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Abstract: Accurate diagnosis of sepsis remains challenging, new markers or combinations of markers are urgently 
needed. In the present study, we screened differentially expressed genes (DEGs) between sepsis and non-sepsis 
blood samples across three previously published gene expression data sets. Common upregulated and downregu-
lated DEGs were ranked according to their average functional similarity. The ten genes (OLFM4, ORM1, CEP55, 
S100A12, S100P, LRG1, CEACAM8, MS4A4A, PLSCR1, and IL1R2) with the largest average functional similarity 
among the common upregulated genes and another ten genes (THEMIS, IL2RB, CD2, IL7R, CD3E, KLRB1, PVRIG, 
CCRR3, TGFBR3, and PLEKHA1) with the largest average functional similarity among the common downregulated 
genes were separately identified as the upregulated crucial gene set and the downregulated crucial gene set. Gene 
set variation analysis (GSVA) was used to obtain the GSVA index of each sample against the two crucial gene sets. 
Both the two crucial GSVA indexes may be robust markers for sepsis with high area under ROC curve. The diagnostic 
utility of the upregulated GSVA index was validated in another independent data set. Functional analyses revealed 
several sepsis-related pathways. In conclusion, we proposed two sepsis-related gene sets across multiple data sets 
and created two GSVA indexes with promising diagnostic value.

Keywords: Sepsis, systemic inflammatory response syndrome, biomarker, gene set variation analysis

Introduction

Sepsis is a heterogeneous disease involving a 
dysregulated systemic response to infections 
caused by bacteria, fungi or viruses, which may 
lead to organ dysfunction [1]. No specific treat-
ment currently exists for sepsis [2]. Sepsis is a 
common illness and one of the ten leading 
causes of death worldwide [3]. Even though 
there has been some progress in the treatment 
of sepsis in the last years. The mortality rate of 
sepsis is still terrible, the risk of death from 
sepsis is as high as 30%, and risk of death 
rises to 50% in the case of severe sepsis and 
around 80% in the case of septic shock [4]. The 
diagnosis of sepsis can be complicated due to 
its clinical similarities with systemic inflamma-
tory response syndrome (SIRS), which can also 
lead to multiple organ failure and death [5]. 
SIRS can be caused by infection, trauma, 
burns, pancreatitis, or a variety of other injuries 
[6]. A previous study proposed that screening 
ward patients using SIRS criteria for identifying 

those with sepsis would be impractical [7], 
thus, one of the challenges facing sepsis re- 
search is to determine which patients are truly 
infected.

Antibiotics are currently the standard treatment 
for sepsis [8]. However, delays in the use of 
antibiotics can result in increased mortality [9]. 
Since sepsis and non-bacterial SIRS are hard to 
distinguish in the early stages, their clinical 
symptoms were very similar. Antibiotics are 
often abused, which may further contribute to 
the spread of drug resistance. Blood purifica-
tion techniques, immunomodulatory drugs and 
treatments targeting other systems including 
the heart, endothelial cells or coagulation cas-
cades are also used for sepsis management 
[10], but they lack specificity. The biomarkers 
such as c-reactive protein (CRP) [11] and pro-
calcitonin (PCT) [12] could be used to distin-
guish bacterial sepsis from other inflammatory 
conditions, but they had some limitation [13]. 
There was another biomarker, lactate which 
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could use to diagnosis sepsis, however, it lacks 
specificity [14]. Therefore, in order to establish 
a targeted treatment for sepsis, it is necessary 
to first establish a diagnostic model able to dis-
tinguish sepsis and non-sepsis conditions.

In this study, we identified differentially expre- 
ssed genes (DEGs) between sepsis and non-
sepsis blood samples across multiple data sets 
and created two gene sets separately compri- 
sed of ten genes as diagnostic models of sep-
sis. The receiver operating characteristic (ROC) 
curve analysis was used to explore the poten-
tial diagnostic value of these two gene set vari-
ation analysis indexes for sepsis, and further 
validated this in an independent data set. 
Moreover, we explored the potential role of 
these genes in sepsis pathways using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), 
and their potential involvement in dysregulated 
systemic responses.

Materials and methods

Data collection and processing

Gene Expression Omnibus (GEO) datasets we- 
re downloaded from https://www.ncbi.nlm.nih.
gov/geo/ and used to compare gene expres-
sion in sepsis and non-sepsis. GSE57065 [15] 
included whole blood gene expression profiles 

of these probes was considered to reflect the 
expression of the gene. The workflow of the 
present study was shown in Figure 1.

Principal component analysis (PCA) and differ-
entially expressed gene (DEG) analysis

To evaluate whether differences in gene expres-
sion patterns in whole blood can distinguish 
between sepsis and non-sepsis, the prcomp 
[17] function was used to perform PCA [18], 
and the ggbiplot package in R [19] was applied 
to visualize the results. Compared with non-
sepsis, DEG were screened using limma pack-
age, and |log fold change (FC)| > 1.5 and P 
adjusted by the false discovery rate (FDR) < 
0.01 were considered significant. We applied 
Venn diagram analysis [20] to find upregulated 
and downregulated genes common to the three 
data sets.

Identification of crucial genes, Gene Set 
Variation Analysis (GSVA) and ROC curve 
analysis

Crucial genes were screened by semantic simi-
larity in the upregulated and downregulated 
gene sets of all three GEO data sets. According 
to the semantic similarities of Gene Ontology 
(GO) terms used for gene annotation, we ranked 
the gene as used to inside the interactome by 

Figure 1. Flowchart 
of the present study.

of 28 sepsis samples and 25 
non-sepsis healthy samples, 
based on the GPL570 plat-
form. Whole blood gene ex- 
pression profiles of GSE69- 
528, which included 53 sep-
sis samples and 85 non-sep-
sis (uninfected type 2 diabe-
tes mellitus, uninfected heal- 
thy and septicemic melioido-
sis), were based on the GPL- 
10558 platform. Whole blood 
gene expression profiles of 
GSE95233 [9], based on GP- 
L16791, included 51 sepsis 
samples and 22 non-sepsis 
(healthy) samples. The norma- 
lize Between Arrays function 
in the limma package in R 
[16] was used to normalize 
the gene expression expres-
sion profiles. If a gene corre-
sponded to multiple probes, 
the average expression value 
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the average functional similarities between the 
gene and its interaction partners. Genes with 
the highest average functional similarity were 
considered crucial genes [21]. GSVA was used 
to assess the relative enrichment of gene  
sets across samples using a non-parametric 
approach [22]. The function of gsva was used 
with gsva method to score each sample for the 
crucial gene sets, and then each sample 
received a value of the upregulated GSVA index 
and a value of the downregulated GSVA index. 
In addition, ROC curve analysis was performed 
using pROC package [23] to evaluate the diag-
nostic value of the GSVA indexes for sepsis in 
GSE57065, GSE69528 and GSE95233 data- 
sets. 

Validation of diagnostic utility of the upregu-
lated GSVA index

GSE123729, which comprised 15 sepsis sam-
ples and 27 non-sepsis samples (11 presurgi-
cal and 16 SIRS) based on GPL21970, was 
used as the validation set. Similarly, each sam-
ple was assigned a value for the upregulated 
GSVA index using the GSVA method. The ROC 
curve analysis was also applied to evaluate the 
diagnostic value of the upregulated GSVA index 
for sepsis in GSE123729. PCA was used to 
explore the utility of the classification between 
sepsis and non-sepsis using the crucial upregu-
lated genes.

Functional enrichment analysis

Standard pathway analysis may have limited 
ability to reveal regulatory mechanisms of key 
genes hidden in long pathways or sub-pathways 
[24]. Therefore, in order to identify potential 
risk sub-pathways in sepsis, sub-pathway enri- 
chment analysis was performed using the Sub- 
pathway Miner [25] package in R for the upreg-
ulated and downregulated genes in all three 
data sets. Gene set enrichment analysis (GSEA) 
[26] was performed using the normalized gene 
expression profile to explore KEGG pathways 
related to sepsis. GSEA software was used for 
this analysis (http://software.broadinstitute.
org/gsea/index.jsp), and c2.cp.kegg.v6.2. sym-
bols.gmt, which come from the Molecular Sig- 
natures Database (MSigDB) was used as the 
reference gene set [26, 27]. A nominal value of 
P < 0.05 was considered statistically signifi-
cant. The ggplot2 package [28] in R was used 
to visualize the results of the GSEA.

Results

DEGs in sepsis

The results of the PCA indicated that sepsis 
and non-sepsis whole blood samples had sig-
nificantly different gene expression patterns 
(Figure 2A). Compared with non-sepsis sam-
ples, a total of 298 DEGs were found in 
GSE57065, 174 of which were upregulated and 
124 downregulated. A total of 343 DEGs were 
observed in GSE69528, 198 upregulated and 
145 downregulated. A total of 428 DEGs were 
found in GSE95233, 257 regulated and 171 
downregulated (Figure 2B).

A total of 88 DEGs were upregulated in all three 
data sets, while a total of 32 downregulated 
DEGs were common to the three data sets 
(Figure 2C). The heatmap showing upregulated 
and downregulated gene sets shows their 
potential to distinguish between sepsis and 
non-sepsis (Figure 2D).

Crucial GSVA index may have diagnostic for 
sepsis

We ranked genes by their average functional 
similarity relationships with other genes within 
the interactome. In the three GEO data sets, 
the ten genes with the largest average function-
al similarity among the common upregulated 
genes of sepsis were OLFM4, ORM1, CEP55, 
S100A12, S100P, LRG1, CEACAM8, MS4A4A, 
PLSCR1 and IL1R2 (Figure 3A), while THEMIS, 
IL2RB, CD2, IL7R, CD3E, KLRB1, PVRIG, CC- 
RR3, TGFBR3 and PLEKHA1 showed the largest 
functional similarity among the common down-
regulated genes (Figure 3B). The heatmap 
showed that these DEG expression patterns 
could distinguish sepsis from non-sepsis 
(Figure 3C). In the ROC curve analysis, the 
GSVA index of upregulated genes had an AUC = 
0.9849 in GSE57065, an AUC = 0.8276 in 
GSE69528, and an AUC = 0.7669 in GSE95233 
(Figure 3D, 3E). The GSVA index of downregu-
lated genes had an AUC = 0.9712 in GSE57065, 
AUC = 0.8469 in GSE69528, and AUC = 0.6087 
in GSE95233.

Validation of upregulated GSVA index in an in-
dependent data set

The ROC analysis suggested that the upregu-
lated GSVA index may be a robust marker for 
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sepsis, with AUC = 0.929 (Figure 4A) in the 
independent data set. Compared with non-sep-
sis samples, the upregulated GSVA index in 
sepsis samples was significantly higher (Figure 
4B). Subsequently, we found that sepsis and 
non-sepsis could be well differentiated in 
GSE123729 based on the expression patterns 
of the crucial upregulated genes (Figure 4C).

Dysfunctional pathways in sepsis

The sub-pathway enrichment analysis indicat-
ed that the common upregulated genes were 
involved in various sepsis-related pathways, 
such as coagulation cascades, P53 signaling 
pathways and MAPK signaling pathways. The 
common downregulated genes were involved in 

Figure 2. Differentially expressed genes in sepsis compared to non-sepsis. A. Principal component analysis of sepsis 
vs. non-sepsis. B. Manhattan plot of differentially expressed genes in sepsis and non-sepsis. The top ten upregulated 
and downregulated genes with the highest significance (ranked by P value) are highlighted. Gray represents genes 
that are not significantly differentially expressed. C. Venn diagram showing upregulated genes and downregulated 
genes. D. Expression heatmap of upregulated and downregulated genes common to the three data sets.

Figure 3. The two crucial gene set variation analysis (GSVA) indexes in sepsis. A. Crucial upregulated genes. B. Cru-
cial downregulated genes. C. Heatmap of crucial genes and GSVA index in all three data sets. D. Receiver operating 
characteristic (ROC) curve analysis of upregulated GSVA index. E. ROC curve analysis of downregulated GSVA index.
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Jak-STAT, PI3K-Akt and T cell receptor signaling 
pathways (Figure 5A). The GSEA results also 
confirmed that complement and coagulation 
cascades and P53 signaling pathway were 
enriched in sepsis samples in all three data 
sets. In contrast, allograft rejection, autoim-
mune thyroid disease and T-cell receptor sig-
naling pathway were enriched in the non-sepsis 
samples in the three data sets (Figure 5B).

Discussion

In original study of GSE57065, the correlation 
between gene expression pattern and clinical 
severity of sepsis was evaluated by severity 
score [29]. In original study based on GSE- 
95233, several candidate biomarkers, includ-
ing CX3CR1 and Lilrb 2, were identified as prog-
nostic biomarkers of sepsis [9]. The aim of 
original study based on GSE69528 was to find 
biomarkers to distinguish bacterial-induced 
sepsis and sepsis caused by other pathogens 
[30]. Compared with these three original stud-
ies, we pay more attention to the variation of 
the crucial gene sets rather than the aberration 
of a single molecule. In the present study, we 
screened common upregulated or downregu-
lated genes across three gene expression data 
sets of patients with sepsis in comparison with 
non-sepsis individuals. We identified a crucial 
gene set according to the average functional 
similarity among genes upregulated or down-
regulated across the various data sets. The cru-
cial upregulated gene set comprised OLFM4, 
ORM1, CEP55, S100A12, S100P, LRG1, CEAC- 
AM8, MS4A3A, PLSCR1 and IL1R2. A previous 
studies have shown that OLFM4 can negatively 
regulate the defense response against bacteri-
al infections [31]. ORM1 was found to be signifi-
cantly upregulated in sepsis [32, 33], similarly 
to S100P [34] and LRG1 [35], and they may 

have a role as sepsis biomarkers. S100A12 
and CEACAM8 may be involved in natural immu-
nity against sepsis [36, 37]. PLSCR1 has been 
shown to take part in innate protective mecha-
nisms against a bacterial pore-forming toxin 
[38]. IL1R2 is a potential biomarker for diagno-
sis of sepsis [39]. In our present study, CEP55 
and MS4A4A were upregulated in sepses and 
identified as crucial genes, this indicates CEP- 
55 and MS4A4A may be closely associated 
with sepsis. OLFM4 could promote leukocyte 
mediated migration, neutrophil activation and 
degranulation process [40]. CEP55 can cause 
the proliferation of cytotoxic T lymphocytes in 
vivo [41]. S100A12 plays an important role in 
promoting the formation of osteoclasts, which 
have a certain effect on systemic inflammation 
[42]. High expression of PLSCR1 could inhibit 
phagocytosis of macrophages [43]. Tumor infil-
trating regulatory T cells (Treg) can inhibit tumor 
antigen-specific T cells, and IL1R2 was found to 
be expressed on the cell surface of Treg [44]. 
Most of the genes are found to be related to 
immune cells, Therefore, the variation of the 
crucial gene sets may reflect the response to 
sepsis in the host immune system.

The crucial downregulated gene set included 
THEMIS, IL2RB, CD2, IL7R, CD3E, KLRB1, 
PVRIG, CCRR3, TGFBR3 and PLEKHA1. Previous 
work found that IL2RB and CD3E were nega-
tively correlated with sepsis organ failure and 
mortality [45], which is consistent with our 
study. In other study [46], IL7R expression was 
also found to be downregulated in sepsis. 
TGFBR3 was suggested to help identify a “bac-
teremia-prone” phenotype in sickle cell anemia 
[47]. There were few studies reporting a rela-
tionship of THEMIS, CD2, KLRB1, PVRIG, 
CCRR3 or PLEKHA1 with sepsis. Our result sug-
gests that the downregulation of these genes 

Figure 4. Validation of the upregulated gene set variation analysis (GSVA) index using the GSE123729 expression 
data set. A. ROC curve analysis of the upregulated gene set. B. Comparison of GSVA score in sepsis vs. non-sepsis 
in GSE123729. C. Principal component analysis of the crucial upregulated gene set in GSE123729. 
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may be response of the host to sepsis. THEMIS 
was the key in the development of T-cell [48]. 
IL12RB was associated with impaired T cell 
[49]. CD2 is a glycoprotein on the surface of T 
lymphocytes, and its abnormality may be due 
to the activation of lymphocytes [50]. IL7R 
could develop into plasma like dendritic cells 

[51]. CD3 affinity is closely related to the distri-
bution of T cell rich tissue [52]. PVRIG was a 
checkpoint receptor that can induce T cell 
enhancement [53]. TGFBR3 was found to be 
preferentially expressed in CD4+ T cells [54]. 
Thus, the aberrant expression of genes may be 
caused by the blood cell composition change. 

Figure 5. Functional enrichment analysis. A. Sub-pathway analysis for common upregulated/downregulated genes 
in sepsis. B. Pathways enriched in sepsis or non-sepsis in the three gene expression data sets.



Two gene set variation index as biomarker of sepsis

2756	 Am J Transl Res 2020;12(6):2749-2759

Nevertheless, compared with the cell popula-
tion level, our present study may access these 
subtle changes due to the variation of crucial 
gene sets were determined. In clinical practice, 
procalcitonin (PCT) assays are widely used for 
the diagnosis of sepsis, [55] although a previ-
ous meta-analysis reported that PCT has a sen-
sitivity of only 76% and a specificity of 70%  
for bacteremia [56]. Therefore, more specific 
markers are urgently needed for effective diag-
nosis of sepsis. In the present study, we creat-
ed two GSVA indexes and found that they may 
be robust biomarkers for sepsis, as suggested 
by their high AUC. The upregulated GSVA was 
also validated with an independent data set. 
The two GSVA indexes may be worthy of further 
exploration. 

The occurrence of certain diseases is not 
always caused by the abnormality of the whole 
pathway involved in the biological process, but 
it can be caused by the dysfunction of a sub-
pathway [57]. Several upregulated genes in 
sepsis were enriched in the sub-pathway analy-
sis, including complement and coagulation cas-
cades, which is consistent with other research 
[58]. Complement and coagulation cascades 
can facilitate the containment and destruction 
of pathogens to protect against bacterial 
spreading within the body. Inhibition of p53 
expression can significantly inhibit cardiomyo-
cyte apoptosis induced by sepsis [59], and p53 
signaling was upregulated in our sepsis data, 
which means that it may promote the develop-
ment of the disease. Kidney transplant recipi-
ents developing sepsis showed inferior patient 
survival and allograft function, and therefore 
the identification of differences in alloreactivity 
may be useful to identify transplant recipients 
at increased risk [60]. Chronic critical illness 
from sepsis has been associated with an 
enhanced T-cell receptor response [61]. These 
pathways may play a role associated with sep-
sis according to our analyses.

As our best knowledge, our study is the first 
study to explore the diagnostic value of gene 
set variation index in sepsis. However, our work 
has several limitations. Firstly, we were unable 
to validate the downregulated gene set using 
another independent data sets. One obvious 
reason is the heterogeneity of the three non-
septic samples which included healthy volun-
teers, patients with type 2 diabetes mellitus. 
Secondly, the upregulated and downregulated 

GSVA indexes have different AUC values in dif-
ferent data sets due to the different numbers of 
sample in the data sets. However, all the values 
of AUC were above 0.7 for the upregulated 
GSVA index in the all data sets. In addition, we 
did not experimentally validate the potential of 
the two gene sets for the diagnosis of sepsis. 
Therefore, it is not clear whether these genes 
are causal or merely markers for sepsis. 
Nevertheless, our study may provide a prelimi-
nary basis for the exploration of new biomark-
ers for the diagnosis of sepsis.

In conclusion, we identified two crucial gene 
sets across multiple data sets based different 
platforms in sepsis patients, and we created 
two GSVA indexes with promising diagnostic 
value for sepsis.
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