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Abstract: Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves ar-
ticular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies 
on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances 
with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), 
which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential 
mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target 
against RA. However, the role IDO1 plays in the OA pathogenesis hasn’t been discussed. The new OA experimental 
analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 
metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, 
the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays 
a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply 
discussed. It could be a promising target in the immunotherapy of OA disease. 
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Introduction 

Osteoarthritis (OA) pathophysiology remains a 
serious challenge that hinders therapeutic 
researches. Clinically it is referred to severe 
joint cartilage degeneration [1-4]. Different 
reports described OA as an inflammatory dis-
ease according to the high levels of proinflam-
matory factors such as IL-1β, TNF-α, IFN-γ, IL-6 
and IL-13 [5-7] as seen in Table 1. However, 
anti-inflammatory mediators such as TGF-β1 
and regulatory T cells have been studied in OA 
pathophysiology as well [8-10]. Recently, Merlo 
and colleagues reported that indoleamine 2,3 
dioxygenase1/2 (IDO1/2) are candidate thera-
peutic targets to treat inflammations in the 
autoimmune diseases [11, 12]. IDO2 works as 
an essential mediator of autoreactive B and T 
cell responses in the rheumatoid arthritis (RA) 
[12]. He developed a novel monoclonal anti-
body (mAb)-based approach to target IDO2 in 
the preclinical arthritis models. Results showed 

an efficient treatment against RA in mice. 
Moreover, using of 1-Methyl-d-tryptophan (IDO 
inhibitor) blocked autoreactive B cell activation 
and recurrence of arthritis in mice [11]. In our 
hospital, 52 synovial fluid samples were 
obtained from OA patients in comparison to 5 
synovial fluid samples were obtained from non- 
OA patients (during surgeries of joint replace-
ment). By ELISA kits all the OA SF samples 
showed overexpression of IDO1 in comparison 
to non-OA samples as seen in the Table 2. 
Suggesting a possible role of IDO1 in the OA 
pathogenesis. Furthermore, the role IDO1 plays 
in the autoimmune arthritis is unclear yet. Some 
studies suggesting a regulatory function of 
IDO1 in the autoimmune RA [13] while others 
reported a proinflammatory role [14, 15], or no 
role [16]. 

In the ido deficient mice, no skeletal defects 
were observed [17], but it showed increased 
Th1/Th17 cells in arthritis joints which suggest 
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Table 1. List of cytokines and chemokines involving osteoarthritis pathophysiology
Cytokine/chemokine Function Situ in The Joint Reference
IL-10, IL13, IL-4, IL-19, IL-32a, IL-32b, IL-32g and IL-32d, TGF-β It has a chondroprotective role. Other literature suggesting an inflammatory 

enhancing role
Synovial fluid/subchondral bone/
articular cartilage

[19, 36, 49, 51, 56, 58, 
59, 60, 82]

TNF-α, IL-1β, IL-1α, IFN-γ, IL-6 It increases inflammation and cartilage degradation by inducing synovitis and 
mmp13 in the chondrocytes

Synovial fluid/subchondral bone/
articular cartilage

[49, 50, 51, 53, 58, 
101]

IL-8 It induces inflammatory responses in the synovium Synovial fluid [19, 51]

IL-15, IL-17 It has inflammatory influence and some anti-inflammatory functions Synovial fluid  [50, 52]

Table 4. List of OA signaling pathways that has a relation with IDO activity
Pathway Function Situ in The Joint IDO Relation Reference
RNAKL/NF-KBP65/IGFBP5/GDF5/BMP-7/PPRA/ACVR2B/
SMAD2/IRAK1/iNOS2/TRFA6/CHRD1/TIR/CCN2

Signaling Synovial fluid/subchondral bone These pathways induce IDO secretion and 
function 

[177, 178, 179]

RALA Sox9 regulation Synovial Inhibits IDO [173]

MMP13 /MMP-1/2/3/9/ADAMTS4 Matrix degradation Synovial fluid/subchondral bone These pathways could be stimulated by IDO1 [7, 59, 176]

COX2/TNFα/JAK2/STAT3 Induce inflammations Synovial fluid These factors have a potential to induce IDO 
production

[59, 68, 102, 201, 207]

COLA1/COL2A1/ACAN Intracellular matrix Articular cartilage IDO1 regulates COAL2A1 production while 
enhances COLA1 

[87, 97, 188]

SOX9/NF-κB Transcription Synovial fluid/articular cartilage IDO1 regulates soxy9 expression  [198, 200]

TGF-β Regulatory Synovial fluid/subchondral bone/articular 
cartilage

Induces IDO activity and massively expressed 
in the presence of IDO

[32, 60, 120, 140]
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a protective role of IDO1 in the joints [18]. A 
cross sectional studies reported that IDO1 
increases peripheral inflammatory cells in the 
RA patients [19, 20]. Altogether suggesting an 
imbalance of IDO1 in the synovium may seri-
ously lead to arthritis development. However, 
the role of IDO in the OA hasn’t been searched. 
As known, mesenchymal stem cells (MSCs) pro-
duce IDO1 in response to inflammatory factors 
in the joint [21]. High levels of proinflammatory 
mediators such IL-1β, TNF-α, and IFN-γ in the 
OA [22] are supposed to induce DCs, Mo- 
nocytes, and even MSCs release IDO1 in the 
synovial fluid in response to inflammation [23] 
as presented in the Figure 1. High inflammato-
ry levels make inflammatory stress on the syno-
vial MSCs that induce high regulatory media-
tors to rebalance immune response but the 
overexpression of regulatory mediators could 
also affect the cartilage and chondrogenesis by 
inducing hypertrophy and mmp-13 leading to 
induce cartilage degradation, see Figure 2 [23-
25]. As reported, a metabolite of IDO controls 
the TNF-stimulated gene 6 (TSG-6)-mediated 
anti-inflammatory effects of human MSCs [26]. 
Wang and colleagues [26] concluded that kyn-
urenine activates aryl hydrocarbon receptor 
(AhR) in MSCs that directly binds to the TSG-6 
promoter that leads to induce TSG-6 expres-
sion. TSG-6 has anti-inflammatory role and 
chondroprotective effects in various models of 
inflammation and arthritis [27]. However, in 
recent few years the association between 
TSG-6 activities and osteoarthritis progression 
was determined at 3-year of follow-up [28]. 
Thus, the activation of TSG-6 in the synovial 
fluid of OA patients is strongly supposed to be 
stimulated by IDO1 metabolite (Kynurenic acid) 
which stimulates MSCs to release TSG-6 via 
activation of AhR receptor as presented in 
Figure 3. 

Osteoarthritis and indoleamine 2,3 dioxygen-
ase activity

As known, during OA development the joints 
functional units comprising cartilage and bone 

vascularization and formation of micro-cracks 
in joints during OA have suggested the facilita-
tion of molecules such as cytokines or enzymes 
from cartilage to bone and vice versa. The fur-
ther investigation reported TGF-β as a key cyto-
kine involved osteoarthritis fibrosis [32, 33]. 
Zhen and colleagues [34] reported that inhibi-
tion of TGF-β activity attenuated degeneration 
of osteoarthritic articular cartilage. In contrast, 
TGF-β1 initiates pathological changes of osteo-
arthritis and may increase disease severity [35, 
36]. However, the role of TGF-β1 mechanism in 
the OA pathogenesis remain controversial, and 
its upstream molecules are unknown. There is 
a specific promoter initiates upstream mecha-
nisms hasn’t been discussed. IDO1 is sup-
posed to be the responsible of TGF-β1 upregu-
lation through smad2/4 and subsequently IL-6 
[37, 38]. Moreover, IDO1 has the potential to 
activate pDCs and other immune cells to sus-
tain TGF-β1 functions and other regulatory 
mediators in the synovial [39]. 

Although, the effect of IDO1 on chondrocytes is 
unknown, it has been reported that IDO1 could 
support chondroprotective potential in the RA 
by reducing functional autoreactive Th1/Th17 
in the joints and draining lymph nodes [40]. 
Inhibition of IDO activity, or knockout of the 
gene encoding IDO in the RA animal model 
caused an increase in the severity of collagen-
induced arthritis [40]. However, the overexpres-
sion of IDO1 in the RA synovial patients was a 
serious challenge suggesting a pathogenic role 
of IDO1 in the RA. In the OA patients IDO1 over-
expression has been found in all collected sam-
ples as presented in Table 1. Thus, maybe it 
has a role in the inhibition of chondrogenic dif-
ferentiation by stimulating TGS-6 overexpres-
sion that induces chondrocytes to produce 
mmp13 leading to break down collagen type II 
and degrade extracellular matrix. Furthermore, 
the therapeutic effect of IDO1 down regulation 
in the RA animal model [12] importantly sug-
gest IDO1 involves inflammation mechanisms 
which suppose the same role in the synovial of 

Table 2. The obtained synovial fluid from OA patients and non-OA 
patients
Patients No Gender Age OA grade Samples IDO1 average level
33 Female* > 67±13 3-4 SF 25.23±6.5 IU/mL
19 Male > 65±11 3/4 SF 22.75±8.2 IU/mL
5 Male > 42±9 Negative SF 2.26±1.4 IU/ml 
OA: Osteoarthritis, SF: synovial fluid, *P<0.05.

undergo decontrolled cata-
bolic and anabolic remodel-
ing processes to adapt to 
local biochemical and bio-
logical signals [29]. Changes 
in cartilage, synovial fluid, 
and subchondral bone di- 
rectly contribute to the OA 
virulence [30, 31]. Increased 
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Figure 1. The potential role IDO could play in the pathogenesis of OA disease. As seen, in response As seen in 
response to cartilage injury proinflammatory cytokines such as IL-1β, TNF-α, and IFN-γ and inflammatory MSCs 
stimulates DCs to produce IDO1 to rebalance immune status. However, high IDO1 levels produced by DCs and MSCs 
inhibits chondrogenesis and increase the risk of cartilage erosion by enhancing cartilage inflammations.   

Figure 2. The mechanism  by which proinflammatory cy-
tokines in the OA knee joint stimulates MSCs to produce 
IDO1. IL-1β directly activates ISRE, while TNF-α, and IFN-γ 
activate ISRE via IRF1 molecule. ISRE signaling stimu-
lates STAT1 which block IDO1 suppressor gene Bin1 and 
stimulate IDO1 production via NF-κβ pathway. High levels 
of IDO1 affects chondrocytes biology and inhibits chon-
drogenesis. 
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OA patients. So, the study of IDO molecular 
mechanism in the OA pathogenesis will open 
new intellectual perspectives for OA novel treat-
ment strategy. Moreover, the determination of 
IDO1 release and molecular mechanism in 
early stage of OA disease could also represent 
immunomodulatory effects of IDO1 involving 
the synovitis of OA disease. 

Furthermore, as known human MSCs release 
IDO to reduce high inflammatory responses 
especially in the bone [21, 41]. In OA disease, 
MSCs positively express nestin to modulate 
subchondral bone structure [42]. Increases in 
nestin is partially regulated by vascular endo-
thelial growth factor (VEGF) in the OA [43]. 
Since VEGF increases the expression and activ-
ity of IDO1 in the DCs [44], we wonder whether 
the nestin+MSCs could depend on IDO path-
way to develop changes leading to initiate OA 
disease. OA-nestin+MSCs could use IDO path-
way long-term immune tolerance to modulate 
synovial immune status because plasmacytoid 
dendritic cells (pDCs) that were confirmed in 
the OA synovium efficiently enhance immune 

long-term tolerance in the presence of IDO1 
[45, 46]. Moreover, genomic and experimental 
studies evidenced that VEGF is associated with 
OA development, and its severity [47, 48], while 
VEGF high expression increases IDO1 overex-
pression and activity, which importantly sug-
gests a role played by IDO1 in the OA de- 
velopment. 

The association of osteoarthritic cytokines 
and chemokines with IDO1 pathway

The most reported cytokines in the osteoarthri-
tis are proinflammatory such as IL-1β, IFN-γ, 
IL-6, TNF-α, IL-8, and IL-17 [49-55]. However, 
regulatory chemokines also have been docu-
mented such as TGF-β, IL-10, IL-4, IL-13 and 
IL-19 [36, 51, 56-62] see Table 1. These incon-
sistent data presented incomprehensible OA 
mechanism [63]. The most interesting point 
here is that these proinflammatory cytokines 
have a pivotal role in the pathogenesis of RA 
(inflammatory disease) with significant expres-
sion but its expression in the OA was shown 
less than RA [63, 64]. Moreover, recent reports 

Figure 3. The mechanism by which IDO1 metabolites (kynurenine) impacts MSCs function in the OA pathogenesis. 
Kynurenine activates AhR receptor that induces TSG-6 production.
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revealed that ani-inflammatory cytokines and 
Treg cells showed significant increasing in the 
OA [61, 64], suggesting a secondary role of pro-
inflammatory cytokines in the OA. Also, its wor-
thy mention that IFN-γ, TNF-α in combination 
with IL-1β could actively induce IDO enzyme 
secretion by MSCs, APCs or stromal cells to 
enhance underlying immunosuppressive res- 
ponses [21, 65]. However, high inflammatory 
responses induce IDO1 activity which contrib-
ute in the production of other mediators affect-
ing chondrogenesis and induce chondrocyte 
apoptosis as seen in Figure 4. As well as IL-32 
has a potential to induce IDO1 secretion [66]. 
Thus, the OA inflammatory agents are suggest-
ed to promote IDO pathway and subsequently 
TGF-β, but whether IL-1β is the essential factor 
to initiate IDO1 pathway or IFN-γ and TNF-α is 
still uncertain. Therefore, we suggest a deep 
investigation for these proinflammatory agents 
regarding IDO1 upregulation and consequently 
chondrocytes responses in the OA. Therefore, 
we provide overview on the major pathophysio-
logical cytokines involving OA and a possible 
relation with IDO1 pathway as the following.  

Interleukin-1 beta (IL-1β)

IL-1β is one of the main proinflammatory and 
catabolic cytokines in the pathophysiology of 
OA disease [55, 67]. Long monitoring of OA 
patients synovial fluids presented rapid increas-
ing of IL-1β with OA early development [68]. 
Later, it was classified as an important bio-
chemical marker of OA prognosis. IL-1β works 
to suppress type II collagen and aggrecan syn-
thesis in the articular chondrocytes [69]. It 
could also contribute in the production of other 
inflammatory interleukins such as IL-6, IL-8 
which also showed overexpression in the OA 
[70, 71]. The blockage of IL-1β formation 
showed significant elimination in the OA severi-
ty but the results of treatment with these drugs 
were not entirely satisfactory this is suggesting 
a secondary role of IL-1β in the OA pathophysi-
ology. However, recently kynurenine (IDO1 
metabolite) exhibited capability to stimulate 
bioactive IL-1β secretion from myeloid cells 
through caspase 1 induction, while IDO-/- mice 
field to induce IL-1β cleavage and production 
[72]. So, IDO1 could has a role to initiate syno-
vitis through promoting proinflammatory IL-1β.   

Figure 4. Schematic diagram shows the potential role IDO1 coud play in the cartilage. Proinflammatory cytokines 
in the cartilage in response to injury can elicit MSCs to producing IDO1. High levels of IDO1 me-tabolites modulate 
MSCs to produce TSG-6 which has a chondrogenic inhibition potential. It stimulates cleavage of casepase3 in the 
chondrocytes that induces chondrocyte apoptosis and extracellular matrix (ECM) degradation by mmp13.
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Tumor necrosis factor alpha (TNF-α)

TNF-α is a kind of protein classified as proin-
flammatory factor that produced by antigen 
presenting cells (APCs) to stimulate inflamma-
tory responses [73]. The increasing levels of 
TNF-α in the OA patients serum specimens 
showed significant association with joint stiff-
ness and pain [62]. Many literatures reported 
that TNF-α works to recruit monocytes to 
increase IDO1 activity in the brain and some 
other organs [74-76]. Importantly, Pantsulaia 
and his colleagues revealed that there is no 
association between hand OA and plasma 
TNF-α levels [77]. Moreover, TNF-α in canine 
models did not show an association with mild 
osteoarthritic developments when increased in 
articular cartilage [78], these evidence suggest 
a secondary role of TNF-α in the OA pathogen-
esis that strongly expect its role to stimulate 
IDO pathway to stimulate synovitis. 

Interleukin-6 (IL-6)

IL-6 is an amino acid residue that mostly works 
as proinflammatory factor [79, 80]. Usually, 
osteoblasts secrete IL-6 to stimulate osteoclast 
formation [81]. In addition, normal chondro-
cytes secretes IL-6 with low expression to 
enhance chondrocytes proliferation [62]. 
However, high levels of IL-6 have been reported 
in the RA and OA synovial which being induced 
by TNF-α or IL-1β [82, 83]. The overexpression 
of IL-6 inhibits collagen II expression in the 
chondrocytes [84, 85]. Also, the dysregulated 
overproduction of IL-6 is responsible for the 
systemic inflammatory manifestations in RA 
patients [86]. Furthermore, IL-6 upregulates 
mmP13 expression in human and bovine carti-
lage explant cultures. In addition, IL-6 knock 
out mice displayed a low number of in the 
inflammatory cells in knee joints and a limited 
response to collagen induced arthritis [87]. 
Rübenhagen and his colleagues revealed that 
synovial IL-6 levels haven’t any correlation with 
OA severity in a study of 82 knee OA patients 
[88], since Van and his colleagues conducted 
that IL-6 joint cavity injection in IL6 deficient 
mice reduces cartilage destruction [89]. Worthy 
mention, IL-6 induces IDO1 expression through 
the JAK/STAT pathway [90]. This is suggesting 
that IL-6 could enhance OA synovitis through 
stimulation of IDO1 production that actively 
contributes to reduce collagen II production, as 
well as induces capspase3 cleavage. 

Interferon-γ (IFN-γ)

IFN-γ is a soluble proinflammatory cytokine that 
rapidly induces inflammation responses [91]. It 
is secreted by T cells, natural killer (NK) cells 
and macrophages [92]. IFN-γ is a homodimer 
protein that binds to the interferon γ receptor 
that triggers a cellular response to viral, micro-
bial or acute inflammation stimulation. It was 
early mentioned that IFN-γ actively participates 
in the RA synovitis [93, 94]. Later, IFN-γ was 
reported with increasing levels in the OA 
patients synovial fluids [95]. It was suggested 
that IFN-γ stimulates inflammatory cells CD4 in 
the synovium that actively inhibits chondro-
cytes proliferation [64, 96]. Others reported 
that IFN-γ induces the production of matrix 
metalloproteinases-13 (mmp-13) that inhibits 
collagen II production in the chondrocytes [97, 
98]. Besides, IFN-γ and TNF-α induce IL-6 pro-
duction in the synovial fluid [70]. Importantly, 
IFN-γ induces IDO1 upregulation in the endo-
thelial cells and tumor tissues [74, 99, 100]. 
Moreover, the induction of IDO1 in the RA and 
OA is associating with IFN-γ overexpression and 
other inflammatory factors [101]. Also, IFN-γ KO 
mice displayed increased levels of IL-17 pro-
ducing T cells and the exacerbation of arthritis. 
Indeed, splenocytes of the IFN-γ KO mice 
increased IL-17 production when cultured with 
type II collagen [102]. Furthermore, the addi-
tion of IFN-γ to the culture of APCs from IFN-γ 
KO mice significantly reduced IL-17, while the 
inhibition of IDO1 by 1-methyl-DL-tryptophan 
abolished the inhibitory effects of IFN-γ. These 
results illustrate that IFN-γ regulates IL-17 pro-
duction through IDO1 in the arthritis, since 
IFN-γ presented strong relation with IL-1β in the 
OA pathophysiology, which represent a strong 
relation of IDO1 with OA initiation. 

Interleukin-10 (IL-10)

IL-10 is a pleiotropic anti-inflammatory cytokine 
that inhibits proinflammatory cytokines produc-
tion [103]. It elicits diverse host defense mech-
anisms and maintaining the integrity and 
homeostasis of tissue epithelial layers [104]. 
Although, IL-10 classified as inhibitory cytokine 
it could block the activity of catabolic cytokines 
leading to joint stiffness and destruction [105]. 
High levels of IL-10 has been detected in the 
serum of OA patients [106] but it was suggest-
ed to provide a chondroprotective function 
[107, 108]. Moreover, LPS stimulation induces 
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low ex vivo production of IL-10 that associates 
increased risks of familial OA [109]. Meanwhile, 
recombinant human IL-10 is being tested in 
clinical trials to treat RA and other inflammatory 
diseases [110]. Van and colleagues [111] sug-
gested that in the osteoarthritic synovium and 
cartilage explant culture MSCs could produce 
inhibitory factors such as IL-10, TGF-β, and IDO 
to reduce inflammation in short term. Recently, 
IL-10 mediates the inhibitory effect of umbilical 
cord-derived mesenchymal stem cells (UCMSC) 
that regulate Cadherin-11 (CDH11) expression 
by fibroblast-like synoviocytes (FLS) in RA by in- 
ducing IDO1 production [112]. In the OA there is 
no reports confirmed the role of IDO1 yet, since 
IL-10 high levels have been reported. This 
review reports the high expression of IDO1 in 
the synovial fluid of OA patients. So, the expect-
ed role of IDO1 in the OA could has a relation 
with IL-10 chondroprotective function which 
suggesting deep investigation of this point in 
the future. 

Transforming growth factor beta (TGF-β)

TGF-β is a multifunctional regulatory cytokine 
that mostly enhances immunosuppressive pro-
cess [113]. It appears in three different mam-
malian isoforms (TGF-β1, TGF-β2, and TGF-β3) 
and other signaling proteins [114, 115]. TGF-β 
plays a critical role in the development and 
maintenance of the skeletal tissues [116]. 
Osteoblasts has the potential to secret the 
three isoforms of TGF-β which acts as anabolic 
factor that promotes osteoclasts differentia-
tion and proliferation [114]. Moreover, the 
effect of TGF-β on the osteoblast is controver-
sial, it can enhance osteoblasts differentiation, 
induce bone formation, and extracellular bone 
matrix production [117]. In contrast, osteo-
blasts showed decreased expression of TGF-β 
receptor I and receptor II in human, murine, and 
rat during differentiation, which indicates less 
sensitivity of osteoblasts to TGF-β1 in the dif-
ferentiation late phase. Furthermore, TGF-β1 
induces osteoclasts maturation and osteoclas-
togenesis of hematopoietic precursor [116, 
118]. However, TGF-β1 high levels could atten-
uates osteoclastogenesis through osteoproteo-
gerin as well as down regulating RANKL path-
way [116]. In addition, inflammatory factors 
such TNF-α and IL-1β increase the expression 
of RANKL in the chondrocytes leading to reduce 
collagen II expression. Altogether, TGF-β1 plays 

a role to reduce cartilage and bone degenera-
tion by reducing RNAKL pathway [119]. In con-
trast, recently noticed that TGF-β1 modulate 
SMAD receptor signaling that affects chondro-
cyte differentiation and potentially induces 
osteoarthritis development [60]. Besides, alter-
ations in TGF-β1 molecular activity actively  
contributes in the OA progression [120]. Im- 
portantly, TGF-β1 increasing levels associated 
the overexpression of IDO in many diseases 
that contribute in the immune tolerance en- 
hancement [121, 122]. In the antigen induced 
arthritis IDO/TGF-β1 mediates a protective 
effect of IFN-α [37]. However, the role of TGF-β1 
in the OA is still controversial but the detection 
of IDO high levels in the OA patients synovial 
could largely help to understand TGF-β1 func-
tions. Therefore, IDO mechanism in the OA 
needs an urgent study to provide clear interpre-
tation for many inflammatory and regulatory 
factors involving OA pathogenesis.   

Indoleamine 2,3 dioxygenase and possible 
activity in the joint  

IDO is an intracellular immunomodulatory en- 
zyme [123, 124]. It engages immunotolerance 
mechanisms such as kynurenine pathway that 
catabolizing L-tryptophan through O2 depen-
dent oxidation to enhance immunosuppressive 
processes [38, 125]. It is secreted by many cell 
types such as antigen presenting cells (APCs), 
stromal cells, mesenchymal stem cells (MSCs), 
tumour cells, endothelial cells and some of the 
alternatively activated macrophages [126-
128]. By 2018 the function of IDO in different 
diseases was a focus of research and drug dis-
covery efforts. As well as, the efforts to use IDO 
as a biomarker for tumor prognosis [129]. Also, 
it associates with some neurodegenerative 
pathogenesis [130, 131]. It has the potential to 
alter the immune status from inflammatory to 
regulatory and orchestrate intracellular mecha-
nisms to elicit suppressive cytokines and sig-
nals [38, 132]. Pathogenesis of OA and RA 
present high association with NF-κβ, RANKL, 
TGF-β, COX and IL-6 pathways that essentially 
has a strong relation with IDO1 [38, 133]. In 
addition, many literatures evidenced the 
involvement of IDO in the pathogenesis of RA 
and some of autoimmune diseases [20, 134, 
135]. The activity of IDO1 in the OA pathogen-
esis is the current hot topic in the new projects 
because promising results in the RA important-



Osteoarthritis, Alahdal et al

2330	 Am J Transl Res 2020;12(6):2322-2343

ly suggest possible role of IDO1 in the OA patho-
genesis. As presented in Figure 4 IDO1 could 
efficiently affects the chondrogenic functions 
of MSCs by different mechanisms, one of the 
proposed mechanisms by stimulating TSG-6 as 
described above. 

The possible theories about the effect of IDO1 
on chondrogenic functions of synovial MSCs as 
seen in Figure 5 could be summarized as the 
following 1) may be IDO1 induce Wnt signaling 
as reported in the cancer cell [136] which has 
been proved to regulate Sox9 activity [137]. 2) 
IDO1 could attenuates CCR2, Hifα, or PKA [38], 
which directly inhibits Sox9 activity [138, 139]. 
3) the activation of ERK1/2 could inhibited by 
IDO1 that leads to inactivate Sox9 in the MSCs 
[140]. All these theories suggest an indirect 
effect of IDO1 on the chondrogenic signaling 
Sox9 which directly mediates collagen type II 
and 9 production as well as aggrecan.   

On the other hand, IDO enzyme works on the 
tryptophan to produce kynurenic acid [141], 
which mainly stimulates calcium mobilization 
and inositol phosphate production in a GPR35-
dependent manner in the presence of Gqi/o 
chimeric G proteins [142, 143]. In the autoim-
mune diseases, the accumulation of kynurenic 
acid showed significant relation with mechanis-

encourage the deep investigation of IDO molec-
ular activity in the chondrocytes. Upon the pre-
vious evidence it is supposed that activation of 
runx2 and mmp13 in the chondrocytes could 
be stimulated by IDO high levels in the synovial 
fluid which lead to initiate chondrocytes apop-
tosis and inhibition of chondrogenic prolifera-
tion but these suggestions need deep research.        

Cellular populations in the OA synovitis and 
possible relation with IDO

Although, there are many evidence have con-
sistently presented immunological changes in 
the subchondral bone and synovium before 
and during OA initiation [149-151] yet the role 
of infiltrating immune cells and molecular sig-
nals remain largely uncertain [152-155]. Fur- 
thermore, OA synovial fluid and bone marrow 
MSCs, osteoblasts, osteoclasts, and chondro-
cytes were investigated deeply, it presents 
changes in the function in comparison to the 
same normal cells [156, 157]. However, the 
reason for these changes and its immune cel-
lular motives remains a big challenge. Many lit-
eratures have discussed the immune cell 
involvement in the OA pathophysiology [154, 
158-161] as seen in Table 3. CD4+ T cells were 
significantly described in the synovium and 
subchondral bone of OA [162, 163], but T cell 

Figure 5. Schematic diagram displays the possible theories of IDO1 mecha-
nisms by which IDO effects Sox9 signaling in the MSCs leading to inhibit 
chondrogenic genes. As known IDO1 induces Wnt signaling that directly in-
hibits Sox9 and consequently Col2a, Col9a, and aggrecan. Also, IDO has 
the capability to inhibit PKA, CCR2, or Hif-α which work as Sox9 upstream 
molecules. Indeed, IDO1 could directly elicits ERK1/2 signaling that directly 
inhibits Sox9 and subsequently inhibits chondrogenic genes. 

tic target of rapamycin (mTOR) 
activity [144]. Dai and his col-
leagues [145] reported that 
mTOR signaling is regulating 
runx2 in the skeletogenesis in 
the mice. Also, runx2 activates 
p13k/akt signaling in the skel-
etogenesis [146]. These lines 
of evidence strongly support 
the expected role of IDO in the 
chondrogenesis inhibition be- 
cause the IDO deficient mice 
didn’t display any skeletal 
defects that supports the idea 
of IDO involves OA pathogene-
sis. Consequently, runx2 coo- 
perates with mmp13 to de- 
grade cartilage [147]. Further 
analysis showed that DNA 
methylation of runx2 P1 medi-
ates mmp13 transaction in 
the chondrocytes [148]. So, 
the molecular activity of IDO 
to engage OA pathogenesis  
is extremely expected which 
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subsets population haven’t being discussed 
enough, which makes T cells role in OA is very 
complex. Moreover, there are various immune 
cells have been reported in the OA such as NK, 
Mast cells, Macrophage, mDCs, and pDCs 
etc164 [164-166]. However, there are no clear 
roles for these cells in the pathogenesis pro-
cess. Also, reported cytokines or secreted che-
mokines didn’t figure out a clear working mech-
anism, which also suggests a role for other mol-
ecules haven’t been searched yet. As the popu-
lation of MSCs and pDCs has been massively 
described in the OA patients synovial. Thus, it’s 
supposed that IDO1 has a potential role to 
orchestrate immune cell functions in the 
synovium cavity. Moreover, IDO1 overexpres-
sion has been detected in the RA synovial [12, 
14], as well as in OA synovial as shown in Table 
2. Furthermore, recent reports described the 
active role of regulatory cells in the OA patho-
genesis such as Treg cells (CD4+CD25+FOXP3+) 
[30, 155, 167], which strongly supports that 
regulatory pathways could has a key secret in 
the OA pathophysiology. Nevertheless, interest-
ing evidence of IDO1 in the OA specimens is 
encouraging deep searching of IDO1 accumula-
tion rate at OA different grades. 

Moreover, as presented in Table 3 recent refer-
ences reported an interesting population of 
mast cells, NKs, and neutrophils in the synovi-
um of OA patients [64, 168-170]. Interestingly, 
others reported the role of plasmacytoid DCs in 
the OA [45, 171], which is supposed to produce 
IDO enzyme under the effect of proinflamma-

tory mediators. So, this is confirming a possible 
role of IDO pathway in the OA pathophysiology 
because IDO1 expression showed direct effect 
on chondrocytes proliferation and collagen II in 
the matrix that suggesting a possible effect on 
the metalloproteinases. In addition, all previ-
ous literature searched OA have considered the 
same cell populations of rheumatoid arthritis 
(RA), so they concluded an inflammatory status 
but less than RA, while OA is distinctly different 
from RA. Therefore, there are some critical 
questions need to be answered; why the same 
immune populations were determined in the 
RA also have been reported in the OA? We 
speculate that OA infiltrating cells yet haven’t 
clear interpretation specify their mechanisms 
in the OA pathogenesis. Also, high expressed 
cytokines in OA has been ascribed to the same 
reasons of RA, which is a real confusing point. 
Immune cells mentioned in the OA synovial 
showed proinflammatory and sometimes regu-
latory functions as seen in Table 3. This contra-
diction presents serious obstacles hinder OA 
pathology understanding. Moreover, several 
reports concluded that T cell’s specific func-
tions aren’t clear in the pathophysiology of OA 
[64, 172]. A thorough screening for active 
immune cells in the subchondral bone or 
synovium of OA still need deep understanding. 
Most active cells, signals, and overexpressed 
molecules leading to subchondral bone thick-
ness, sclerotic and inflammations haven’t been 
investigated well because the amount of litera-
ture reporting OA and disease mediating 
immune cells showed massive conflicts in their 

Table 3. List of the Immune Cells in the Osteoarthritis which have a relation with IDO1 immune activ-
ity
OA-Immune cell Activity in the OA-Synovial fluid Reference
CD19+CD20+ Low activity [166]

CD3+CD8+ Low activity [160, 166]

T cells/B Cells CD4+/CD8+ High activity, it could stimulate synovitis by production of proinflam-
matory cytokines

[152, 161, 162]

CD4+ T Cells/Active Macrophage Med activity by secretion of TNF-α [153, 154]

Treg CD4+CD25+ High activity, it could contribute to increase TGF-β1 and IL-10 that 
increase pain and joint stiffness. It increases activated effector 
memory cells (CD62L-CD69+) 

[8, 167]

CD4+CD25+ Tim-3+ Significant levels in the OA more than RA that enhance regulatory 
responses 

[155]

Macrophage CD68+/B Cell CD20+ Low expression in the OA synoviits  [161]

Macrophage CD68+ Significantly high in RA but limited increasing in the OA [164, 165]

Mast Cells It was noticed in the OA synovial but with low populations   [64, 168]

CD56+CD16-/Low cytotoxicity NK Cells/Neutrophils Recently it was reported but with low numbers  [169, 170]

plasmacytoid DCs/Myeloid DCs These cells were significantly noticed in the synovial and bone mar-
row of OA patients but its function isn’t clear 

[45, 171]
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functions [82]. Hence, our experimental find-
ings open a new route to study OA pathophysi-
ology regarding IDO1 activity that importantly 
could contribute to solve OA pathogenesis 
secrete.    

Signaling pathways in the OA and possible 
relation with IDO1 

There are many signaling pathways have been 
reported in the OA presented in Table 4, but the 
main pathway orchestrating pathological mech-
anism is undetermined. Thus, deep under-
standing of signaling is needed to provide supe-
rior strategy to treat OA. Virous pathways play 
important roles involving chondrocyte metabo-
lism, differentiation, proliferation, apoptosis, 
synthesis, and degradation of extracellular ma- 
trix (ECM) in the OA pathological stages, see in 
Table 4 such as SRY-related protein 9 (Sox9) 
[173], insulin-like growth factor (IGF), nuclear 
factor-κappa beta (NF-κβ), bone morphogenetic 
protein (BMP), transforming growth factor β 
(TGF-β) that make osteoarthritis pathogenesis 
understanding is too difficult [174, 175], be- 
cause of paradox functions, some of these 
pathways are proinflammatory and others are 
anti-inflammatory [176]. This ambiguity hinders 
therapeutic strategies advancement. There- 
fore, the discussion of OA reported pathways 
regarding their association with IDO could help 
to declare many important points because IDO 
pathway works as a bridge between inflamma-
tory and anti-inflammatory mechanisms. In the 
following some of the most important signaling 
pathways in the AO pathogenesis with brief 
description of possible relation with IDO. 

Receptor activator of nuclear factor-κβ ligand 
(RANKL)

RANKL is one of TNF family that located on the 
osteoblasts. It triggers osteoclastogenesis by 
interaction with RANK receptor on the osteo-
clasts [177]. Its early expression after fracture 
suggests that RANKL plays a pivotal role to 
regulate immune response [177, 178]. So, it 
has been widely studied in the RA and OA 
pathophysiology [179]. Scientists suggest that 
RANKL is induced by vascular endothelial 
growth factor (VEGF) in the RA synovitis [180, 
181]. Besides, RANKL levels in the synovial of 
RA patients was correlated with VEGF concen-
tration [182]. They play unique role to induce 

osteoclastogenesis and inhibition of chondro-
genesis. In the murine and chicken, chondro-
cytes regulate osteoclastogenesis by producing 
RANKL [183]. Moreover, RANKL has the poten-
tial to regulate osteoclasts differentiation 
[184]. In the OA RANKL was significantly associ-
ated with osteoproteogerin (OPG) that pro-
duced by osteoblasts [185]. Recent evidence 
suggested that OPG/RANKL may be implicated 
in the subchondral bone changes that lead to 
develop articular cartilage degeneration [185]. 
In addition, the functional consequence of 
RANKL expression by the articular chondro-
cytes remains unknown. It’s thought that 
RANKL reduced function participates in the 
induction of chondrocytes apoptosis [186]. Few 
years ago, by the study of New Zealand (NZ) 
rabbits, articular cartilage in response to syno-
vitis diffuses RANKL to subchondral bone 
which extremely induces subchondral bone 
changes and mineralization that reduce carti-
lage nourishment leading to degeneration 
[187]. Recent reports revealed that RANKL/
OPG affects chondrocytes to produce high lev-
els of matrix metalloproteinase-13 leading to 
inhibit collagen II production and induce carti-
lage degradation [188]. On the other hand, 
regulatory function of RANKL has been noticed 
[189]. In addition, two studies reported immu-
nosuppressive role of RANKL in the regulatory 
DCs and Treg cells by inducing IL-10 expression 
[190, 191]. As known, regulatory DCs and IL-10 
strongly increase IDO1 production, as well as 
regulatory DCs produces high levels of IDO 
[192, 193]. This is suggesting that RANKL could 
has a role to induce IDO1 production in the 
synovial fluid and subchondral bone area that 
could enhance IDO related factors to promote 
OA development. This point needs more investi-
gation because no direct relation has been 
reported between RANKL and IDO in the RA or 
any other arthritis. 

Nuclear factor kappa-BP65 (NF-κβ P65)

NF-κβ is a transcriptional pathway that play 
critical role to regulate the expression of many 
genes. It contains five family inducible tran-
scription factors (p65/RelA, RelB, cRel, p50, 
and p52), which form homodimers or heterodi-
mers that bind DNA differentially [194, 195]. 
Moreover, NF-κβ has a potential to enhance 
inflammatory responses and regulate immuno-
suppressive mechanisms through phosphory-
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lation and release NF-κβ from its inhibitor to 
bind DNA [196]. Moreover, NF-κβ p65 phos-
phorylation has not yet been fully character-
ized, it mainly depends on the stimulus and cell 
type [197]. Recently, it was reported that NF-κβ 
p65 is induced in chondrocytes by IL-1β [198]. 
Importantly, in 2008 Chen and colleagues 
[199] suppressed the experimental OA by tar-
geting NF-κβ p65 expression. They used adeno-
viral vector-mediated nuclear factor-κBp65 in 
the rat model to reduce OA. Results showed 
that downregulation of NF-κβ p65 significantly 
reduced early OA development in the rat model. 
Additional studies revealed that NF-κβ p65 
mediates cellular proliferation, inflammatory 
cytokines, and apoptosis mediators [200]. 
Many researchers suggest that NF-κβ p65 
works to induce many cytokines such as TNF-α, 
IL-6, IL-1β and IL-2, as well as induces enzymes 
such as cyclooxygenase (COX)-2, and nitric 
oxide synthase (iNOS) [201-203] that actively 
contribute in the OA pathophysiology. This is 
strongly suggesting that NF-κβ p65 could stim-
ulate IDO secretion in the synovial fluid, 
because most of the factors being induced by 
NF-κβ p65 have the potential to stimulate IDO1 
expression. Furthermore, targeting NF-κβ p65 
in the OA was reported as potential therapeutic 
strategy [204, 205] but because the associa-
tion of this pathway with many biological activi-
ties makes this choice unsatisfied. Moreover, it 
was reported that NF-κβ p65 facilitates chon-
drogenic differentiation by early transient acti-
vation as well as it determines Sox9 early 
expression and other chondrogenic pathways 
[206]. It means targeting NF-κβ p65 to treat OA 
isn’t a good choice. There are another interest-
ing targets have been reported recently such 
as stat3 [207]. However, the investigation of 
IDO pathway in OA pathogenesis could explore 
a novel therapeutic option.

Conclusion  

This review is the first article discusses the role 
of IDO1 in the OA pathogenesis according to 
the previous literature and new experimental 
evidence from synovial fluid of OA patients. 
IDO1 could play an important role in the early 
stage of OA pathogenesis and participates in 
the immune modulations that inhibits chondro-
genesis and enhance cartilage degeneration. 
Therefore, we recommend a deep investigation 
of IDO1 molecular mechanism in the OA 
disease.  
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