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LILRB4, from the immune system to the disease target
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Abstract: Leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4) is a member of leukocyte Ig-like receptors (LILRs), 
which associate with membrane adaptors to signal through multiple cytoplasmic immunoreceptor tyrosine-based 
inhibitory motifs (ITIMs). Under physiological conditions, LILRB4 plays a very important role in the function of the im-
mune system through its expression on various immune cells, such as T cells and plasma cells. Under pathological 
conditions, LILRB4 affects the processes of various diseases, such as the transformation and infiltration of tumors 
and leukemias, through various signaling pathways. Differential expression of LILRB4 is present in a variety of im-
mune system diseases, such as Kawasaki disease, systemic lupus erythematosus (SLE), and sepsis. Recent studies 
have shown that LILRB4 also plays a role in mental illness. The important role of LILRB4 in the immune system and 
its differential expression in a variety of diseases make LILRB4 a potential prophylactic and therapeutic target for 
a variety of diseases.
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Introduction

Leukocyte immunoglobulin-like receptor (LIL- 
RB4) is a kind of inhibitory receptor that plays a 
key role in immune checkpoint pathways. In- 
hibitory receptors also participate in achieving 
balance between activating and inhibitory 
actions to ensure immune responses to patho-
gens in the immune system. However, they not 
only protect the host from autoimmune res- 
ponses, but also preserve peripheral tolerance 
[1]. LILRB4 also regulates immune responses, 
and its role in regulating immune responses is 
mostly controlled by its ligands [2].

The leukocyte Ig-like receptor (LILR) family, the 
members of which are also called leukocyte 
immunoglobulin-like receptors (LIRs or ILTs), 
has 13 members (two pseudogenes are includ-
ed) [3, 4]. LILRs are one of the seven types of 
leukocyte immunoglobulin-like inhibitory recep-
tors, along with killer cell immunoglobulin-like 
receptors 2D, killer cell immunoglobulin-like 
receptors 3D, glycoprotein receptors (such as 
GP-49), paired immunoglobulin-like receptors, 

leukocyte-associated Ig-like receptors and in- 
hibitory IgG Fc receptors (such as FcγRIIb1), 
and they have been identified in the human 
hematopoietic system [5].

Structure

LILRB4 is an LILR and is encoded in the leuko-
cyte receptor cluster, which is on human chro-
mosome 19q13.4 [4-6]. The structure and 
function of LILRs are similar to those of other 
leukocyte receptor cluster receptors, such as 
killer cell immunoglobulin-like receptors [3].

There are many kinds of classifications of LILRs. 
Among all these classifications, the most classi-
cal one is the one proposed by Willcox. In this 
classification, LILRs are divided into two groups 
according to whether they have high conserva-
tion of major histocompatibility complex (MHC) 
binding residues to interact with MHC class I or 
MHC class I-like proteins [3]. Other classifica-
tions divide LILRs into two groups according the 
different motifs: the inhibitory LILR subfamily B 
group (LILRB1-5), which associate with mem-
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brane adaptors to signal through multiple cyto-
plasmic immunoreceptor tyrosine-based inhibi-
tory motifs (ITIMs), and the activating LILR sub-
family A group (LILRA1-6), which associate with 
membrane adaptors to signal through immuno-
receptor tyrosine-based activating motifs [7, 8]. 
In regard to signals transmitted by LILRs, both 
ITIMs and immunoreceptor tyrosine-based acti-
vating motifs are of great significance [9]. In 
addition, LILRB4 has three ITIMs [10] (Figure 1) 
[3, 5, 10]. Differences between LILRs are sum-
marized in Table 1 [3, 7, 11].

It is worth mentioning that most family mem-
bers contain four C-type Ig-like domains in their 
extracellular region (designated D1, D2, D3, 
and D4); however, LILRB4 and LILRA5 have 
only two. In addition, LILRB4 is distinguished by 
an unusual domain organization, which con-
sists of a classical LILR D1 domain and an 
immunoglobulin domain that is most similar to 
the membrane-proximal D4 domain of other 
LILRs [3, 12] (Table 1). In addition, LILRB4 has 
three specific amino acid residues, R56, R101, 
and V104 [13]. The natural ligand (s) for LILRB4 
are still not clear [10]. However, the natural 
ligand for gp49B the mouse counterpart of 
LILRB4, is integrin avb3 [14].

re, LILRB4 can be expressed both on the cell 
membrane and/or in the cytoplasm [19].

Relationship with disease

As immune checkpoints are of great signifi-
cance in autoimmune diseases, LILRB4 is a tar-
get for treating autoimmune diseases [20]. 
LILRB4 is associated with many kinds of 
immune diseases, such as Kawasaki disease 
and systemic lupus erythematosus (SLE). In 
addition, LILRB4 plays an effective role in 
inflammatory diseases. As nuclear factor-kap-
pa B (NF-kappa B) is a common transcription 
factor that participates in angiogenesis, cell 
proliferation and cell survival [21], LILRB4 can 
promote cardiac dysfunction and fibrosis, and it 
can also lead to apoptosis via NF-kappa B sig-
naling [22] and inflammation by activating 
NF-kappa B signaling through reduced phos-
phatase (SHP) 1 phosphorylation [23]. LILRB4 
also has the ability to inhibit the development 
of tumors [24]. For example, LILRB4 is also an 
effective target for acute myeloid leukemia 
(AML) treatment [25]. Furthermore, it is pre-
sumed that LILRB4 also participates in the 
basic mechanisms of central nervous system 
(CNS) immune surveillance. As a result, LILRB4 

Figure 1. The structure of LILRB4. LILRB4 is encoded on human chromo-
some 19q13.4. It has two C-type lg-like domains, D1 and D4. Three ITIMs 
of LILRB4 are of the YxxV sequence, and two are of the YxxL sequence, 
and they are located in the cytoplasmic tail. In addition, LILRB4 can recruit 
SHP-1 to downregulate activation signals, which is mediated by nonreceptor 
tyrosine kinase cascades.

Distribution

The expression of LILRB4 is 
confined to professional and 
nonprofessional antigen-pre-
senting cells (APCs) [4]. LILRs 
are mainly expressed on cells 
of the myelomonocytic lineage 
[15], for example, monocytes, 
macrophages and dendritic 
cells [16]. In cells of the myelo-
monocytic lineage, LILRB4 is 
mostly expressed on APCs 
[17]. For many cells, such as 
APCs, myeloid-derived sup-
pressor cells, plasmacytoid 
dendritic cells (DCs) and mo- 
nocytic DCs, LILRB4 is gener-
ally referred to as a tolerogen-
ic receptor [18]. In addition, by 
inhibiting the expression of 
costimulatory molecules, LIL- 
RB4-expressing APCs play key 
roles in controlling inflamma-
tion. Likewise, LILRB4 neutral-
ization can increase antigen 
presentation [17]. Furthermo- 
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Table 1. LILRs (omit the two pseudo-genes LILRP1 (ILT9) and LILRP2 (ILT11))
Receptor Lg-like domains Ligands Expression Diseases concerned References
LILRA1 (LIR-6, CD85i) D1, D2, D3, and D4 MHC-I, HLA-B27 FHC monocytes and B cells NA [3, 7, 11]

LILRA2 (ILT1, LIR-7, CD85h) D1, D2, D3, and D4 MHC-I minor subsets of T- and natural killer (NK) cells, monocytes, 
macrophages, dendritic cells (DCs) and granulocytes

leprosy [3, 7, 11]

LILRA3 (ILT6, LIR-4, CD85e) D1, D2, D3, and D4 MHC-I secreted by monocytes, B cells and subsets of T-cells multiple sclerosis, Sjögren’s syndrome, SLE, 
prostate cancer

[3, 7, 11]

LILRA4 (ILT7, CD85g) D1, D2, D3, and D4 Ag 2 (BST2) plasmacytoid DCs NA [3, 7, 11]

LILRA5 (ILT11, LIR-9, CD85f) D1, D2 NA monocytes and neutrophils NA [3, 7, 11]

LILRA6 (ILT8, CD85b) D1, D2, D3, and D4 NA monocytes NA [3, 7, 11]

LILRB1 (ILT2, LIR-1, CD85j) D1, D2, D3, and D4 MHC-I T, B, NK and myeloid cells human cytomegalovirus (HCMV), dengue virus [3, 7, 11]

LILRB2 (ILT4, LIR-2, CD85d) D1, D2, D3, and D4 MHC-I myeloid cells, hematopoietic stem cells Alzheimer’s disease [3, 7, 11]

LILRB3 (ILT5, LIR-3, CD85a) D1, D2, D3, and D4 NA monocytes, DCs and granulocytes Leukemia [3, 7, 11]

LILRB4 (ILT3, LIR-5, CD85k) D1, D4 unknown monocytes, macrophages, DCs and plasma cells SLE, Kawasaki disease, T. gondii, multiple 
sclerosis

[3, 7, 11, 17, 26]

LILRB5 (LIR-8, CD85c) D1, D2, D3, and D4 HLA-B27 FHC NK cells, monocytes and mast cell granules NA [3, 7, 11]
LILR: leukocyte immunoglobulin-like receptor; ILT: Leukocyte immunoglobulin-like receptor; MHC: major histocompatibility complex; SLE: systemic lupus erythematosus; HLA: human lymphocyte antigen; Ag: antigen; BST: bone marrow stromal 
antigen.
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is associated with some neurological diseases, 
such as multiple sclerosis [26].

Physiological role of LILRB4

As one of the LILR family members, LILRB4’s 
main function is to play a role in the immune 
response to infection [15]. It can participate in 
different mechanisms in many immune cells.

Immune cells

T cells

LILRB1 is the only human LILRB protein that 
can be expressed on T cells. LILRB1 expression 
on T cells can decrease the expression of che-
mokine receptors [27]. Although LILRB4 is not 
expressed on T cells, it can recognize unidenti-
fied ligands expressed on them [18], and it elic-
its T cell anergy or activation of regulatory T 
(Treg) cells or T suppressor cells [28]. Because 
of the bidirectional signaling properties of 
LILRB4, LILRB4 can not only transduce signals 
through its intracellular domain but also direct-
ly modulate the binding of its extracellular 
Ig-like domain [29]. As a result, LILR-Fcs, the 
soluble forms of LILR, are effective inhibitors of 
T cell proliferation, even in the absence of APCs 
[26]. LILRB4 can still inhibit T cells with its 
extracellular domain even when the ITIM-
containing cytoplasmic tail is deleted. A study 
used a soluble form of LILRB4, expressed as an 
LILRB4-Fc fusion protein, and found that 
LILRB4-Fc could inhibit T cell immune/inflam-
matory responses as a result of inhibiting the 
release of inflammatory microRNA [30, 31]. For 
T cells with cognate specificity, LILRB4 can also 
induce anergy and plays a regulatory function 
[32].

In addition, T cells elicit the upregulation of 
LILRB2 and LILRB4 expression on APCs, which 
makes them tolerogenic to T cells. Furthermore, 
recombinant LILRB4-Fc has also been shown 
to activate T cell responses through induction 
of T helper cell (Th) anergy and differentiation 
of CD8+ T suppressor cells, as well as promo-
tion of the induction of immunological toler-
ance [3, 12]. Blockade of inhibitory receptors 
leads to the generation of cytolytic CD8+ T cells 
that are able to recognize APCs and is of great 
significance when tumors and viruses invade 
bodies [33].

In Tregcells, the regulation of LILRB4 expres-
sion by CK2 is supposed to represent a regula-
tory mechanism of the adaptive immune res- 
ponse that enables the transient inhibition of 
suppressor cells at the time when a fulminant 
immune response is required [34]. In addition, 
Treg cells can produce interleukin-10 (IL-10), 
resulting in modulation of the dendritic cell phe-
notype via downregulation of MHC class II mol-
ecules, CD80 and CD86 and upregulation of 
LILRB4 [35].

Granulocytes

Granulocytes, including neutrophils, basophils, 
and eosinophils, provide a rapid response in 
the early stages of immune challenge through 
the release of secretory granules. LILRB1, 
LILRB2, LILRB3, and LILRA2 are expressed by 
eosinophils [9].

Human neutrophils can act as nonprofessional 
APCs. In adaptive immunity, human neutrophils 
play an immunoregulatory role. On circulating 
human neutrophils, some coinhibitory mole-
cules, such as LILRB2 and LILRB3, are ex- 
pressed, while LILRB4 is not expressed [36]. 
However, LILRB4 can counterregulate lipopoly-
saccharide-mediated inflammation in several 
neutrophil-dependent acute effector phases 
[37], which means that LILRB4 contributes to 
the inhibition of neutrophil-dependent inflam-
mation in vitro [38]. Furthermore, under normal 
physiological conditions, LILRB4 suppresses 
the lipopolysaccharide-induced increase in 
intravascular neutrophil adhesion, which pro-
vides critical innate protection against an ex- 
cessive pathologic response to a bacterial com-
ponent [39].

Dendritic cells

DCs are the only immune cells that can induce 
primary immune responses, and they can also 
permit the formation of immunological memory 
[40], as well as maintain the balance between 
tolerance and immunity [41]. Immature DCs 
have been shown to have the ability to reduce 
antigen stimulation [42], and mature dendritic 
cells are the most potent and efficient APCs [5, 
43], which suggests that the tolerance-induc-
ing potential of DCs is related to their matura-
tion status [44]. The differential expression of 
LILRB4 during the maturation of DCs suggests 
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an important role of LILRB4 in promoting DC 
maturation [45].

LILRB4 expression on DCs influences the devel-
opment of diseases. Overexpression of LILRB4 
can inhibit the transcription of NF-κB-dependent 
genes that encode costimulatory molecules 
(CD80 and CD86) in DCs. As inflammation and 
apoptosis mostly induced through NF-κB sig-
naling, overexpression of LILRB4 can inhibit 
them. In addition, the differentiation of CD8 T 
or CD4 single-positive T cells is not possible 
[46-48].

In the context of protective adaptive immunity 
and inflammation, in response to Salmonella 
infection or Toll-like receptor stimulation with 
Salmonella components, LILRB4 expression on 
DCs and macrophages is upregulated, which 
suggests that LILRB4 plays a physiologic role in 
limiting the inflammatory response during infec-
tion [46].

In addition, in regard to pathologic adaptive 
immunity and inflammation, LILRB4 also plays 
a significant role. For example, in lipopolysac-
charide-mediated inflammation [37], which 
upregulates LILRB4 expression on human DCs 
[49], LILRB4 is important during the immune 
responses. There are two kinds of mechanisms. 
In one mechanism, LILRB4 weakens the ability 
of DCs by affecting the number of mature den-
dritic cells and attendant IL-4-producing lym-
phocytes in lymph nodes, which is a key mole-
cule needed for DC migration. For example, 
LILRB4 can elicit pathologic Th2 pulmonary 
inflammation [27, 37]. In addition, it has been 
shown that LILRB4 can counterregulate the 
development of pathologic adaptive immune 
responses initiated by an innate immune sig-
nal; when left unchecked, these types of 
responses make a harmless and tolerizing mol-
ecule immunogenic which represents a critical 
step in the development of allergic airway dis-
ease [37]. Another mechanism suggests that 
LILRB4 may regulate the transformation of the 
innate response into an adaptive response by 
inhibiting cell chemotaxis. It has been shown 
that ITIM-bearing receptors can play inhibitory 
roles by downregulating the expression of both 
stromal chemokines and their cognate recep-
tors on immune cells, which leads to attenuat-
ed cell migration and pathologic allergic inflam-
mation. In this way, LILRB4 inhibits chemotaxis 
and migration of DCs from the lung to second-

ary lymphoid tissue, which downregulates DC-T 
cell interactions to suppress this kind of inflam-
mation (Figure 2) [27].

However, the mechanism still needs to be stud-
ied. In some diseases, although LILRB4 expres-
sion is upregulated, the tolerogenic role of 
LILRB4 has not be shown, and the reasons for 
this remain unknown. For example, in SLE, 
LILRB4 cannot play an effective role. One study 
showed that the type I interferon (IFN) pathway 
participates in the pathogenesis of SLE, and 
IFNs can induce LILRB4 expression by plasma-
cytoid DCs and mature dendritic cells [18].

Macrophages

Macrophages are the main immune cells locat-
ed in the lung tissue [38]. LILRB4 ligation 
changes the cytokine secretion profile of mac-
rophages, and it also leads to an upregulation 
of IL-10 secretion by in vitro-cultured macro-
phages. In addition, it reduces the expression 
of the strongly inflammatory chemokine IL-8 
[15].

LILRB4 and LILRB5 can activate the JAK/STAT 
signaling pathway and control the expression of 
cytokines in macrophages. They also induce 
the expression of chemokines and Th1, Th2, 
and Th17 cytokines, which suggests that they 
are innate immune receptors related to SHP-2, 
MHC class I, and beta 2-microglobulin [50, 51].

Monocytes

Depending on the nature of the stimuli and the 
position of the tyrosine residue in LILRB4 ITIMs, 
LILRB4 may have complex inhibitory and acti-
vating effects on monocytes [10].

Through triggering dephosphorylation of key 
signaling proteins, LILRB4 inhibits FcγRI-me- 
diated cytokine production and regulates endo-
cytosis/phagocytosis on monocytes [52].

Silencing of LILRB4 in monocyte-derived den-
dritic cells potentiates stimulus-induced re- 
lease of chemokines, which may be involved in 
T cell trafficking to the CNS [53].

B cells

LILRB4 is not expressed on normal B cells [54]. 
However, in memory B cells, gp49b, the mouse 
counterpart of LILRB4, suppresses the devel-
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opment of marginal zone B cells, memory B 
cells and Ab production to prevent excessive 
IgE production, which would otherwise lead to 
allergic diseases [1, 55]. In addition, in some 
diseases, such as pulmonary embolism, LILRB4 
expression is upregulated [56], suggesting that 
LILRB4 plays a role in the immune response in 
B cells.

Natural killer (NK) cells

NK cells express inhibitory receptors, which 
recognize distinct ‘self’ class I molecules of the 
major histocompatibility complex, and in addi-
tion, NK cells can lyse tumor or virus-infected 
cells [57]. In human NK cells, a family of ITIM-
bearing receptors called killer cell Ig-like recep-
tor (KIRs) are expressed. KIRs have significant 
sequence homology with LILRB4 and can rec-
ognize MHC class I allotypes. A chimeric recep-
tor consisting of the extracellular and trans-
membrane domains of a human KIR is 
expressed on NK cells from humans infected 
with cytomegalovirus or lymphocytic chorio-
meningitis virus [58]. After infection with vac-
cinia virus, LILRB4 expression is elicited on NK 
cells and T cells [59].

Mast cells

Mast cells participate in many physiological 
mechanisms and play a significant role in anti-
microbial defense [14].

LILRB4 inhibits IgE-dependent activation of 
mast cells in vitro through its ITIMs, which 
recruit src homology domain type-2-containing 
tyrosine phosphatase 1 to the cell membrane. 
In addition, LILRB4 could counterregulate the 
shock induced during active systemic anaphy-
laxis, which is probably elicited by inhibition of 
FcR-induced mast cell degranulation. Further- 
more, for mast cells, stem cell factor is an 
essential growth and survival factor [39], which 
has the ability to activate mast cells [60].

Microglia

Microglia are immune cells of the CNS, and 
LILRB4 expression increases when microglia 
participate in the immune response [61]. 
CD11c-positive microglia, which represent 23% 
of all activated microglia, play a role in the 
inflammatory response in the context of 
Alzheimer’s disease [62].

Figure 2. LILRB4 inhibits chemotaxis and migration of DCs from the lung to secondary lymphoid tissues. In the con-
text of pulmonary allergic inflammation, immature tissue dendritic cells (DCs) go through an innate immune matura-
tion process. During this process, mature issue DCs will migrate from the lung to tissue-draining lymph nodes (LNs), 
which is mediated by chemokine (C-C motif) receptor 7 (CCR7), the only receptor of chemokine (C-C motif) ligand 
21 (CCL21). In addition, some mature DCs degrade endocytosed antigen (Ag) and turn into Ag-bearing mature DCs. 
Ag-bearing mature DCs attract and activate cognate Ag-specific T cells, which leads to their proliferation, polariza-
tion, and migration from the LNs to the blood. At the same time, Ag-bearing mature DCs generate Th2 cytokines. 
Th2 cytokines can migrate to target tissues, where they can lead to pathologic adaptive immune inflammation. The 
function of LILRB4 is to downregulate the expression of CCL21 to inhibit chemotaxis and migration of DCs from the 
lung to secondary lymphoid tissues, which can suppress inflammation.
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Immunologically active substances

Interleukins (ILs)

IL-10 is a kind of anti-inflammatory cytokine 
[63], and it has immune-stimulating and immu-
nosuppressive dual biological functions [64]. 
As IL-10 can upregulate LILRB1, LILRB2, LILRB3 
and LILRB4 on APCs, IL-10 is an inhibitory cyto-
kine that may result in a feedback loop of LILR-
mediated inhibition. This means that IL-10 is an 
effective anti-inflammatory factor [15].

For DCs, one kind of IL-10-producing DC called 
DC-10 has been identified in the human body 
and secretes high levels of IL-10 [65]. In addi-
tion, DCs treated with resveratrol are more 
effective in producing IL-10 than untreated DCs 
[66].

Pathological role of LILRB4

LILRB4 is considered to be an inhibitor of T cell 
activation in transplantation, autoimmunity 
and allergy [67] and has obvious differential 
expression in many kinds of immune-related 
diseases. As such, research on the pathologi-
cal role of LILRB4 is valuable and important.

Tumors

In patients with malignant tumors, LILRB4 
inhibits CD4+ Th cell proliferation by binding to 
the ligand CD166 (activated leukocyte adhe-
sion molecule) and CD8+CD28- T cell produc-
tion and promotes tumor growth and tumor 
infiltration [24, 68-71]. In 2019, Tomic, S. et al. 
showed that prostaglandin E2 could induce dif-
ferent subpopulations of Treg cells through 
effects of LILRB4 on myeloid-derived suppres-
sor cells, a major cell type driving tumor pro-
gression, by using a protocol for the generation 
of mononuclear (M)-MDSCs [72]. It should be 
noted that the ability of LILRB4 to induce can-
cer stem cell (CSC) differentiation into macro-
phages has been proven by follow-up studies, 
which implies a connection to the tumor micro-
environment [73]. A recent study has shown 
that LILRB4 plays an essential role during tyra-
mine and tyramine receptor (TyrR) activation 
[74]. Given its emerging role in tumorigenesis, 
this finding highlights the relationship between 
LILRB4 and tumors [75].

In addition to inducing tumorigenesis, in the 
development of tumors, the expression of LIL- 

RB4 may induce immunosuppression and 
affect the survival rate of patients. For exam-
ple, by comparing peripheral blood monocytes 
in samples from 105 patients with non-small-
cell lung cancer and 20 controls, de Goeje, P. L. 
et al. found that the expression of LILRB4 on 
myeloid-derived suppressor cells is associated 
with decreased survival in patients with non-
small-cell lung cancer [28, 76]. In serum cyto-
kine mediator analysis in hepatocellular carci-
noma samples, the serum levels of LILRB4 in 
patients with hepatocellular carcinoma were 
significantly higher than those in patients in the 
control group [77]. High levels of LILRB4 may 
have some association with tumor develop-
ment. As early as 2007, an experimental study 
using a humanized severe combined immuno-
deficiency (SCID) animal model by Cortesini, R. 
et al. has shown that LILRB4 depletion or block-
ade in patients with pancreatic cancer is cru-
cial to the success of immunotherapy [78]. In 
the immune escape of tumor cells, the expres-
sion of LILRB4 may affect the sensitizing activ-
ity of antigen-presenting cells and is therefore 
the cause of the failure of interventions to 
enhance the immune response of patients to 
malignant tumors such as gastric cancer and 
pancreatic cancer [79]. In terms of specific 
intervention pathways, there is growing evi-
dence that LILRB4 may be involved in the regu-
lation of tumor progression by inhibiting the Akt 
pathway; therefore, LILRB4 has been identified 
as a marker for malignancy [80, 81] (Figure 3). 

However, the expression of LILRB4 does not 
necessarily contribute to the development of 
tumors. Studies by Park, M. et al. indicate that 
LILRB4 may have dual inhibitory and activating 
functions depending on the location and/or 
stimulatory nature of functional tyrosine resi-
dues in ITIMs [10]. Si, Y. Q. et al. also found that 
LILRB4 was upregulated during the killing of 
tumor cells by cyclosporine [2]. Schmid, A. S. et 
al. constructed an antibody fusion protein that 
enhances neutrophil activity by using granulo-
cyte colony-stimulating factor and LILRB4 as 
payloads. The results of animal experiments 
show that this novel fusion protein can be 
expressed and efficiently delivered to the tumor 
site and kill tumor cells [82] (Figure 3).

Leukemia

LILRB4 expression is acquired at an early stage 
by normal myelomonocytic precursors [83]. 
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Pathological changes in bone marrow cells 
often lead to the occurrence of leukemia. In 
this process, the expression of LILRB4 is worth 
exploring.

Multiple studies have shown that the expres-
sion of LILRB4 in single AML cells was higher 
than that in normal cells [84], and the expres-
sion of LILRB4 was negatively correlated with 
the overall survival of AML patients [13, 80, 
83]. In patients with AML, LILRB4 inhibits T cell 
activation by upregulating the expression of 
various T cell inhibitors, such as BCL6, and pro-
motes the development of AML [83, 85, 86]. In 
addition, the interleukin-2 receptor, 1,25-dihy-
droxyvitamin D alpha chain (CD25), on AML 
cells may capture environmental IL-2 and deliv-
er it to peripheral T lymphocytes, resulting in 
the production of LILRB4 as a growth stimulus 
for CD25-positive AML cells [87].

During AML cell migration, apolipoprotein E 
binds AML cells that have infiltrated the tissue 
through LILRB4, which activates a downstream 
signaling pathway in combination with T cell 

suppression and tumor infiltration [25]. Deng, 
M. et al. employed a murine tumor model and 
human cells and revealed that LILRB4 coordi-
nates tumor invasion pathways in single leuke-
mia cells by creating an immunosuppressive 
microenvironment [25]. In the tumor invasion 
pathway, miR-155 may be the main target of 
IL-3 signal transduction in primary AML cells. 
Given the increasingly obvious role of miR-155 
in tumorigenesis and the upregulation of the 
LILRB4 receptor alpha subunit in AML, it seems 
reasonable to think that LILRB4 may play an 
important role in the transformation of leuke-
mia [88]. Regarding the relationship between 
LILRB4 and tyrosine mentioned above, recent 
research shows that LILRB4 may influence the 
early pathological process in leukemia through 
tyrosine kinases [89], while the ITIMs of LILRB4 
in AML mediate T cell suppression and AML cell 
migration [90].

Not only is the high expression of LILRB4 relat-
ed to the occurrence and development of AML 
but newer research has also found that high 
expression of LILRB4 is also associated with 

Figure 3. Dual role of LILRB4 during tumorigenesis. LILRB4 has dual effects in cancer. On the one hand, immune 
cells escape from tumor cells by affecting the activity of antigen-presenting cells; on the other hand, LILRB4 expres-
sion is upregulated under the action of the lymphocyte antigen receptor signal inhibitor Deltex1. A large amount 
of LILRB4 interacts with phosphatidylinositol-3,4,5-triphosphate 5-phosphatase 1 on the cell surface to inhibit the 
activity of Akt kinase. Decreased Akt kinase activity affects the downstream Akt pathway, which in turn inhibits 
tumor invasion.
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complications of AML. Kobayashi, K. et al. 
found a paraneoplastic hypoleukemia syndro- 
me associated with LILRB4-IgH-positive acute 
lymphoblastic leukemia [91].

Currently, immunological checkpoint blockade 
therapy has not shown a clinical benefit in treat-
ing leukemia. Based on the studies listed 
above, this may be due to the presence of an 
immune evasion mechanism in leukemia that 
creates an immunosuppressive microenviron-
ment through LILRB4 [25]. Fortunately, there 
are many therapeutic approaches to the treat-
ment of AML through LILRB4, one of which is 
the monocyte antibody h128-3, which blocks 
the activation of LILRB4 and inhibits tissue infil-
tration of single AML cells [92]. John, S. et al. 
prepared a novel anti-LILRB4 CAR-T cell with 
high antigen affinity and specificity. These 
CAR-T cells exhibited highly potent effects on 
AML cells in vitro and in vivo, specifically target-
ing single AML cells and were not toxic to nor-
mal hematopoietic progenitor cells [85]. Bis- 
pecific antibodies developed for the low-affinity 
LILRB4 receptor CD123 can redirect immune 
effector cells to AML targets [93, 94]. Given its 
significant expression differences and patho-
logical mechanisms during the development of 
AML, LILRB4 is an emerging immune target, 
and treatment with LILRB4 may improve thera-
peutic effects in AML [95].

Ectopic expression of LILRB4 in chronic lym-
phocytic leukemia is a prominent feature of 
tumor B cells and hematopoietic stem cells, 
and thus LILRB4 is considered to be a selective 
marker for chronic lymphocytic leukemias. 
Based on this, many targeted therapies for the 
treatment of chronic lymphocytic leukemia ha- 
ve been developed, such as combination thera-
pies including anti-CTLA-4 and anti-LILRB4 
agents [95, 96]. The LILRB4 receptor is overex-
pressed in CML cells compared to normal 
hematopoietic cells and is therefore a receptor 
target for cancer drug delivery systems. Be- 
llavia, D. et al. designed a novel anticancer 
agent that is capable of targeting CML cells and 
inhibiting the growth of cancer cells in vitro and 
in vivo using LILRB4-containing exosomes [97].

Toxoplasma infection

The expression of LILRB4 is also associated 
with the outcome of pregnancy. LILRB4 is a 
central inhibitory receptor of uterine dendritic 

cells and plays an important immunomodula-
tory role at the maternal-fetal interface. In- 
fection with Toxoplasma gondii during early 
pregnancy can cause malformations such as 
miscarriage and fetal death. Later studies 
found that the expression levels of functional 
LILRB4 molecules in the membrane, arginine 
metabolizing enzymes and related cytokines 
were abnormal in Toxoplasma gondii infection 
models, demonstrating that Toxoplasma infec-
tion can downregulate LILRB4 in decidual mac-
rophages [98]. Downregulation of LILRB4 en- 
hances M1 macrophage activation and attenu-
ates M2 macrophage tolerance by altering the 
expression of M1- and M2-related membrane 
molecules, the synthesis of arginine metaboliz-
ing enzymes, and the secretion profile of cyto-
kines. C. H. et al. found that the LILRB4 rs- 
40401 polymorphism was associated with an 
increased risk of miscarriage in patients under-
going in vitro fertilization by analyzing single 
nucleotide polymorphisms [99]. A reduction in 
LILRB4 can regulate the expression of function-
al molecules (CD80, CD86, HLA-DR or MHC 
class II) on uterine dendritic cells after infection 
with Toxoplasma gondii, leading to abnormal 
pregnancy outcomes [17].

Immune disease

Abnormal expression of LILRB4 may trigger 
immune-related diseases [100, 101]. A large 
number of animal models show that LILRB4 
induces the secretion of proinflammatory cyto-
kines by T cells and B cells, reduces the expres-
sion of IL-10 by B cells, and plays an important 
role in T cell- and B cell-mediated autoimmune 
diseases (such as SLE) [102]. In autoimmune 
responses, self-reactive CD4+ T cells can pro-
mote effector inflammation and injury through 
LILRB4-dependent amplification loops, while 
autoreactive LILRB4+CD4+ T cells accumulat-
ing in effector organs stimulate LILRB4+ tissue 
macrophages to produce systemic chemokines 
that attract single cells. The newly recruited 
monocytes differentiate into antigen-present-
ing cells, stimulating local LILRB4+CD4+ T cell 
proliferation, thereby amplifying inflammation 
[103].

Kawasaki disease is an acute systemic vasculi-
tis syndrome that occurs in children and is 
associated with secretory cells (ASCs) that 
highly express LILRB4 [46].
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SLE is an autoimmune disease. Animal experi-
ments by Wong, Y. L. et al. showed that mouse 
glycoprotein 49B (gp49B), which corresponds 
to human LILRB4, is a pathogenic element in 
SLE [1]. Clinically, in plasma cells from SLE 
patients, the expression of leukocyte immuno-
globulin-like receptor (LILR) B4 is enhanced 
[104, 105]. For these patients with SLE, the 
enlarged population size of stromal plasma 
cells and plasma cells with enhanced LILRB4 
expression is a characteristic of untreated SLE 
[18]. Therefore, LILRB4 may be used as a new 
molecular marker to identify pathogenic cells in 
SLE.

LILRB4 also plays a very important role in the 
pathological development of various inflamma-
tory diseases. For example, LILRB4 is downreg-
ulated in stress-exposed hearts in patient and 
mice, and mice with LILRB4 knockout develop 
cardiac hypertrophy and heart failure via pro-
motion of cardiac dysfunction, fibrosis, inflam-
mation, and apoptosis [47, 106, 107]. During 
the pathological process of atherosclerosis, 
the lack of LILRB4 significantly accelerates the 
development of atherosclerotic lesions by 
reducing the phosphorylation level of SHP1, 
leading to characteristic increased lipid infiltra-
tion and decreased collagen content [108]. In 
addition, LILRB4 is also associated with the 
development of nonalcoholic fatty liver disease 
(NAFLD) [109]. Evidence suggests that the lack 
of LILRB4 can also aggravate many inflamma-
tory respiratory diseases, such as acute lung 
injury and asthma, through the NF-kappaB and 
p38-MAPK signaling pathways [107, 110, 111]. 
In addition, high expression of LILRB4 corre-
lates with high mortality in patients with pulmo-
nary tuberculosis (PTB) [112]. Furthermore, a 
recent transcriptome sequencing and whole-
genome expression profiling analysis of pulmo-
nary inflammation in an MWCNT-induced mo- 
use model revealed novel crosstalk between 
downregulation of LILRB4 and regulation of 
immunoreactivity genes such as Cd72 in the 
process of lung inflammation [113] (Figure 4). 
Therefore, targeting LILRB4 to promote its 
expression or activation is a promising strategy 
for the treatment of systemic inflammatory and 
metabolic diseases. Notably, recent studies 
have identified that LILRB4 is overexpressed in 
monocytes from HIV patients [114]. It is highly 
likely that LILRB4 can affect the pathological 
process of HIV, albeit experimental evidence is 
lacking at present.

Upregulated expression of LILRB4 has also 
been found in the treatment of immune diseas-
es. For example, LILRB4 and ILT4 are involved 
in the regulation of the immune response to 
multiple sclerosis via interferon and vitamin D 
[26]. High LILRB4 levels in sepsis patients were 
independently associated with hospital mortal-
ity; therefore, they could be used to predict 
prognosis in patients with sepsis [115].

The differential expression of LILRB4 in infec-
tious diseases makes it an important biomark-
er for predicting latent infections. Studies by La 
Manna, M. P. et al. featured the Luminex Bead 
Array Multiplex Immunoassay and showed that 
LILRB4 was significantly higher in the active 
tuberculosis and long-term tuberculosis groups 
than in the nontuberculosis group [116]. 
Consistent with this, high expression of LILRB4 
in patients with gram-negative bacterial blood-
stream infection was observed, which shows 
the potential utility for GN-BSI biomarkers 
[117].

Mental illness

Mounting evidence suggests that LILRB4 sig-
naling may be involved in the pathophysiologi-
cal process of schizophrenia. For example, 
LILRB4 was significantly negatively correlated 
with the immediate memory index in patients 
with chronic drug-induced schizophrenia, sug-
gesting that IL-3 may be involved in the loss of 
immediate memory in the chronic phase of 
schizophrenia [118, 119].

Multiple sclerosis is the most common type of 
central nervous system demyelinating disease. 
IFN beta can induce the expression of LILRB2 
and LILRB4 on monocytes, and this increased 
expression can be found in patients with re- 
lapsing-remitting multiple sclerosis who are 
treated with IFN beta. In addition, it has been 
reported that the effect of IFN beta on these 
immunomodulatory molecules and monocyte 
immunobiology is selective [26]. It has been 
shown that vitamin D and IFN beta can act 
together to modulate some disease activities 
[120]. One studied showed that 1α,25(OH)2 D3 
could effectively induce LILRB4 on APCs [121], 
and IFN beta and 1α,25(OH)2 D3 could work 
together to induce LILRB4 expression on mono-
cytes. As a result, vitamin D cotreatment could 
have beneficial effects on disease-modifying 
drugs. Interestingly, IFN beta and 1α,25(OH)2 
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Figure 4. The role of LILRB4 in the development of various diseases. The expression of LILRB4 affects the devel-
opment of various immune diseases. For example, LILRB4 deficiency plays a detrimental role in the activation of 
macrophages (BMDMs) associated with acute lung injury by promoting the NF-kappaB signaling pathway. The loss 
of LILRB4 accelerates cardiac hypertrophy by promoting upregulation of caspase-3 activation via the nuclear fac-
tor kappaB (NF-kappaB) signaling pathway. LILRB4 inhibits the ubiquitination of TRAF6 by recruiting SHP1, which 
largely reverses nonalcoholic fatty liver disease (NAFLD). LILRB4 deficiency promotes atherogenesis by reducing 
Shp1 phosphorylation.

D3 have the opposite effects on LILRB2 expres-
sion on monocytes, which means that IFN beta 
can be beneficial for the tolerogenic properties 
of these cells by counteracting the effects of 
1α,25(OH)2 D3 on LILRB2 expression. This indi-
cates that LILRB4 may be used as an immuno-
modulator in autoimmune diseases, which is 
beneficial for autoimmune disease therapy 
[26].

Furthermore, it is presumed that LILRB4 also 
participates in the basic mechanisms of CNS 
immune surveillance [26]. Silencing of LILRB4 
in monocyte-derived dendritic cells potentiates 
stimulus-induced release of chemokines, which 
may be involved in T cell trafficking to the CNS 
[53].

Conclusions

Current studies have found that LILRB4 is dif-
ferentially expressed in a variety of diseases, 
indicating that there is great potential for physi-

ological and pathological studies of LILRB4. 
Some treatments targeting LILRB4 have been 
attempted, but there is still much room for 
research on LILRB4. Important research areas 
that need to be addressed include increasing 
our understanding of the underlying pathologi-
cal mechanisms involving LILRB4 at the cellu-
lar and molecular levels. LILRB4 has been used 
as a new biomarker to assess disease activity 
and achieve early screening and assessment.
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