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Abstract: Patients with clear cell renal cell carcinoma (ccRCC) typically face aggressive disease progression when 
metastasis occurs. Here, we screened and identified differentially expressed genes in three microarray datasets 
from the Gene Expression Omnibus database. We identified 112 differentially expressed genes with functional en-
richment as candidate prognostic biomarkers. Lasso Cox regression suggested 10 significant oncogenic hub genes 
involved in earlier recurrence and poor prognosis of ccRCC. Receiver operating characteristic curves validated the 
specificity and sensitivity of the Cox regression penalty used to predict prognosis. The area under the curve indexes 
of the integrated genes scores were 0.758 and 0.772 for overall and disease-free survival, respectively. The prog-
nostic values of ADAMTS9, C1S, DPYSL3, H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, and TRIB3 were validated 
through an analysis of 10 hub genes in 380 patients with ccRCC from a real-world cohort. The expression levels of 
were of high prognostic value for predicting metastatic potential. These findings will likely significantly contribute to 
our understanding of the underlying mechanisms of ccRCC, which will enhance efforts to optimize therapy.
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Introduction

Renal cell carcinoma (RCC) is one of the most 
common malignancies of the urinary system, 
accounting for approximately 2% of cancer 
deaths [1]. The worldwide morbidity and mor-
tality rates of RCC are increasing by approxi-
mately 2%-3% each decade [2]. Until recently, 
the rates stabilized or declined in many eco-
nomically advanced countries [3]. As the most 
predominant histological subtype, clear cell 
renal cell carcinoma (ccRCC) represents app- 
roximately 70% of RCC cases. Although numer-
ous factors contribute to the pathogenesis of 
RCC, limited information is available that can 
be applied to explain the aggressive pathogen-
esis and progression of ccRCC. The aggressive-
ness of ccRCC is directly associated with meta-

static potential, which is typically not efficiently 
targeted despite great advances in therapeutic 
strategies [4]. Metastasis is a significant hall-
mark of tumor progression and thus the major 
cause of poor overall survival of patients with 
ccRCC [5]. Therefore, the identification of new 
prognostic biomarkers and molecular altera-
tions is urgently required to develop more effec-
tive treatments of ccRCC.

Accumulating evidence has demonstrated that 
gene expression panels and related hallmarks 
participate in the carcinogenesis and aggres-
sive progression of ccRCC [6-8]. For example, 
the expression levels of a panel of seven genes 
associated with the extracellular matrix signifi-
cantly correlate with metastasis and prognosis 
of ccRCC [9]. Moreover, multigene panels help 
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predict signatures that detect ccRCC in biopsy 
specimens [10]. Nomograms employing inte-
grated clinical and gene expression profiles 
predict pathological nuclear grades and help 
clinicians to manage personalized regimens 
[8]. Despite these encouraging advances in 
strategies to treat metastatic ccRCC, many 
patients do not achieve longer survival [11]. 
Therefore, we urgently require methods that 
identify the underlying biochemical mecha-
nisms associated with metastasis and predict 
the prognosis of patients with ccRCC. Such 
methods will facilitate the development of opti-
mal therapeutic strategies.

During the latest decade, high-throughput 
nucleotide sequencing technologies, combined 
with bioinformatics analysis, sensitively and 
specifically detect mRNA expression levels, 
which identify differentially expressed genes 
(DEGs) that represent hallmarks associated 
with the pathogenesis and progression of 
ccRCC [8, 9, 12]. However, the diversity of 
genomic alterations and molecular interactions 
associated with metastasis hinders the identifi-
cation of patients at high-risk for metastasis 
who may benefit from available as well as 
potential therapies. To address these challeng-
es, here we analyzed three transcriptional 
microarray datasets acquired from the Gene 
Expression Omnibus (GEO) database to identify 
DEGs between cancer tissues and adjacent tis-
sues that will serve as biomarkers of ccRCC. 
We conducted functional pathway enrichment 
analyses to better understand the associated 
molecular mechanisms. Moreover, we employ- 
ed protein-protein interaction (PPI) network 
analysis to better define the importance of 
these interactions as they relate to biological 
processes, molecular functions, and signal 
transduction [13-15]. 

Our findings led us to hypothesize that the 
oncogenicity of significant hub genes correlates 
with metastasis and that these genes may 
serve as potential prognostic factors that will 
facilitate the identification of therapeutic tar-
gets for managing ccRCC.

Materials and methods

Raw biological microarray data 

Raw transcriptional microarray data from GEO 
(http://www.ncbi.nlm.nih.gov/geo) [16] were 
screened for metastatic or primary ccRCC. 

Corresponding genes were converted into 
probes and assigned symbols associated with 
annotation information. We analyzed the datas-
ets GSE22541 (24 primary and 44 metastatic 
tumors), GSE47352 (4 primary and 4 metastat-
ic tumors), and GSE85258 (14 primary and 14 
metastatic tumors) (Affymetrix Human Genome 
U133 Plus 2.0 Array).

Data normalization and identification of DEGs

Preprocessing and normalization of raw biologi-
cal data were the first steps in processing the 
DNA microarrays. This process removes biased 
microarray data to ensure its uniformity and 
integrity. Subsequently, background correction, 
propensity analysis, normalization, and visual-
ization of probe data were performed using the 
robust multiarray average analysis algorithm 
17 in the affy package of R.

DEGs between primary and metastatic ccRCC 
samples were screened and identified across 
experimental conditions. Delineating parame-
ters such as adjusted P values (adj. P), the 
Benjamini and Hochberg false-discovery rate 
(FDR), and fold-change values were used for fil-
tering DEGs and balancing between discovery 
of significant genes and limitations of false-
positives. Probe sets without corresponding 
gene symbols, or genes with more than one 
overlapping probe-set, were removed or aver-
aged. Log2FC (fold-change) >1 and adj. P value 
<0.01 were considered to indicate a significant 
difference.

Protein-protein interaction (PPI) network and 
functional annotations

We used Search Tool for the Retrieval of 
Interacting Genes (http://string-db.org) (version 
10.0) to predict a PPI network of DEGs and to 
analyze the degree of interactions between 
proteins [17]. A significant edge score was con-
sidered as an interaction combined score >0.4. 
Cytoscape (version 3.5) was used to visualize 
interactive network data [18]. 

To identify the role of DEGs in ccRCC, we used 
Gene Ontology (GO) enrichment analysis to 
extract functional attributes including biologi-
cal processes (BP), molecular functions (MF), 
and cellular component (CC) [19]. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
database was used for this purpose as well 
[20]. The Database for Annotation, Visualization 
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and Integrated Discovery (DAVID) (http://david.
ncifcrf.gov; Version 6.8) was analyzed to explore 
the role of development-related signaling path-
ways in ccRCC [21]. P<0.05 was considered to 
indicate a significant. 

ClueGO is a Cytoscape plug-in that visualizes 
nonredundant biological terms associated with 
large clusters of genes in a functionally grouped 
network [22]. The results of KEGG pathway 
analysis of selected hub genes enriched in the 
GO term BP were visualized using ClueGO (ver-
sion 2.5.3) and the Cytoscape plugin CluePedia 
(version 1.5.3). Potential associations of 24 
coordinately expressed hub genes and their 
potential prognostic values are shown using a 
heat map. The hub nodes of networks with con-
nectivity degrees >10 were identified. A net-
work comprising 24 genes and their coordi-
nately expressed neighboring genes was con-
structed using cBioPortal (http://www.cbiopor-
tal.org) [23].

Statistical analysis of TCGA data cohort

A lasso Cox regression model was used to iden-
tify independent prognostic factors. Functional 
annotations and enrichment of signaling path-
ways were predicted and illustrated using 
DAVID. Phenotype and transcriptomics data of 
selected hub genes of 515 patients with ccRCC 
in TCGA data are displayed. Expression profiles 
were respectively identified as binary variables 
(high vs low), referring to the median expres-
sion level of each hub gene in TCGA cohort 
data. The primary and secondary endpoints for 
patients were disease-free survival (DFS) and 
overall survival (OS), respectively. The duration 
of follow-up was estimated using the Kaplan-
Meier method with 95% confidence intervals 
(95% CI) and the log-rank test. X-tile software 
was used to determine the cutoff value [24]. All 
hypothetical tests were two-sided, and P values 
<0.05 were considered to indicate a significant 
difference for all tests. Hierarchical partitioning 
was performed using transcriptional expres-
sion profiles of selected oncogenes in a heat 
map. Color gradients indicate a high (red) or a 
low (blue) expression level.

The human protein atlas

The Human Protein Atlas project (https://www.
proteinatlas.org) contains immunohistochemis-
try (IHC) data acquired using a tissue microar-
ray analysis of 17 paired, major cancer types 
[25]. Data include IHC staining intensity, quan-

tity, location, and patients’ information. Here 
we used the Human Protein Atlas (https://www.
proteinatlas.org) to identify representative pro-
teins differentially expressed between ccRCC 
and corresponding normal tissues.

ccRCC patients from a validated cohort

We analyzed samples acquired from 380 
ccRCC patients who underwent nephrectomy at 
the Department of Urology of Fudan University 
Shanghai Cancer Center (FUSCC; Shanghai, 
China) from June 2009 to September 2017. 
Tissue samples were obtained during surgery, 
and available from the FUSCC tissue bank.

Quantitative real-time PCR (RT-qPCR) analysis

Total cellular RNA, which was isolated using 
Trizol (Invitrogen, Carlsbad, CA) in accordance 
with the source’s protocols, was reversed-tran-
scribed using a PrimeScript RT reagent kit 
(Thermo Fisher, USA). Primers were diluted and 
mixed in RNase-Free ddH2O, and RT-qPCR was 
performed using the SYBR Green qPCR method 
(Takara Biotechnology Co.). The levels of 
GAPDH mRNA were measured to serve as a 
standard. Specific amplification conditions 
were performed using the SYBR Green qPCR 
Master Mix (Applied Biosystems) according to 
the manufacturer’s protocols. Primes sequenc-
es were shown in Table 2. The relative expres-
sion level of the target mRNA was calculated 
using the 2-ΔΔCt method.

Statistical analysis of FUSCC-cohort data

We evaluated the significance of the associa-
tions of DFS and OS with distinct mRNA expres-
sion groups of 10 hub genes expressed by 
patients with ccRCC. The duration of follow-up 
was estimated using the Kaplan-Meier method 
(95% CI) and the log-rank test. Integrated 
scores represent the sums of each significant 
oncogenic hub-gene weight. Receiver operating 
characteristic (ROC) curves were generated to 
validate the specificity and sensitivity of a diag-
nosis according to high or low integrated scores 
of significant hub-gene levels. Area under the 
curve (AUC) analysis was performed to deter-
mine diagnostic ability.

Gene set enrichment analysis (GSEA) and re-
lated gene networks

TCGA data were subjected to GSEA using 
Bioconductor category version 2.10.1 package. 
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Table 1. Functional roles of 10 prognostic hub genes

No. Gene 
symbol Full name Function

1 ADAMTS9 A Disintegrin And Metalloproteinase 
With Thrombospondin Motifs 9

Pathway: Metabolism of proteins and O-linked glycosylation.
GO: Metalloendopeptidase activity and endopeptidase activity.

2 C1S Complement C1s Pathway: Immune response Lectin induced complement pathway and Creation of C4 and C2 activators.
GO: Calcium ion binding and serine-type endopeptidase activity.

3 DPYSL3 Dihydropyrimidinase Like 3 Pathway: Semaphorin interactions and Developmental Biology.
GO: Hydrolase activity and phosphoprotein binding.

4 H2AFX H2A Histone Family Member X Pathway: Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 and ATM Pathway.
GO: Sequence-specific DNA binding and enzyme binding.

5 MINA MYC-Induced Nuclear Antigen Pathway: Validated targets of C-MYC transcriptional activation and Chromatin organization.

6 PLOD2 Procollagen-Lysine, 2-Oxoglutarate 
5-Dioxygenase 2

Pathway: Collagen chain trimerization and Lysine degradation.
GO: Oxidoreductase activity and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen.

7 RUNX1 Runt Related Transcription Factor 1 Pathway: Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds and Embryonic and Induced Pluripotent 
Stem Cell Differentiation Pathways and Lineage-specific Markers.
GO: DNA-binding transcription factor activity and protein homodimerization activity.

8 SLC19A1 Solute Carrier Family 19 Member 1 Pathway: Metabolism of water-soluble vitamins and cofactors and Antifolate resistance.
GO: Oxidoreductase activity and folic acid transmembrane transporter activity.

9 TPX2 Targeting Protein For Xklp2 Pathway: Gene Expression and Cell Cycle, Mitotic.
GO: GTP binding and protein kinase binding.

10 TRIB3 Tribbles Pseudokinase 3 Pathway: Class I MHC mediated antigen processing and presentation and RET signaling.
GO: Transferase activity, transferring phosphorus-containing groups and protein kinase binding.
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For each analysis, the Student t test was per-
formed, and the mean levels of differentially 
expressed genes were calculated. A permuta-
tion test (1000 times) was used to identify  
significantly changed pathways. The default 
adj. P values determined using the BH-FDR 
method were applied to correct for false-posi-
tives [26]. Significantly related genes were 
defined as those with adj. P<0.01 and 
FDR>0.25. Statistical analyses and graphical 
presentation were conducted using R software 
(Version 3.3.2). A detailed PPI network associ-
ated with a default set of 10 hub genes was 
constructed using GeneMANIA (http://genema-
nia.org/).

Results

We first assessed DEGs using three datasets 
hosted on the GEO platform to identify coordi-
nately-regulated hub genes. Second, we evalu-
ated the significance of the associations 
between the expression levels of hub genes 
and prognosis according to TCGA data and then 
validated their prognostic value using a real-
world cohort. Third, we predicted potential 
functional annotations and hallmark pathways.

Identification of DEGs in ccRCC

After normalization and identification of mRNA 
microarray data, the DEGs (12,817; 1,817; and 
1,766 probe samples in GSE22541, GSE85- 
258, and GSE47352, respectively) were de- 
termined as significant according to the analyti-
cal and statistical parameters of the data pro-
cessing steps. The overlap among the three 
datasets included 112 significant genes (Figure 
1A).

Construction of a PPI network and functional 
analysis of modules

The PPI network comprising the DEGs is shown 
in Figure 1B, and the network of the DEGs and 
their coordinately expressed neighboring genes 
are shown in Figure 1C. The enrichment profiles 
determined using DAVID-GO functional analy-
ses suggested that the 112 DEGs in this mod-
ule were primarily enriched in GO terms such  
as double-strand break, positive response to 
stimulus, sarcomere, external side of plasma 
membrane, metal ion biding, cation binding, 
ion binding, and cytoskeletal protein binding 
(Figure 1D).

To further identify underlying signaling path-
ways, we analyzed KEGG pathways together 
with GO functional annotations (Figure 2). 
Detailed functional notes and classification pie 
charts are shown in Supplementary Figure 1. 
The frequencies of GO terms determined using 
ClueGO analysis were as follows: 25.0%, ne- 
gative regulation of protein complex disassem-
bly; 12.5%, negative regulation of response  
to oxidative stress; 9.38%, cell-cell junction 
assemble; 6.25%, maintenance of protein loca-
tion in cell; 6.25%, photoreceptor cell differen-
tiation; 6.25%, inorganic cation import across 
plasma membrane; and 6.25%, lysosome 
organization.

Selection of significant hub genes

Lasso Cox regression analysis suggested that 
C1S, PLOD2, ADAMTS9, AK1, CHD2, DCAF8, 
DNAJC10, DPP3, DPYSL3, GSTM3, H2AFX, 
HBA1, RUNX1, MAMDC4, MFAP3L, MINA, 
OSBPL1A, PIAS2, RBBP6, RCOR3, RHOBTB3, 

Table 2. Primer sequences (5’-3’) of 10 prognostic hub genes for qRT-PCR
No. Gene symbol Forward Reverse
1 ADAMTS9 CAGAAGGGGCTTGGTTGG TCGTGTTCCTACCCTATTTTGA
2 C1S GTTGTCATGGACAGTGAGAG GCCTAAATTCACCCTGGAAG
3 DPYSL3 GGATCACGAGTGACCGCCTT TCGTCATTCACGCGCCATGT
4 H2AFX CGGCAGTGCTGGAGTACCTCA AGCTCCTCGTCGTTGCGGATG
5 MINA CCAAAGAACTGCTTTCCTCAGAC CTACACTGTCCAGCCTCGGTAA
6 PLOD2 CATGGACACAGGATAATGGCTG AGGGGTTGGTTGCTCAATAAAAA
7 RUNX1 GCCAGGAACCGGCCTTACTC GCTAGTGTGCCGAGGAAGA
8 SLC19A1 TTGCCCAAGCTATTCTCAGTCGA CAGAGACACCGCCAGCCACAT
9 TPX2 ACCTTGCCCTACTAAGATT AATGTGGCACAGGTTGAGC
10 TRIB3 ATGCCCCCTCGGATTTCATC TTGCCCTGAAAAAGCCCTCC
11 GAPDH GTCTTC TCCACCATGGAGAAGG CATGCCAGTGAGCTTCCCGTTCA
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Figure 1. Screening and selection of DEGs using multiple GEO database. A. After normalization and identification of mRNA microarray data, the DEGs (12,817; 
1,817; and 1,766 probe samples in GSE22541, GSE85258, and GSE47352, respectively) were determined as significant according to the analytical and statistical 
parameters of the data processing steps. The overlap among the three datasets included 112 significant genes. B. The PPI network of the DEGs was constructed 
using Cytoscape. MCODE, a plug-in of Cytoscape, predicts the most significant gene panel, marked in light green. C. DEGs and their co-regulated network were 
analyzed using cBioPortal. Nodes with bold black outline represent hub genes. Nodes with thin black outline represent the co-expression genes. D. The enrichment 
profiles from DAVID GO functional analyses of the 112 hub genes suggested that the hub genes in this module were primarily enriched in double-strand break, 
positive response to stimulus, sarcomere, external side of plasma membrane, metal ion biding, cation binding, ion binding, cytoskeletal protein binding and so one.
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SLC19A1, SORBS2, SPTAN1, SPTBN1, SYT13, 
TPM4, TPX2, TRIB3, UGGT1 were significant 
weighted prognostic factors. Functional anno-
tation of these genes revealed they were  
primarily enriched in the terms as follows: regu-
lation of actin filament capping, non-mem-
brane-bounded organelle, sarcomere, myofibril, 
organelle lumen, nucleolus, actin cytoskeleton, 
and nuclear lumen (Figure 3).

Kaplan-Meier analysis indicated that differen-
tially elevated levels of the hub genes ADAMTS9, 
C1S, DPYSL3, H2AFX, MINA, PLOD2, RUNX1, 
SLC19A1, TPX2, and TRIB3 significantly corre-

lated with poor prognosis of 513 patients with 
ccRCC (Figure 4A-T). Functional annotations of 
each prognostic hub gene are listed in Table 1. 
Hierarchical partitioning was performed using 
the transcriptional expression profiles of select-
ed 10 oncogenes (Figure 4U).

External validation of hub DEGs in 380 ccRCC 
patients from FUSCC cohort

DEGs corresponding to ADAMTS9, C1S, DPY- 
SL3, H2AFX, MINA, PLOD2, RUNX1, SLC19A1, 
TPX2, and TRIB3 mRNAs were identified using 
the TCGA database and GSE11151 [27] (Figure 

Figure 2. Functional annotations of significant DEGs. To further identify underlying signaling pathways, we analyzed 
KEGG pathways together with GO functional annotations using ClueGO and CluePedia, plug-ins of Cytoscape.
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5). Significantly increased levels of these 
mRNAs were expressed by both cohorts. In 
contrast, MINA mRNA was differentially ex- 
pressed at lower levels. The levels of the cog-
nate proteins expressed by these hub genes in 
tumor and adjacent tissues detected using IHC 
and reported by the Human Protein Atlas are 
shown in Supplementary Figure 2.

A total of 380 ccRCC patients with available 
clinical and pathological data were enrolled in 
this study (Table 3). After integration of qRT-

PCR and clinical follow-up data for 380 patients 
with ccRCC, we confirmed that ADAMTS9, C1S, 
DPYSL3, H2AFX, PLOD2, RUNX1, SLC19A1, 
TPX2, and TRIB3 mRNAs were differentially 
expressed in the FUSCC cohort. Differentially 
elevated mRNA levels were significantly associ-
ated with shorter DFS and OS (P<0.05) (Figure 
6).

An integrated gene panel was constructed 
using 10 hub gene (ADAMTS9, C1S, DPYSL3, 
H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, 

Figure 3. Further identification of hub genes using LASSO regression analysis. A, B. To further select significant 
prognostic metastasis-related biomarkers, LASSO Cox regression was performed to further search for hub genes 
associated with metastasis and to narrow the scope of the panel, suggested that a total of 31 genes, including 
C1S, PLOD2, ADAMTS9, AK1, CHD2, DCAF8, DNAJC10, DPP3, DPYSL3, GSTM3, H2AFX, HBA1, RUNX1, MAMDC4, 
MFAP3L, MINA, OSBPL1A, PIAS2, RBBP6, RCOR3, RHOBTB3, SLC19A1, SORBS2, SPTAN1, SPTBN1, SYT13, TPM4, 
TPX2, TRIB3, UGGT1 are significant weighted prognostic factors. C. GO function annotations of 31 selected genes. 
Functional annotation of these genes revealed they were primarily enriched in the terms as follows: regulation of 
actin filament capping, non-membrane-bounded organelle, sarcomere, myofibril, organelle lumen, nucleolus, actin 
cytoskeleton, and nuclear lumen.
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Figure 4. Prognostic value of significant hub genes from TCGA cohort. A-T. Kaplan-Meier analysis indicated that differentially elevated levels of the hub genes AD-
AMTS9, C1S, DPYSL3, H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, and TRIB3 significantly correlated with poor prognosis of 513 patients with ccRCC. U. Hierar-
chical partitioning was performed using transcriptional expression profiles of 10 selected oncogenes.
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TRIB3), which may serve as an independent 
panel to predict the progression of ccRCC. 
Kaplan-Meier analysis revealed significant as- 
sociations of mRNA levels with DFS (P<0.0001) 
and OS (P<0.0001) (Figure 7A, 7B). ROC curve 
analysis indicated the ability of the gene model 
to predict metastasis (AUCs of the integrated 
model were 0.758 for OS and 0.772 for DFS) 
(Figure 7C).

Significantly associated genes and their signal-
ing pathways

GSEA identified 100 DEGs with positive or neg-
ative correlations. Among them, we used the 
hallmarks ADAMTS9, C1S, DPYSL3, H2AFX, 
MINA, PLOD2, RUNX1, SLC19A1, TPX2, and 
TRIB3 to perform GSEA. Figure 8 shows the 
three most relevant hallmark pathways of each 

Figure 5. Differential expression validation of 10 hub genes in TCGA and GSE11151. Transcriptional expression of 
ADAMTS9, C1S, DPYSL3, H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, TRIB3 between were tumor and normal 
samples were generated using TCGA database and GSE11151. 
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hub gene. The most significant genes associat-
ed with 10 hub genes, and their relationships 
are shown in Figure 9A, and a detailed PPI net-
work related to this gene set shows additional 
interrelated nodes at the protein level (Figure 
9B).

Discussion

Genetic and epigenetic alterations contribute 
to the development and progression of RCC 
[28]. ccRCC, which is the most aggressive his-
tological subtype of ccRCC, is associated with 
elevated mortality owing to its high metastatic 
potential [29]. Unfortunately, the underlying 
mechanisms of oncogenesis and metastasis of 
ccRCC are unknown. We reasoned that micro-
array technology represents a powerful tool to 
fill this gap in our knowledge, because it enables 

comprehensive mRNA expression profiling of 
ccRCC through its ability to identify and charac-
terize new biomarkers involved in tumorigene-
sis and progression [30, 31]. Here we conduct-
ed an integrated systematic analysis microar-
ray data of well-characterized primary and 
metastatic ccRCCs to identify unique gene 
expression profiles characteristic of tumor 
aggressiveness. We identified 112 DEGs and 
10 prognostic hub genes associated with func-
tional annotations in different expression lev-
els. GSEA was used to visualize significantly 
enriched gene-set hallmarks of 10 selected 
hub genes. These findings provide the basis for 
further screening and identification of promis-
ing biomarkers of tumor aggressiveness.

Several scoring systems combine clinical and 
pathological features to determine prognosis 
and to accurately predict survival outcomes of 
patients with primary and metastatic ccRCC 
[32-34]. These predictive models improve the 
specificity and accuracy of predicting survival 
outcomes of patients ccRCC, and the incorpo-
rated clinicopathological parameters are surro-
gate measures of major fundamental mecha-
nisms that determine the aggressiveness of 
malignant tumors. Moreover, proteogenomic 
characterization of cancers that aims to devel-
op therapeutic strategies will benefit from the 
acquisition of knowledge of the details of the 
biological mechanisms that contribute to the 
oncogenesis and progression of ccRCC.

At present, there have been multiple clinical 
research models based on multi-center or ret-
rospective studies to predict prognosis, which 
helps to predict clinical prognosis from the per-
spective of multiple prognostic factors. These 
models have the potential to change our clini-
cal practice and guide clinicians to implement 
individualized research strategies, which has 
strong clinical guidance value. In 2018, 
RCClnc4 classifier has been demonstrated to 
have precise prognostic significance in early 
ccRCC using four LncRNAs [35]. A retrospective 
analysis and multicentre validation study also 
constructed a six-SNP-based classifier for pre-
dicting recurrence in localised renal cell carci-
noma [36]. Interestingly, there are few research-
es to analyze the genomic difference between 
of metastatic and primary ccRCC. The present 
study represents the first attempt to establish a 
gene regulatory network incorporating metas-

Table 3. Clinicopathological characteristics 
baseline in 380 ccRCC patients from FUSCC 
cohort (FUSCC: Fudan university shanghai 
cancer center)

Characteristics FUSCC cohort
(N=380)

N (%)
    Age
        <60 years 253 (66.6)
        ≥60 years 127 (33.4)
    Gender
        Male 258 (67.9)
        Female 122 (32.1)
    BMI
        <25 kg/m2 231 (60.8)
        ≥25 kg/m2 149 (39.2)
    pT stage
        T1-T2 307 (80.8)
        T3-T4 73 (19.2)
    pN stage
        N0 334 (87.9)
        N1 46 (12.1)
    pM stage
        M0 310 (81.6)
        M1 70 (18.4)
    AJCC stage 
        I-II 292 (76.8)
        III-IV 88 (23.2)
    ISUP grade
        G1-G2 182 (47.9)
        G3-G4 198 (52.1)
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Figure 6. External validation for prognostic value of 10 hub genes and prediction model in 380 ccRCC patients from FUSCC cohort. After integration of qRT-PCR and 
clinical follow-up data for 380 patients with ccRCC, we confirmed that ADAMTS9, C1S, DPYSL3, H2AFX, PLOD2, RUNX1, SLC19A1, TPX2, and TRIB3 mRNAs were 
differentially expressed in the FUSCC cohort. Differentially elevated mRNA levels were significantly associated with shorter DFS and OS (P<0.05).



Metastasis-related signatures in ccRCC

4122 Am J Transl Res 2020;12(8):4108-4126

tasis-related and identifies the hub genes as- 
sociated with the metastatic potential of 
ccRCC. Moreover, we show here that the altera-
tions of the expression levels of ADAMTS9, 
C1S, DPYSL3, H2AFX, MINA, PLOD2, RUNX1, 
SLC19A1, TPX2, and TRIB3 were significantly 
associated with shorter OS and DFS, indicating 
that these significant DEGs may play important 
roles in the aggressive malignant phenotype of 
ccRCC.

The limitations of this study are as follows: 
First, the microarray data were unbalanced 
with respect to the numbers of ccRCC and con-
trol tissues, which were restricted in quantity 
and acquired from the GEO databases. Second, 
these microarray data comprised relatively few 
ccRCC samples. Furthermore, only 513 patients 
were enrolled from the TCGA cohort with corre-
sponding transcriptome data and relatively 
complete phenotypic data. Third, a prospective 
cohort was not analyzed, and identification of 
the underlying mechanisms was not addressed. 
Fourth, only the mRNA levels of hub genes are 
shown. Thus, further functional analyses of vali-

dated cohorts are required to verify these 
findings.

In conclusion, the present study identifies DEGs 
and hub genes that may be involved in earlier 
recurrence and poor prognosis of ccRCC. The 
expression levels of ADAMTS9, C1S, DPYSL3, 
H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, 
and TRIB3 have high prognostic value and may 
help us better understand the underlying me- 
chanisms of oncogenesis and progression of 
ccRCC.
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Supplementary Figure 1. The detailed functional annotations and classification pie charts using CluePedia from Cytoscape are provided. Of the ClueGO analysis, 
25.0% of terms belonged to the negative regulation of protein complex disassembly, 12.5% to negative regulation of response to oxidative stress, 9.38% to cell-
cell junction assemble, 6.25% to maintenance of protein location in cell, 6.25% to photoreceptor cell differentiation, 6.25% inorganic cation import across plasma 
membrane, and 6.25% to lysosome organization.
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Supplementary Figure 2. IHC staining was used to describe differential proteomic expression of ADAMTS9, C1S, 
DPYSL3, H2AFX, MINA, PLOD2, RUNX1, SLC19A1, TPX2, TRIB3. Antibody staining density described staining status 
between normal and tumor samples.


