl-2 family are  
important apoptotic proteins in the death 
receptor-mediated pathways. Bax is one of the 
most important pro-apoptotic genes, and the 
encoded Bax protein can form heterodimer 
with Bcl-2 and exert inhibitory effect on Bcl-2 
[29]. Bcl-2 is a crucial protein to inhibit apo- 
ptosis. The increased in expression of Bcl-2  
can inhibit mitochondrial permeability changes 
and affect the formation of giant pores, thereby 

Figure 3. Pretreatment with HBAI alleviated oxidative stress induced by acetaminophen. The experimental data 
were all expressed as mean ± SD (n = 10). *P < 0.05 vs. the normal group; #P < 0.05 vs. the model group.
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Figure 4. Pretreatment with HBAI could decrease the apoptosis and mitochondrial damage. (A1-6) in (A) and 1 to 
6 in (B or C) represent the normal, model, positive, high-, medium-, and low-dose of HBAI groups. (A) The results of 
TUNEL staining. (B) Western bolt analysis of Bax and Bcl-2; (C) quantification of Cyt C expression based on GAPDH. 
The experimental data were all expressed as mean ± SD (n = 3). *P < 0.05 vs. the normal group; #P < 0.05 vs. the 
model group.

inhibiting apoptosis [30]. The ratio relation- 
ship between Bax/Bcl-2 proteins is a key factor 
that determines the inhibitory effect on apo- 
ptosis. In addition, the release of cytochrome C 
from mitochondria is a key step in apoptosis 
[31]. Cytochrome C (Cyt C) was regarded as an 
important electron transporter in respiratory 
chain, which was easy to cause mitochondrial 
dysfunction and nuclear deoxyribonucleic acid 

damage [32]. Our study showed that HBAI  
pretreatment could increase the expression  
of Bcl-2 and decrease the expression of Bax. 
Moreover, HBAI pretreatment significantly in- 
hibited Cyt C release from mitochondria into 
cytoplasm. These data suggested that HBAI 
alleviated hepatocyte apoptosis by regulating 
the Bcl-2 family protein expression and pro- 
tecting the mitochondrial function. 
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In order to explore the antioxidant mechanism 
of HBAI, the Nrf2 pathway was further detect-
ed. Nrf2 is a basic region leucine zipper tran-
scription factor, which can transcriptionally 
regulate the expression of a series of antioxi-
dant genes and maintain the oxidation-reduc-
tion homeostasis of the liver [33, 34]. Generally, 
Nrf2 binds to Keap1 and exists in cells under 
normal conditions. In the event of oxidative 
stress, the cysteine residue of Keap1 is modi-
fied to change the conformation, resulting in 
the release of Nrf2 into the nucleus, and pro-
moting the expression of target genes [35]. 
Glutamate cysteine ligase (GCL) is one of  
downstream genes in the Nrf2 pathway, which 
is composed of subunit (GCLC) and modified 
subunit (GCLM). It regulates the hepatotoxicity 
of acetaminophen by catalyzing the speed- 
limiting step of glutathione biosynthetic [36]. 
As one of the potential therapeutic targets for 
liver protection, HO-1 is responsible for heme 
catabolism of drug-metabolizing enzymes that 
protect cells from oxidative damage [37]. And 
NQO1 is act as an enzyme with antioxidant 
properties, which can reduce liver damage by 
catalyzing the reduction of quinones in cells 
[38]. In this study, pretreatment with HBAI 
could up-regulate Nrf2 and its downstream sig-
nal expression to some extent, indicating that 

HBAI alleviated oxidative stress by stimulating 
the Nrf2 pathway.

It is well known that the NF-κB pathway plays  
an important role in inflammation response 
[39]. NF-κB belongs to Rel protein family, which 
is recognized as an important transcriptional 
regulator. The regulation of NF-κB is mainly 
through three aspects: inhibiting its phosph- 
orylation, blocking its nuclear localization and 
binding to DNA, and inhibiting the expression  
of target genes [40]. IKK is a serine specific  
protein kinase, which can be activated by  
extracellular stimulation and catalyze phos-
phorylation of specific sites of IκB (the inhi- 
bitory protein of NF-κB), leading to ubiquitina-
tion of IκB and degradation [41]. The activation 
of IKK will directly affect the phosphorylation  
of κB protein and NF-κBp65, thereby des- 
troying the complex of IκB and NF-κB [42]. The 
released NF-κB enters the nucleus and initiates 
transcription of the regulated gene. And IκBα  
is an crutial member of the IκB family, phos-
phorylated IκBα can be degraded by ubiquitin 
proteasome to enhance the activation of NF- 
κB [43]. In this experiment, we found that  
HBAI could inhibit the expression phosph- 
orylation of NF-κBp65, IκBα and IKKα/β, which 

Figure 5. Pretreatment with HBAI suppressed the Nrf2 
pathway. A. The expression of Nrf2, HO-1, and keap1 was 
analyzed by Western blotting; B. The hepatic mRNA ex-
pression of HO-1, NQO1, GCLC, GCLM, MGST-1 was de-
termined by RT-PCR. The experimental data were all ex-
pressed as mean ± SD (n = 3). *P < 0.05 vs. the normal 
group; #P < 0.05 vs. the model group.
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Figure 6. Pretreatment with HBAI restrained the activation of NF-κB pathway. Protein levels were measured by 
western blot, bands 1 to 6 represent the normal, model, Positive, high-, medium-, and low-dose of HBAI groups. 
The experimental data were all expressed as mean ± SD (n = 3). *P < 0.05 vs. the normal group; #P < 0.05 vs. the 
model group.

indicated that HBAI ameliorated acetamino-
phen-induced inflammation by restraining the 
activation of the NF-κB pathway. 

In summary, this study clearly demonstrates 
that HBAI has strong protective effect on  
acetaminophen-induced acute liver injury in 
mice, and the underlying mechanism may be 
related to eliminating reactive oxygen species 

free radicals, inhibiting the activation of NF-κB 
pathway, and promoting the Nrf2/HO-1 path-
way (Figure 7).
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