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Abstract: Hemangioblastomas (HBs) histologically overlap with TFE3 rearrangement-associated tumors, which pres-
ent as alveolar architecture and clear or eosinophilic granular cytoplasm. However, whether TFE3 is expressed in 
HBs remains unexplored. Herein, we analyzed the clinicopathologic features of 42 HBs emphasizing studies of TFE3 
expression. Of 42 cases, 38 were sporadic and 4 were regarded as a part of von Hippel-Lindau (VHL) syndrome ac-
cording to clinical presentation. Nineteen patients were male and 23 were female. Patient age ranged from 17 to 70 
years (median 43). Tumor size ranged from 0.4 to 4.8 cm (mean 2.2 cm). Follow-up ranged from 1 to 60 months and 
6 patients developed recurrence. Immunohistochemistry staining showed that 36 (86%) of 42 HBs expressed TFE3 
in nuclei of tumor cells, of which 21 were evaluated as high TFE3 expression levels. Increased TFE3 expression was 
significantly associated with older ages (P=0.018) and larger tumor size (P=0.001). Seventeen HBs with high TFE3 
expression were negative for rearrangement and amplification of TFE3 by FISH analysis, 3 of which including 2 spo-
radic and 1 VHL-related HBs demonstrated trisomies or tetrasomies of X-chromosome in 7%~18% of tumor cells. 
All 3 cases occurred in female, presented with a larger tumor size and displayed a similar morphologic appearance 
with high cellularity and hyperchromatic nuclei. Our study first reports TFE3 expression and its clinicopathological 
relevance in HBs. We hypothesize that TFE3 might be involved in the pathogenesis of non-VHL-related HBs. Further-
more, HBs with strong TFE3 expression should be differentiated from brain-metastatic TFE3-rearranged tumors. 
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Introduction

Hemangioblastomas (HBs) are benign neo-
plasms of undetermined origin and account for 
up to 2.5% of all intracranial tumors [1, 2]. HBs 
can occur in the cerebellum (16-69%), brain-
stem (5-22%), spinal cord (13-53%), cauda 
equina (11%), supratentorial region (1-7%) or 
other locations outside of central nervous sys-
tem (CNS) [2, 3]. On gross appearance, HBs are 
often described as red vascular masses with a 
thin layer of capsule. Microscopically, the tumor 
is composed of two main components: polygo-
nal-shaped stromal cells with clear or granular 
eosinophilic cytoplasm and vascular cells com-
prising of endothelial cells and pericytes [2, 4]. 
The stromal cells are considered as the neo-
plastic cells harboring the genetic alterations 
[5]. HBs can occur sporadically (75%) or as a 
part of von Hippel-Lindau (VHL) syndrome (25%) 
[6]. Germline mutations or aberrations in the 
VHL gene have been identified as the cause of 
VHL-related HBs [7-10]. However, the pathogen-

esis of sporadic HBs remains unclear. Recent 
studies have explored additional genetic altera-
tions that may contribute to the tumorigenesis 
of sporadic HBs [11, 12]. 

Microphthalmia-associated transcription fac-
tor/transcription factor E (MiTF/TFE) family 
members include TFE3, MITF, TFEB, and TFEC. 
The TFE3 (transcription factor binding to IGHM 
enhancer 3) gene is located on chromosome 
Xp11.2 and can fuse to multiple partners owing 
to chromosomal translocations. Known TFE3 
fusion partners include ASPSCR1 (ASPL), PRCC, 
SFPQ1 (PSF), NONO, CLTC, PARP14, LUC7L3, 
DVL2, KHSRP, RBM10, NEAT1, and KAT6A [13-
22]. These TFE3 gene fusion partners contrib-
ute more robust promoters that cause overex-
pression of TFE3 fusion proteins and tran- 
sactivation of other genes [23, 24]. An increas-
ing number of TFE3 rearrangement-associated 
tumors, such as Xp11 translocation perivascu-
lar epithelioid cell neoplasm (PEComas), Xp11 
translocation renal cell carcinoma, melanotic 
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Xp11 translocation renal cancers, and a sub- 
set of epithelioid hemangioendothelioma have 
been reported [13, 14, 25-27]. It has been sug-
gested that TFE3-associated tumors have dis-
tinctive histological features presented as solid 
nests or alveolar architecture, epithelioid tu- 
mor cells with abundant clear to finely granular 
eosinophilic cytoplasm and delicate vascular 
septa.

It is noted that, according to a review of litera-
ture, TFE3 expression in CNS has not hitherto 
been reported with any frequency. Due to the 
recognition that there are morphological simi-
larity between HBs and TFE3-rearranged neo-
plasms while TFE3 expression in HBs remains 
unclear, herein we analyzed TFE3 expression 
by immunohistochemistry staining and its clini-
copathologic features in HBs, then further per-
formed fluorescence in situ hybridization (FISH) 
analysis in HBs with high TFE3 expression.

Materials and methods

Patients

Forty-two patients of HB who were operated 
between 2014 and 2018 in our Hospital, Sun 
Yat-sen University were eligible. The surgical 
specimens were available in the tissue bank  
of the Department of Pathology. A retrospec- 
tive review was performed in these cases, in- 
cluding clinicopathologic data, pathomorpho- 
logy, immunohistochemistry analyses, treat-
ments and follow-up information (all patients 
were followed until June 2019). Of the 42 
patients, 4 with a clinical manifestation of VHL 
syndrome were classified as having VHL-relat- 
ed HBs. All the patients received magnetic res-
onance imaging (MRI) at 1- to 3-month inte- 
rvals to evaluate extent of preoperative disease 
progression and postoperative recovery. Lesion 
size were acquired based on pre-operative MRI 
scan and on written surgery reports. HBs are 
frequently cystic & solid lesion, but just the 
solid nodule size calculated by the largest diam-
eter rather than the cyst size was defined as 
tumor size. For multiple lesions, the size of the 
largest tumor was counted. For the use of clini-
cal materials for analysis, prior patient consent 
and approval from the Institutional Research 
Ethics Committee had been obtained.

Immunohistochemistry

As previously described [28], immunohisto-
chemistry staining for TFE3 was performed on 

formalin-fixed, paraffin-embedded sections (4 
μm thick) using manual protocols. Briefly, tis-
sue slides were deparaffinized in xylene (10 
min, thrice) and rehydrated using graded etha-
nol concentrations. Antigen retrieval was per-
formed with steaming treatment in 1 mmol/L 
EDTA (PH 9.0) buffer. Following blocking endog-
enous peroxidase activity with 3% hydrogen 
peroxidase for 10 min, tissue sections were 
incubated overnight at 4°C with anti-TFE3 anti-
body (Cell Marque; clone MRQ-37; prediluted). 
Then the sections were incubated with the 
ChemMateTm EnvisionTm/HRP, Rabbit/Mouse 
secondary antibody (Gene Tech, GK500705) 
for an hour at 37°C. Diaminobenzidine (3,3’- 
Diaminobenzidine) was used as the chromo-
gen, and Mayer’s hematoxylin was used as a 
counterstain. 

The immunohistochemistry staining was inde-
pendently evaluated by two experienced pa- 
thologists blinded to the clinicopathologic in- 
formation. Only distinct nuclear staining for 
TFE3 was considered positive. As previously 
described [29, 30], immunoreactivity was scor- 
ed in a semiquantitative manner based on both 
labeling intensity and the percentage of immu-
nopositive tumor cells among total tumor cells. 
The staining intensity was defined as 0 (nega-
tive), 1 (weak staining), 2 (moderate staining) 
and 3 (strong staining). The score was calcu-
lated by multiplying the staining intensity by the 
percentage of tumor cells showing immunore-
activity in the nucleus (0-100). The immunos-
taining results were considered to be 0 when 
the score was <25; 1+ when the score was 
26-100; 2+ when the score was 101-200; or 3+ 
when the score was 201-300. For statistical 
analysis, 2+ and 3+ stainings were defined as 
high-TFE3 level, whereas 0 and 1+ as low-TFE3 
level.

Fluorescence in situ hybridization (FISH)

To identify TFE3 rearrangements, FISH was per-
formed on interphase nuclei using commercial 
dual-color break-apart probes (Guangzhou LBP 
medical Technology Co., Ltd., China) specific to 
the TFE3 gene locus at Xp11.2. The TFE3 break-
apart probe set is composed of clones flanking 
TFE3 including those centromeric to 5’TFE3 
(red) and telomeric to 3’TFE3 (green). 

As previously described [30, 31], 3-µM forma-
lin-fixed, paraffin-embedded tissue sections 
were mounted on positively charged slides. A 
serial of matched H&E-stained slides were 
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used to identify the neoplastic cells. The 
unstained slides were deparaffinized at 90°C, 
immersed twice in xylene (15 minutes each) 
and twice in 100% ethanol (10 minutes each), 
air dried, and then microwaved in 0.1 mM citric 
acid (PH 6.0) for 10 minutes. The tissue sec-
tions were subsequently pretreated with 2× 
standard saline citrate (SSC) for 5 minutes, 
digested with 0.4 ml of pepsin (5 mg/ml in 0.1 
N HCl/0.9 NaCl) (Sigma, St Louis, MO, USA) at 
37°C for 40 minutes, and immersed in graded 
ethanol solutions for a second dehydration 
step. Following drying, the probes were applied 
to the marked tumoral region on each slide, 
covered with a cover slip, sealed with rubber 
cement, co-denatured with the target DNA at 
80°C for 5 minutes and then hybridized over-
night at 37°C. After stringent washing with 
0.3% NP40 in 2× SSC, the sections were coun-
terstained with DAPI, and mounted with anti-
fade solution. 

All samples were analyzed in a blind manner by 
two technologists. For each case, a minimum of 
100 tumor nuclei were scored using an Olym- 
pus BX51 fluorescent microscope (Tokyo, Ja- 
pan), controlled by IMSTAR software (Paris, 
France). Only non-overlapping tumor nuclei 
were evaluated. A fused or closely approximat-

should show one fusion signal (1F), while a nor-
mal female should exhibit two fusion signals 
(2F) because of an intact copy of TFE3 on each 
of the two X chromosomes.

Scoring of polyploid of X chromosome also dif-
fers between males and females. For male, 
cells which present to have more than one pair 
of red and green signals in the nuclei are con-
sidered to be positive, while for female, cells 
which contain more than two pairs of red-green 
signals are regarded as positive.

Statistical methods

Statistical analyses were performed using SP- 
SS 22.0 statistical software (IBM, USA). The 
relationship between qualitative variables were 
analyzed by Pearson Chi-square test or Fisher’s 
exact test. For comparison of continuous vari-
ables, Independent-Sample T test or Mann-
Whitney U test was used. P-values <0.05 were 
considered significant.

Results

Clinicopathological characteristics of HBs

The main clinical characteristics of the pati- 
ents with HBs were summarized in Table 1. Of 

Table 1. Clinical characteristics of HBs patients

Characteristics
All samples/

Patients
(N=42)

Sporadic 
HBs

(N=38)

VHL-related 
HBs

(N=4)
P

Age, years
    Mean ± SD 44±14 46±14 29±13 0.026a

Sex
    male 19 18 1 0.613b

    Female 23 20 3
Lesions number
    Multiple 8 5 3 0.018b

    Solitary 34 33 1
Tumor size, cm
    Mean ± SD 2.2±1.3 2.2±1.3 2.4±0.7 0.813a

Tumor location
    Cerebellum 33 30 3 0.289b

    Oblongata 6 4 2
    Spinal canal 6 5 1
    CPA 1 1 0
Recurrence
    Present 6 6 0 1.000b

    Absent 36 32 4
aMann-Whitney U test. bFisher exact test.

ed red-green signal pattern was inter-
preted as a normal result, whereas 
splitting of the probes indicated the 
presence of a translocation/rear-
rangement. The criterion used for call-
ing two signals as ‘separate’ was the 
presence of at least one signal width 
of space between the red and green 
signals. According to the generally ac- 
cepted criteria, gene rearrangement 
was reported as present if ≥ 10% of 
the tumor nuclei showed split signals 
defined as separation of signals.

Since TFE3 is located in X chromo-
some, the positive signal pattern dif-
fers between males and females. For 
balanced translocation, males should 
show one red and one green signal 
(1R1G), whereas females show one 
red, one green and one fusion signal 
(1R1G1F). For unbalanced transloca-
tion, males should show one red and 
one fusion signal (1R1F), while femal- 
es show one red and two fusion sig-
nals (1R2F). For negative results, in- 
terphase nuclei from a normal male 
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Figure 1. Histological and immunophenotypic features of HBs. (A-D) Microscopically, stromal tumor cells of HBs 
displayed nested or alveolar growth pattern, accompanied by a predominant delicate vasculature. The tumor cell 
cytoplasm varied from abundant clear vacuolated (A and B; H&E) to eosinophilic granular (C and D; H&E), and the 
nuclei were irregularly contoured with small nucleoli. (E-H) The tumor cells were positive for the expression of inhibin 
α (E and F; IHC) and S-100 protein (G and H; IHC). (I and J) Vascular endothelial cells expressed CD34 (IHC). Original 
magnification, left column, 200×; right column, 400×.
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Figure 2. Nuclear TFE3 expression in HBs by immunohistochemistry staining. Representative images for IHC stain-
ing of HB tissues with variable nuclear TFE3 expression, including strong (A), intermediate (B) and weak (C) intensity 
as well as negative TFE3 expression (D). (A-D) Original magnification, 400×. 

unavailable). Meanwhile, this patient had also 
adrenal pheochromocytoma and multiple pan-
creatic cysts. All of the other 3 patients without 
family history of tumors had multiple HBs, of 
which one had renal angiomyolipoma and poly-
cystic pancreas. The sporadic HBs patients 
were elderly (mean, 46±14 years) while the 
VHL-related HBs mostly occurred in young pa- 
tients (mean, 29±13 years) (P=0.026). Com- 
pared with sporadic HBs, VHL-related HBs we- 
re more prone to multiple lesions. In the spo-
radic HBs patients, the tumors were solitary in 
33 cases and multiple in 5 cases, while out of 
4 VHL-related HBs, 3 were multifocal lesions 
(P=0.018).

VHL-related and sporadic HBs had identical  
histological features. Microscopically, the tu- 
mors were composed of nests of stromal ce- 
lls which presented as oval to polygonal sha- 
pe with a palely eosinophilic to clear and of- 
ten multi-vacuolated cytoplasm, irregularly con-
toured nuclei and small nucleoli (Figure 1A-D). 
Some tumor cell nuclei was hyperchromatic or 
vesicular with inconspicuous nucleoli. Mitotic 
figures were rare. No necrosis was observed in 
all tumors. Immunostaining showed that Inhi- 
bin α (Figure 1E, 1F), S-100 protein (Figure 1G, 
1H), CD56, and NSE were expressed in tumor 
cells, as well as CD31 and CD34 were positive 

the 42 patients, 19 were male and 23 were 
female. Patient ages at the time of diagnosis 
ranged from 17 to 70 years (mean, 44 years; 
median, 43 years). Eight cases were multiple 
tumors and the others were solitary. Twenty-
nine cases arose in cerebellum, of which 4  
had multiple nodules, 5 in medulla oblongata 
and 4 in spinal canal. Additionally, one case 
occurred simultaneously in cerebellum and 
medulla oblongata, 2 in cerebellum and spinal 
canal, and 1 in cerebellum and cerebellopon-
tine angle. Tumor size ranged from 0.4 to 4.8 
cm (mean, 2.2 cm) in diameter.

All cases presented with clinical symptoms 
related to tumor compression. The majority of 
patients were treated by tumor resection 
whereas 2 patients with multiple tumors under-
went incomplete excision. Follow up informa-
tion (range, 1 to 60 months) was available for 
all cases. Thirty-six patients were alive without 
recurrence or metastasis. However, 6 patients 
experienced tumor recurrence. 

There were 38 sporadic HBs and 4 VHL syn-
drome-related HBs. In the 4 VHL-related HBs, 
one patient with a solitary HB had a family his-
tory with his father suffering from adrenal 
tumor, and his grandfather and uncle both hav-
ing kidney benign tumors (specific information 
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half of all cases exhibiting nuclear TFE3 label-
ing index more than 100 were regarded as high 
TFE3 expression level and the other half were 
regarded as low TFE3 expression level. 

The relationship between TFE3 expression and 
the clinicopathologic features in HBs

The relationship between TFE3 expression and 
the clinicopathologic features of HBs was ana-
lyzed (Table 2). Our results showed that high 
TFE3 expression level was significantly associ-
ated with older age (P=0.018) and larger tu- 
mor size (P=0.001). No significant relationship 
between TFE3 expression and any other clini- 
copathologic variable was found.

FISH findings

This pattern of TFE3 over-expression prompted 
us to perform break-apart FISH assay to detect 
whether it is related to TFE3 rearrangement. 
Seventeen HBs with high nuclear TFE3 levels 
including 15 cases of sporadic HBs and 2 VHL-
related HBs were analyzed by FISH. The FISH 
findings were summarized in Table 3. All 17 
cases were negative for TFE3 break-apart by 
FISH. A normal male showed one fusion signal 
(Figure 3A) whereas a normal female showed 
two fusion signals (Figure 3B). However, our 
data showed that polyploid X-chromosome wi- 
th increased TFE3 copy numbers occurred in 3 
HBs including 2 sporadic HBs and 1 VHL-relat- 
ed HB. Of the 2 sporadic cases, one had triso-
mies and tetrasomies of X-chromosome (7%) 
and the other had tetraploid X-chromosome 
(7%). While in the VHL-related case, trisomies 
and tetrasomies of X-chromosome was found 
in about 18% tumor cells.

All of the 3 cases were female ranging in age 
from 31 to 48 years (mean, 39 years). The size 
of each tumor was larger than average (2.2 cm) 
of the overall tumor population, ranging from 
2.5 to 3.0 cm. Two sporadic HBs were solitary 
tumors and were both located in cerebellar 
hemisphere, while the VHL-related HB had mul-
tifocal lesions respectively located in cerebel- 
lar vermis and Lumbar vertebral canal. Micro- 
scopically, the 3 tumors exhibited a similar mor-
phological features including high cellularity (Fi- 
gure 4A) and hyperchromatic nuclei (Figure 
4B). Represent images of high TFE3 expression 
examined by IHC and of triploid as well as te- 
traploid tumor cells detected by FISH analysis 

Table 2. Relationships between nuclear 
TFE3 expression levels and clinicopathologic 
features in HBs

Characteristics No.
TFE3 levels

P
High Low

Age, years
    Mean ± SD 49±14 39±13 0.018a

Sex
    male 19 10 9 0.757b

    Female 23 11 12
Lesions number
    Multiple 8 5 3 0.697c

    Solitary 34 16 18
Tumor size, cm
    Mean ± SD 2.9±1.0 1.5±1.1 0.001d

Tumor location
    Cerebellum 33 21 12 0.061c

    Oblongata 6 1 5
    Spinal canal 6 2 4
    CPAe 1 0 1
Recurrence
    Present 6 3 3 1.000c

    Absent 36 18 18
HBs subtype
    Sporadic 38 19 19 1.000c

    VHL-related 4 2 2
aIndependent-Sample T Test. bPearson Chi-square test. 
cFisher’s exact test. dMann-Whitney U test. e‘CPA’ denotes 
cerebellopontine angle.

in vascular endothelial cells (Figure 1I, 1J). 
Ki-67 proliferation index was about 1% to 15% 
(median, 2%).

TFE3 expression in HBs by immunohistochemi-
cal staining

In our series, 36 of 42 (85.7%) HBs including  
32 cases of sporadic HBs and 4 cases of  
VHL-related HBs showed TFE3 nuclear staining, 
while 6 HBs (14.3%) completely lacked TFE3 
expression in the nucleus. Among the 36 HBs 
labeled positively for TFE3, 23 cases (54.8%) 
exhibited strong TFE3 staining in a mean of 
53% of tumor cells (range, 5%-90%), 11 cases 
(26.2%) demonstrated moderate immunostain-
ing for TFE3 in a mean of 56% of tumor cells 
(range, 5%-90%), while weak TFE3 labeling was 
observed in only 2 cases (60% and 90%, res- 
pectively) (Figure 2A-D). Following the scoring 
criteria described in Materials and methods, 
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Table 3. Summary of FISH findings

Case Age/
Gender

Tumor 
type

Diameter 
(cm)

Nuclear
TFE3 labeling
(intensity, %)

TFE3 break-apart
FISH X-chromosome

1 48/F VHL 3.0 3+, 80% 1R1G2F, 2%; 1R1F, 1% trisomies and tetrasomies, 18%
2 48/M Sporadic 3.0 3+, 70% 1R1G, 3% Normal
3 29/M Sporadic 0.4 3+, 50% 1R1G, 3% Normal
4 31/F Sporadic 2.5 2+, 80% 1R1G1F, 3% tetrasomies, 7%
5 50/M Sporadic 3.0 3+, 50% 1R1G, 2% Normal
6 34/M Sporadic 4.8 3+, 70% 1R1G, 2% Normal
7 38/F Sporadic 2.5 3+, 70% 1G1F, 2%; 1R1F, 1% trisomies and tetrasomies, 7%
8 54/F Sporadic 3.5 3+, 70% 1R1G1F, 2% Normal
9 50/M Sporadic 3.5 3+, 50% 1R1F, 1%; 1G1F, 2% Normal
10 17/F VHL 3.0 2+, 70% 1R1G, 2% Normal
11 68/M Sporadic 3.5 3+, 90% 1R1G1F, 3% Normal
12 63/F Sporadic 1.0 3+, 90% NS Normal
13 60/F Sporadic 2.0 3+, 50% 1R1G1F, 2%; 1G1F, 2% Normal
14 57/F Sporadic 3.0 3+, 50% NS Normal
15 36/F Sporadic 2.4 3+, 80% 1R1G1F, 2%; 1G1F, 2% Normal
16 56/M Sporadic 3.0 2+, 80% 1R1G, 1% Normal
17 55/M Sporadic 4.0 3+, 80% 1R1G, 2% Normal
‘NS’ denotes no signal that can be detected.

Figure 3. No TFE3 rearrangements detected in HBs. Break-apart FISH analy-
ses using probes flanking TFE3 gene are negative. Normal combination of 
red-green signals differs between a male and a female (red, centromeric; 
green, telomeric). A. Representative FISH image of a normal male showing 
one fusion signal (1F). B. Representative FISH image of a normal female 
exhibiting two fusion signals (2F). A and B. Original magnification, 1000×.

were shown in Figure 4C-E, respectively. All the 
3 cases had no recurrence during the follow-up 
period.

Discussion

Most of HBs occur sporadically except a minor-
ity of cases are manifestation of VHL syndro- 
me. VHL syndrome is an autosomal-dominant, 
multi-organ, and familiar neoplastic disease, 
including HBs in CNS and retina, clear cell re- 
nal cell carcinoma (ccRCC), pheochromocyto-
ma, paragangliomas, and pancreatic neuroen-

docrine tumors [2, 32-36]. Am- 
ong these VHL-associated tu- 
mors, HBs in CNS are the most 
common symptom and affect 
60-80% of VHL patients [3, 
36]. The VHL gene that is a 
tumor suppressor gene locat-
ed on chromosome 3p25 has 
been recognized as the cause 
of VHL syndrome [35]. Due to 
VHL mutation or deletion, nor-
mal VHL protein has been lost 
and thus results in VHL dis-
ease. Somatic mutations and 
biallelic inactivation of VHL ge- 

ne have been also found in a subset of spora- 
dic HBs [9, 37-39] and the rates of VHL muta-
tion and biallelic VHL inactivation were 56% 
and 46% in sporadic HBs by next-generation 
sequencing, respectively [39]. This observation 
suggests that there might be undetermined al- 
ternative mechanism contributing to the tumor-
igenesis of HBs without loss of function of VHL 
gene.  

The TFE3 gene is a member of the MiTF/TFE 
family of transcription factors. A number of 
studies have determined TFE3 as an oncogene. 
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Figure 4. Histopathological features of HBs harboring polyploid X-chromosome. Representative images from one 
case of HB. A. Microscopically, the tumor showed high cellularity (H&E; original magnification, 200×). B. The stromal 
tumor cells contained hyperchromatic nuclei (H&E; original magnification, 400×). C. The stromal tumor cells dem-
onstrated high TFE3 expression (IHC; original magnification, 400×). D. Representative FISH images showing triploid 
tumor cells (original magnification, 1000×). E. Representative FISH images showing tetraploid tumor cells (original 
magnification, 1000×).

Oncogenic activation of TFE3 is driven by the 
fusion of TFE3 with a number of different gene 
partners. Chromosomal translocation results  
in gene fusion involving TFE3. The most com-
monly identified fusion partner was ASPSCR1 
(ASPL) resulting from a t(X;17)(p11.2;q25.3) 
[13]. Other known partners of TFE3 include 

PRCC, SFPQ1 (PSF), NONO or CLTC respec- 
tively resulting from t(X;1)(p11.2;q21), t(X;1)
(p11.2;p34), inv(X) (p11.2;q12), or t(X;17)
(p11.2;q23) [14-16]. These chimeric transcrip-
tion factors are involved in sustaining prolifera-
tion, driving metabolism and overcoming str- 
ess in the related tumors [40]. Besides, recent 
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TFE3 expression levels were significantly relat-
ed to larger tumor size (P=0.001), indicating 
that there might be an effect of nuclear TFE3 
expression on tumor growth and proliferation  
in HBs. Additionally, our data showed that HBs 
with high TFE3 expression had a predilection 
for older patients (P=0.018). Further investiga-
tion is necessary to clarify the biological signifi-
cance of nuclear TFE3 localization.

To identify whether TFE3 expression in HBs is 
related to TFE3 rearrangements, we further 
performed TFE3 break-apart FISH analysis in 
17 HB cases haboring high nuclear TFE3 ex- 
pression, including 15 sporadic and 2 VHL-
related HBs. The result showed that all cases 
were negative for TFE3 gene rearrangement.  
In addition, no obvious TFE3 amplification was 
detected. However, recent advances have pr- 
ompted us to be aware that the false-negative 
rate of TFE3 break-apart FISH has been incre- 
asing, because the currently designed TFE3 
break-apart probes are difficult to efficiently 
detect the TFE3 gene rearrangements caused 
by an inversion of chromosome X which can 
produce the NONO-TFE3, RBM10-TFE3, and 
GRIPAP1-TFE3 gene fusions [15, 19, 47-49]. 
Thus, it still cannot be entirely ruled out the 
possibility that TFE3 rearrangements and ge- 
ne fusions may exist in some HBs. Perhaps 
reverse transcriptase polymerase chain reac-
tion (RT-PCR) and next generation sequencing 
are the preferred methods for identification of 
TFE3 gene fusions.

An additional finding by FISH detection was th- 
at three cases of HBs displayed polysomies (tri-
somies or tetrasomies) of chromosome X with 
increased TFE3 copy numbers, occupying ab- 
out 7% to 18% of tumor cells. DNA polyploidy 
can confer genomic instability and is often 
linked to tumor occurrences. Moreover, it has 
already been reported that high chromosomal 
copy number alterations are also associated 
with aggressive behavior in Xp11.2 transloca-
tion renal cell carcinoma [50]. In our cohort, 3 
HBs harboring X-chromosome polyploid all ex- 
hibited larger tumor size on gross examination, 
and higher cellularity as well as hyperchromatic 
nuclei seen under microscopy, suggesting that 
these tumors might have an increased prolifer-
ative potential. Additionally, all 3 cases were 
female, indicating that these neoplasms mi- 
ght have an predisposition to female. However, 

reports have also highlighted the role of TFE3  
in promoting Wnt signaling pathway [41-43]. 
Overexpression of the fusion proteins can be 
demonstrated by strong nuclear TFE3 immuno-
reactivity [28], which has been accepted as a 
highly sensitive immunohistochemical marker 
for initial screening of TFE3 translocations. Im- 
munohistochemistry coupled with break-apart 
FISH is now the optimized method for the clini-
cal diagnosis of TFE3 rearrangement-associat-
ed tumors [25, 28, 44-46]. 

TFE3 immunoreactivity, as observed by Argani 
P et al., was closely associated with morpho-
logic features and its positivity could be pre-
dicted by morphologic appearance [28]. Obvi- 
ously, HBs share some morphological overlap 
with known TFE3-rearranged tumors that is 
typically described as acinar or nested archi-
tecture with a delicate vasculature and clear or 
eosinophilic cytomorphology, therefore prom- 
pting our focus on the status of TFE3 expres-
sion in HBs. 

In this study, we retrospectively collected a 
total of 42 cases of HBs from our institution, of 
which 38 cases were sporadic type and 4 we- 
re VHL syndrome-related type. Although there 
might be great differences between the two 
subtypes of HBs in terms of genetics and clinic 
process, they share identical histopathology 
and are both composed of polygonal-shaped 
stromal tumor cells and a prominent delicate 
vasculature. Further diagnostic evidence was 
conferred by a characteristic immunohistoch- 
emical profile presented as expression of in- 
hibin α and S-100 protein in stromal cells. We 
compared the clinicopathological features of 
the two types of HBs. The results displayed th- 
at the mean age of patients and the proportion 
of multiple tumors were significantly different 
between 38 sporadic HBs and 4 syndromic 
HBs. Compared with sporadic HBs, VHL-related 
HBs demonstrated a predilection for young 
adults (P<0.05) and frequent multifocal pre-
sentation (P<0.05), which was in keeping with 
the prior reports [11]. 

By immunohistochemistry staining, our results 
first showed that TFE3 protein was expressed 
in tumor cells of HBs. In the samples we tested, 
the majority (36 out of 42 cases; about 85.7%) 
of HBs, including 32 cases of sporadic HBs and 
4 cases of VHL-related HBs, exhibited variable 
degree of nuclear TFE3 reactivity. Increased 
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X-chromosome polyploid is not a very common 
event accounting for about 17.6% (3/17) in the 
cases we evaluated and its actual frequency  
in HBs needs to be investigated in a larger 
patients population. 

Several studies have reported that by immuno-
histochemistry, TFE3 overexpression were also 
observed in solid-pseudopapillary neoplasms 
of the pancreas [51, 52] and granular cell 
tumors [53, 54], but FISH assay indicated that 
TFE3 break-apart was negative in these neo-
plasms. In addition, Yang et al. [29] have found 
that the strong positive immunostaining of 
TFE3 was not unique of Xp11 translocation 
renal cell carcinomas, and also occurred in a 
small minority (0.4%) of clear cell renal cell car-
cinomas with neither translocation nor amplifi-
cation of TFE3 detected by FISH. In particular, 
the possibility of TFE3 rearrangement caused 
by an inversion of chromosome X had also been 
excluded by further RNA-sequencing in their 
study. These findings suggest that there might 
be some additional genetic, epigenetic or physi-
ologic factors leading to increased TFE3 protein 
levels in HBs. 

Diagnosis of HBs is typically straightforward 
but our findings suggest a potential pitfall that 
HBs could be misdiagnosed as some other 
brain metastatic tumors sharing common his-
tology and aberrant TFE3 immunoreactivity, 
especially alveolar soft-part sarcoma (ASPS), 
PEComa, and Xp11 translocation renal cell car-
cinoma. Pathologists should be aware of the 
possibility of intracranial metastasis of these 
entities and distinguish them from HBs based 
on their distinct clinicopathological features, 
together with a judicious immunohistochemis-
try panel as well as molecular cytogenetic 
testing.

In summary, we first report that TFE3 expres-
sion has been found in the vast majority of HBs. 
Our findings expand the currently known list of 
tumors with TFE3 expression, and highlight a 
potential diagnostic pitfall caused by strong 
expression of TFE3 in some HBs. Future stud-
ies evaluating the possible role of TFE3 protein 
in pathogenesis of HBs would be interesting  
as only limited studies to date have explored 
specific molecular alterations associated with 
sporadic HBs. 
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