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Abstract: Although many long non-coding RNAs (lncRNAs) are modulators of biological events in hepatocellular 
carcinoma (HCC), the potential significance of most lncRNAs in HCC remains to be fully understood. The role of 
lncRNA ADAMTS9-AS1 in HCC was therefore determined. ADAMTS9-AS1 expression was higher in HCC cell lines 
compared to normal cells as determined by qPCR analyses. Furthermore, CCK-8, scratch wound healing, transwell 
migration, and invasion assays suggested that ADAMTS9-AS1 overexpression promoted the proliferation, migration, 
and invasion in MHCC97-H and HepG2 cells; ADAMTS9-AS1 knockdown showed the opposite results. Based on the 
results from GEO, the correlation between ADAMTS9-AS1 and PI3K/AKT/mTOR was identified. Thus, an association 
between ADAMTS9-AS1 and the PI3K/AKT/mTOR signaling pathway was further observed. To confirm the pathway 
protein levels, p-AKT, PIK3CB, and p-mTOR were selected. Western blot assays suggested that ADAMTS9-AS1 en-
hanced the expression levels of the three proteins. Because of their close relationship with PI3K/AKT/mTOR, apop-
tosis- or autophagy-related proteins were further investigated. ADAMTS9-AS1 expression was negatively related with 
LC3-II, BECN1, and pro-apoptotic Bax, whereas it was positively correlated SQSTM1 and anti-apoptotic Bcl-2 expres-
sion. Western blot results suggested that ADAMTS9-AS1 decreased ADAMTS9 expression. Our data revealed that 
ADAMTS9-AS1 contributed to proliferation, migration, and invasion in HCC cells, likely due to the activation of the 
PI3K/AKT/mTOR signaling pathway, to influence autophagy and apoptosis. These findings suggest that ADAMTS9-
AS1 could serve as a molecular target in HCC treatment.
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Introduction

Hepatocellular carcinoma (HCC) is the most 
common type of liver cancer [1], with a rapid 
increase in prevalence and poor survival world-
wide [2, 3]. Surgical resection remains the most 
common choice for patients with HCC, but the 
long-term prognosis is unsatisfactory due to 
tumor metastasis and relapse [4]. In particular, 
patients with advanced HCC often have limited 
options and a low 5-year survival [5]. There 
have been studies reporting molecular altera-
tions in HCC [6], and many molecular biomark-
ers have displayed significant values in the 
diagnosis and treatment of HCC [7-9]. However, 

it is still not possible to definitively identify the 
mechanisms underlying recurrence and metas-
tasis of HCC. For a better understanding of the 
precise causes of HCC, as well as improving 
treatments, it is important to first identify more 
potential biomarkers that might be involved in 
HCC carcinogenesis.

Long non-coding RNAs (lncRNAs) belong to a 
group of non-protein-coding RNAs that are > 
200 nucleotides in length [10] and possess lim-
ited or no protein coding potential [11]. A large 
class of lncRNAs is differentially expressed in 
various tumors, including colorectal cancer 
[12], bladder cancer [13], and lung adenocarci-
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noma [14]. In addition, the functions of abnor-
mal lncRNAs are diverse and complex because 
of their own attributes. Currently, highly abun-
dant lncRNAs serve as oncogenes or tumor 
suppressor genes to influence biological func-
tions. For example, LCAT1 is an oncogene, 
whose knockdown causes growth arrest and 
cell invasion in lung cancer cells in vitro [15]; 
LINC02273 drives proliferation, migration, in- 
vasion, and metastasis in breast cancer [16]; 
FOXD3-AS1 inhibits neuroblastoma progres-
sion [17]; and TUSC7 inhibits proliferation of 
colorectal cancer [18]. Although studies have 
also reported that lncRNAs such as MAGI2-
AS3, TPTEP1, and PVT1 play roles in HCC [19-
21], the precise molecular mechanisms remain 
largely unknown. Therefore, it is important to 
identify additional candidate biomarkers asso-
ciated with HCC that may offer a better under-
standing of HCC initiation, progression, and 
prognosis.

The lncRNA ADAM metallopeptidase with th- 
rombospondin type 1 motif, 9 (ADAMTS9) anti-
sense RNA 1 (ADAMTS9-AS1) was of special 
interest given extensive research. ADAMTS9-
AS1 is located on chromosome 3p14.1, ranging 
from 64, 536, 387-64, 592, and 757 bp 
(https://www.genecards.org/cgi-bin/carddisp.
pl?gene=ADAMTS9-AS1&keywords=ADAMTS9-
AS1) and is an antisense transcript of ADAMT- 
S9 [22]. Previous studies have reported that 
ADAMTS9-AS1 is associated with certain types 
of tumors [22-25]. Nevertheless, the functional 
roles and potential mechanism of ADAMTS9-
AS1 in HCC have not yet been fully investigated. 
The intracellular signaling pathway phosphati-
dylinositol 3-kinases (PI3K)/AKT/mammalian 
target of rapamycin (mTOR) (PI3K/AKT/mTOR) 
[26] plays an important role in many types of 
tumors and participates in biological processes 
such as cell cycle progression, autophagy, and 
apoptosis [27, 28]. Notably, lncRNAs, such as 
OR3A4 [29], SNHG16 [30], and meg3 [31], 
have been reported to play roles in HCC via 
regulating the PI3K/AKT/mTOR pathway. Addi- 
tionally, ADAMTS9 can function as a tumor sup-
pressor by inhibiting the AKT/mTOR signaling 
pathway in gastric cancer [32]. These obser- 
vations suggest that ADAMTS9-AS1 may be 
involved in the PI3K/AKT/mTOR signaling path- 
way.

The aim of the present study was, therefore, to 
evaluate the functional roles and potential 
mechanisms of ADAMTS9-AS1 in HCC cells. 

Based on a group of in vitro assays, we deter-
mined the effects of ADAMTS9-AS1 on HCC cell 
proliferation, migration, and invasion. Further- 
more, the underlying mechanisms of ADAMTS9-
AS1 on HCC cells were investigated. Our find-
ings suggest possible roles of ADAMTS9-AS1 in 
HCC, as well as its possible clinical significance 
in HCC-targeted therapy.

Materials and methods

Cells culture

Four human HCC cell lines (HepG2, MHCC97-H, 
Hep3B, and SMCC-7721) and the LO2 normal 
liver cell line were obtained from the American 
Type Culture Collection (Manassas, VA, USA). 
The cell lines were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM; Gibco, 
Carlsbad, CA, USA) supplemented with 10% 
fetal bovine serum (FBS) (Invitrogen, Carlsbad, 
CA, USA) in a humidified atmosphere of 5% CO2 
at 37°C.

Cell transfection

The pcDNA3.1 vector and short interfering 
RNAs (siRNAs) were obtained from Invitrogen 
and Ribobio (Guangzhou, China), respectively. 
The pcDNA3.1-ADAMTS9-AS1 (pcDNA3.1-AS1) 
was constructed by cloning a fragment of 
ADAMTS9-AS1 into a pcDNA3.1 vector at the 
NheI/XhoI sites. The si1-ADAMTS9-AS1 (si1-
AS1), si2-ADAMTS9-AS1 (si2-AS1), and the neg-
ative control siRNA (si-NC) were obtained by 
Ribobio (Guangzhou, China). Cells were cul-
tured at a density of 5 × 105 cells/well in 12- 
well plates at least 24 h prior to transfection. 
The cells were transfected with pcDNA3.1 or 
pcDNA3.1-AS1, and si-NC, si1-AS1 or si2-AS1 
using Lipofectamine™ 2000 (Invitrogen) follow-
ing the manufacturer’s instructions. At 48-h 
post-transfection, the cells were collected  
for further assays. The sequences were as fol-
lows: pcDNA3.1-AS1, forward 5’-CTAGCTAGC- 
CTAGCTAGCCCAGACTTGGAACA-3’ and reverse 
5’-CCGCTCGAGTGCATGCTCCATTTATTGAATT-3’; 
si1-AS1 5’-CCAUACUGAUACAGCCAAATT-3’ (sen- 
se), and si2-AS1 5’-CCUAACGACAAGGUCCU- 
AUTT-3’ (sense). 

RNA extraction and quantitative real-time poly-
merase chain reaction (qPCR)

Total RNA was extracted from the HCC cells 
using the TRIzol total RNA reagent (Invitrogen) 
based on the manufacturer’s instructions. 
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cDNA synthesis was performed with 2 μg of 
total RNA using a PrimeScript RT Reagent Kit 
with a cDNA Eraser (Takara Biotech, Dalian, 
China). The following sequences were used, 
ADAMTS9-AS1, forward 5’-CCATCACTAATCGC- 
CAGGAT-3’ and reverse 5’-CTGTTGTGGAGTTG- 
CCCTTC-3’; GAPDH, forward 5’-ACGGATTTGGT- 
CGTATTGGGCG-3’ and reverse 5’-GCTCCTGG- 
AAGATGGTGATGGG-3’. Glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) was used as an 
internal control.

qPCR was conducted using SYBR Premix Ex Taq 
(Takara Biotech, Shiga, Japan) on an ABI 7900 
system (Applied Biosystems, Foster City, CA, 
USA). The reaction mixture started at 95°C for 
30 s, followed by 40 amplification cycles of 
95°C for 5 s and 60°C for 34 s. The quantifica-
tion of gene expression was performed using a 
2-ΔΔCT calculation with CT as the threshold cycle.

Cell proliferation assays 

Cell Counting Kit-8 (CCK-8) assays (Dojindo 
Molecular Technologies, Kumamoto, Japan) 
were performed to determine cell proliferation. 
Cells were seeded at a density of 4 × 104 cells/
well in 96-well culture plates. After culturing for 
18 h, cells were transfected with the pcDNA3.1 
vector or pcDNA3.1-AS1, si-NC, si1-AS1, or si2-
AS1. The culture medium was replaced with 
DMEM after incubation for 4 h. At 0-3 days 
post-transfection, a new medium containing 
10% CCK-8 solution was used. Absorbance 
was measured at 450 nm using an ELISA read-
er (PerkinElmer, Waltham, MA, USA). The growth 
curve was produced based on absorbance val-
ues at 0-3 days. Each experiment was indepen-
dently repeated three times.

Clone formation assay 

A total of 1 × 106 cells were cultured in 6-well 
plates. After transfection, the cells were trans-
ferred to DMEM medium with 10% FBS and cul-
tured for 24 h. Afterwards, cells were added to 
a 1.5 mL centrifuge tube and then inoculated 
into new 6-well plates (2 × 103 cells/well) at 
37°C with 5% CO2 for 2-3 weeks until colonies 
were visible. After the supernatant solution was 
removed, cells were washed twice with phos-
phate-buffered saline (PBS). Next, colonies 
were fixed with 4% paraformaldehyde solution 
for 15 min and stained with 0.2% crystal violet 
for 15 min. Images of each well were captured 

using a camera, and the number of clones in 
each well were determined using Image J soft-
ware (National Institutes of Health, Bethesda, 
MD, USA). Clone formation rates of each well 
were then calculated.

The scratch wound healing assay

The cells were seeded in 24-well culture plates 
at a density of 2 × 105 cells/well and cultured 
for 18 h prior to transfection. Cells were scraped 
to form wounds using a sterile pipette tip after 
transfection with pcDNA3.1 vector or pcDNA3.1-
AS1, and si-NC, si1-AS1, or si2-AS1, separately. 
Wells were washed three times with PBS to 
remove the exfoliated cells, medium containing 
2% fetal bovine serum was added, and the cells 
were further incubated at 37°C in a 5% CO2 
incubator. Photographs at a magnification of 
40 × were taken at 0, 24, 48, and 72 h. All 
experiments were performed in triplicate.

Transwell migration and invasion assays

Cell migration and invasion assays were per-
formed using transwell chambers uncoated or 
coated with Matrigel (BD Biosciences, Franklin 
Lakes, NJ, USA) in 24-well plates according to 
the manufacturer’s instruction. For migration 
assays, the cells were cultured in 100 μL 
serum-free DMEM after transfection for 48 h. 
Cells were seeded onto a fibronectin-coated 
polycarbonate membrane inserts in a Transwell 
apparatus. Complete medium was added to the 
lower chamber as a chemoattractant. After 
incubation for 24 h, the cells remaining on the 
upper membrane were removed with cotton 
swabs, and cells adhering to the lower surface 
were fixed with 4% paraformaldehyde and 
stained with 0.1% crystal violet for 20 min. For 
invasion assays, the procedure was similar to 
the cell migration assays, except that the tran-
swell membranes were precoated with 24 mg/
mL Matrigel. All experiments were performed in 
triplicate.

Western blot assay

Total cell lysates were collected after washing 
with precooled PBS. Lysates were incubated in 
boiling water for 5 min. Proteins samples were 
resolved using 10% polyacrylamide gel electro-
phoresis (SDS-PAGE) for 3 h, and then the sam-
ples were transferred to polyvinylidene fluoride 
(PVDF) membranes. Membranes were blocked 
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for 80 min with 5% skimmed milk at room tem-
perature and incubated with primary antibod-
ies (1:1,000) for ADAMTS9, AKT, p-AKT, PIK3- 
CB, mTOR, p-mTOR, LC3, BECN1, SQSTM1, Bax, 
or Bcl-2 at 4°C overnight. Peroxidase-con- 
jugated goat anti-mouse antisera (1:10,000) 
was used as secondary antibodies for GAPDH 
and BECN1 at 37°C for 1 h. Antibodies were 
purchased from ABclonal (Wuhan, China). PVDF 
membranes were developed using ECL chemi-
luminescent reagent (Millipore, Billerica, MA, 
USA). GAPDH was used as an internal control. 
Images were obtained using a Bio-Rad Gel Doc 
XR+ system (Bio-Rad, Hercules, CA, USA). Each 
sample was examined in triplicate.

Gene Expression Omnibus (GEO) data extrac-
tion

Using GEO database (https://www.ncbi.nlm.
nih. gov/geo/), gene expression data sets were 
obtained based on the clinical samples data of 
HCC. The heat map of gene expressions and 
correlation coefficient map were generated  
by R language. The data sets (GSE121711; 
GPL17586) including 18 samples were select-
ed using Cor function in the R-language.

Statistical analyses

All in vitro experiments were performed in tripli-
cate. All statistical calculations and analyses 
were performed using GraphPad Prism 7.0 soft-
ware (GraphPad Software, San Diego, CA, USA). 
Student’s t-test was used to analyze differenc-
es between two groups. Data are presented as 
the mean ± standard deviation (SD). P < 0.05 
was considered statistically significant.

Results

ADAMTS9-AS1 increased the proliferation of 
HCC cells in vitro

ADAMTS9-AS1 expression was observed in 
four HCC cell lines (HepG2, MHCC97-H, Hep3B, 
and SMCC-7721) and the LO2 normal liver cell 
line using qPCR. Except for SMCC-7721 cells, 
ADAMTS9-AS1 expression was higher in the 
remaining HCC cell lines, particularly in HepG2 
and MHCC97-H cells when compared with the 
LO2 normal cell line (Figure S1). In addition, the 
transfection efficacy of ADAMTS9-AS1 overex-
pression or knockdown was examined in HepG2 
and MHCC97-H cells, which suggested that 
compared to the pcDNA3.1 vector group, there 

was increased expression of ADAMTS9-AS1 in 
cells transfected with pcDNA3.1-AS1 (Figure 
S2A, S2B). However, in cells transfected with 
si1-AS1 or si2-AS1, ADAMTS9-AS1 expression 
decreased when compared to the si-NC groups 
(Figure S2C, S2D). The pcDNA3.1 vector, 
pcDNA3.1-AS1, si-NC, si1-AS1, and si2-AS1 
were, therefore, selected for the following in 
vitro assays in the HepG2 and MHCC97-H cell 
lines.

CCK-8 and clone formation assays were then 
conducted in HepG2 and MHCC97-H cell lines 
to determine the influence of ADAMTS9-AS1  
on proliferation. The cells were transfected  
with the pcDNA3.1 vector or pcDNA3.1-AS1  
for ADAMTS9-AS1 overexpression experiments. 
CCK8 and clone formation assays showed that 
compared to the pcDNA3.1 vector group, prolif-
eration was increased in cells transfected with 
pcDNA3.1-AS1 (Figure 1A, 1C). The cells were 
transfected with si-NC, si1-AS1, or si2-AS1 for 
ADAMTS9-AS1 knockdown experiments. CCK8 
and clone formation assays showed that com-
pared to the si-NC control group, proliferation 
was decreased in cells of the si1-AS1 and si2-
AS1 transfected groups (Figure 1B, 1D). Toge- 
ther, these results suggested that ADAMTS9-
AS1 expression increased the proliferation of 
HCC cells in vitro.

ADAMTS9-AS1 facilitated the migration of HCC 
cells in vitro

To further characterize the effect of ADAMTS9-
AS1 on migration in HepG2 and MHCC97-H cell 
lines, scratch wound healing and transwell 
migration assays were separately conduct- 
ed. The migration showed a difference in 
ADAMTS9-AS1 overexpression or knockdown 
experiments, suggesting that the migration was 
increased in cells transfected with pcDNA3.1-
AS1 when compared with the corresponding 
pcDNA3.1 vector groups (Figure 2A, 2B, 2E, 
2F). In contrast, the migration was suppressed 
in cells transfected with si1-AS1 or si2-AS1 
when compared with the corresponding si-NC 
groups (Figure 2C, 2D, 2G, 2H). Together, the 
results showed that ADAMTS9-AS1 increased 
the migration of HCC cells in vitro.

ADAMTS9-AS1 increased the invasion in HCC 
cells in vitro

To test the effect of ADAMTS9-AS1 on invasion, 
transwell invasion assays using the HepG2 and 
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MHCC97-H cell lines were conducted. In cells 
transfected with pcDNA3.1-AS1, ADAMTS9-
AS1 overexpression promoted invasion (Figure 
3A, 3C), while in cells transfected with si1- 
AS1 or si2-AS1, knockdown decreased invasion 
compared to the corresponding control groups 
(Figure 3B, 3D). Together, these results showed 
that ADAMTS9-AS1 increased the invasion 
capability of HCC cells.

ADAMTS9-AS1 increased the PI3K/AKT/mTOR 
signaling pathway proteins in HCC cells in vitro

To increase our understanding of the functional 
effects of ADAMTS9-AS1 on cell proliferation, 

migration, and invasion, the potential mecha-
nism of ADAMTS9-AS1 in HCC cells was deter-
mined. For starters, the data from GEO data-
base suggested that ADAMTS9-AS1 has a weak 
correlation with PI3 and MTOR. And it was posi-
tively correlated with AKT (Figure S3). To further 
explore the potential relationship among them, 
the expression levels of PI3K/AKT/mTOR sig-
naling pathway-related proteins (AKT, p-AKT, 
PIK3CB, mTOR, and p-mTOR) were determined 
using western blotting. ADAMTS9-AS1 overex-
pression or knockdown suggested that except 
for AKT and mTOR, expression levels of p-AKT, 
PIK3CB, and p-mTOR were increased in cells 
transfected with the pcDNA3.1-AS1 (Figure 4A, 

Figure 1. ADAMTS9-AS1 increased the proliferation of HCC cells in vitro. A, C. CCK-8 and clonogenic assays sug-
gested that in HepG2 and MHCC97-H cells transfected with pcDNA3.1-AS1 groups, upregulated ADAMTS9-AS1 
promoted proliferation of HCC cells. B, D. In cells transfected with si1-AS1, and si2-AS1 groups, downregulated 
ADAMTS9-AS1 inhibited proliferation of HCC cells. Error bars represented SD obtained from three independent 
experiments and all the data were shown as mean ± SD. CCK-8, Cell Counting Kit-8; ADAMTS9-AS1, ADAMTS9 anti-
sense RNA 1; NC, negative control; si, short interfering RNA; *, P < 0.05; **, P < 0.01, ***, P < 0.001.
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4C), while there was decreased expression in 
cells transfected with the si1-AS1 or si2-AS1, 
when compared with their corresponding con-
trol cells (Figure 4B, 4D). Together, the results 
suggest that ADAMTS9-AS1 increased the 
PI3K/AKT/mTOR signaling pathway in HCC cells 
in vitro.

ADAMTS9-AS1 decreased autophagy and 
apoptosis in HCC cells in vitro

As previously mentioned, ADAMTS9-AS1 acti-
vated the PI3K/AKT/mTOR signaling pathway. 

Previous studies have also reported that aber-
rant PI3K/AKT/mTOR signaling is closely re- 
lated to apoptosis and autophagy [33, 34]. 
Based on this information, we speculated that 
ADAMTS9-AS1 might decrease autophagy and 
apoptosis in HCC cells. To explore the possibili-
ty that ADAMTS9-AS1 interfered with autopha-
gy and apoptosis, levels of key autophagy-relat-
ed proteins (LC3-I, LC3-II, BECN1, and SQSTM1) 
and apoptotic proteins (pro-apoptotic Bax and 
anti-apoptotic Bcl-2) were determined using 
western blotting. Based on the results from the 

Figure 2. ADAMTS9-AS1 facilitated the migration of HCC cells in vitro. A, B, E, F. Scratch wound healing and tran-
swell migration assays indicated that the migration ability was enhanced in HepG2 and MHCC97-H cells transfected 
with pcDNA3.1-AS1 compared with corresponding pcDNA3.1 vector groups. C, D, G, H. The migration ability was 
decreased in cells transfected with si1-AS1 compared with corresponding si-NC group, respectively. ADAMTS9-AS1, 
ADAMTS9 antisense RNA 1; NC, negative control; si, short interfering RNA; h, hour; **, P < 0.01, ***, P < 0.001.
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ADAMTS9-AS1 overexpression and knockdown 
experiments, protein levels of LC3-II, BECN1, 
and pro-apoptotic Bax were decreased in the 
pcDNA3.1-AS1 groups (Figure 5A, 5C), but were 
increased in the si1-AS1 or si2-AS1 groups, 
when compared with the corresponding control 

cell groups (Figure 5B, 5D). The results also 
showed that ADAMTS9-AS1 expression was 
negatively related with ADAMTS9. Overall, the 
results showed that ADAMTS9-AS1 expression 
decreased autophagy and apoptosis in HCC 
cells in vitro. 

Figure 3. ADAMTS9-AS1 increased the invasion in HCC cells in vitro. A, C. Transwell invasion assays suggested that 
in HepG2 and MHCC97-H cells transfected with pcDNA3.1-AS1 groups, ADAMTS9-AS1 overexpression promoted the 
invasion ability. B, D. In cells transfected with si1-AS1 or si2-AS1 groups, ADAMTS9-AS1 knockdown curbed invasion 
ability compared with corresponding control groups. ADAMTS9-AS1, ADAMTS9-AS1 antisense RNA 1; NC, negative 
control; si, short interfering RNA; h, hour; *, P < 0.05; **, P < 0.01, ***, P < 0.001.
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Figure 4. ADAMTS9-AS1 increased the PI3K/AKT/mTOR signaling pathway proteins in HCC cells in vitro. A, C. In 
HepG2 and MHCC97-H cells transfected with pcDNA3.1-AS1 groups, it suggested that overexpression of ADAMTS9-
AS1 increased the expression levels of p-AKT, PIK3CB, and p-mTOR compared to their corresponding pcDNA3.1 
vector groups. B, D. In HepG2 and MHCC97-H cells transfected with si1-AS1 or si2-AS1 groups, knockdown of AD-
AMTS9-AS1 decreased p-AKT, PIK3CB, and p-mTOR expression levels compared to corresponding their pcDNA3.1 
vector groups. ADAMTS9-AS1, ADAMTS9 antisense RNA 1; p-AKT, phosphorylated AKT; p-mTOR, phosphorylated 
mTOR; NC, negative control; si, short interfering RNA.

Figure 5. ADAMTS9-AS1 decreased autophagy and apoptosis in HCC cells in vitro. A, C. Western blot assays was 
conducted to examine the protein levels of autophagy and apoptosis-related proteins in HCC cells. Compared with 
corresponding control groups, the expression of LC3-II, BECN1, and pro-apoptotic Bax decreased in pcDNA AD-
AMTS9-AS1 groups compared to corresponding control groups, and no significant change was found in LC3-I expres-
sion. Besides, decrease of ADAMTS9 was also found in pcDNA ADAMTS9-AS1 groups. B, D. Increase of ADAMTS9, 
LC3-II, BECN1, and pro-apoptotic Bax was identified in si1-AS1 or si2-AS1 groups as compared with corresponding 
control groups. ADAMTS9-AS1, ADAMTS9 antisense RNA 1; NC, negative control; si, short interfering RNA; GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase.
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Discussion

HCC is a common cause of cancer-related 
deaths, and patients with advanced or meta-
static HCC have been reported in past studies 
[35, 36]. Despite various therapies such as  
surgery, chemotherapy, and radiotherapy, pa- 
tients rarely have positive prognoses [37-40]. 
An increasing number of lncRNAs have exhibit-
ed effects on tumorigenesis in many types of 
tumors [41-43]. Studies have also identified 
diverse roles of lncRNAs in HCC. F11-AS1 inhib-
its HBV-related HCC [44], but AURKAPS1 and 
ANCR potentiate HCC progression [45, 46]. 
However, the exact mechanisms responsible 
for HCC pathogenesis remain to be fully 
understood.

ADAMTS9-AS1 has recently been identified as 
a cancer-related lncRNA and is the antisense  
of ADAMTS9 [22]. The functions of ADAMTS9 in 
HCC are widely known and some reports sug-
gest that ADAMTS9-AS1 is associated with sev-
eral tumors [22-25]; therefore, we investigated 
its possible role and potential mechanism in 
HCC. The qPCR assays showed that compared 
to the LO2 normal cell line, ADAMTS9-AS1 
expression was higher in three HCC cell lines, 
including MHCC97-H and HepG2 cells. There- 
fore, functional assays were conducted in 
MHCC97-H and HepG2 cells. Based on the 
CCK-8 assay, clone formation assay, scratch 
wound healing, transwell migration, and inva-
sion assays, ADAMTS9-AS1 enhanced the pro-
liferation, migration, and invasion in MHCC97-H 
and HepG2 cells.

It is important to note that a few lncRNAs, su- 
ch as CDKN2B-AS1 [47], DUXAP10 [48], and 
DCST1-AS1 [49], regulate HCC progression by 
regulating the PI3K/AKT/mTOR signaling path-
way. However, one study reported that ADAM- 
TS9 was considered a tumor suppressor be- 
cause it regulated the AKT/mTOR signaling 
pathway in gastric cancer [32]. Our findings 
suggest that ADAMTS9-AS1 achieved its func-
tional roles by interacting with the PI3K/AKT/
mTOR signaling pathway in HCC. ADAMTS9-AS1 
was negatively related with ADAMTS9. Based 
on the GEO analysis, we found that ADAMTS9-
AS1 has a weak correlation with PI3 and mTOR 
and was positively correlated with AKT. The 
expression levels of proteins related to the 
PI3K/AKT/mTOR signaling pathway were there-
fore determined using western blot assays in 
HCC cells. We showed that ADAMTS9-AS1 pro-

moted the expression of p-AKT, PIK3CB, and 
p-mTOR in HCC cells, which suggested that 
ADAMTS9-AS1 facilitated the proliferation, mig- 
ration, and invasion via the PI3K/AKT/mTOR 
signaling pathway.

Typically, activation of the PI3K/AKT/mTOR sig-
naling pathway is associated with apoptosis 
and autophagy [27, 28]. To further characteri- 
ze the potential mechanism, the effects of 
ADAMTS9-AS1 on apoptosis and autophagy 
were evaluated. Western blot analysis results 
suggested that ADAMTS9-AS1 reduced the 
expressions of autophagy proteins (LC3-II and 
BECN1) and the pro-apoptotic protein Bax, but 
increased the expression of SQSTM1 and  
the anti-apoptotic protein Bcl-2 in HCC cells. 
Our findings suggested that ADAMTS9-AS1 
enhanced cell proliferation, migration, and 
invasion in HCC by promoting the PI3K/AKT/
mTOR pathway to affect autophagy and apopto-
sis at the protein expression level. 

Although our results highlight the biological 
functions of ADAMTS9-AS1 in HCC, study limi-
tations did exist. The current research was only 
performed in vitro. ADAMTS9-AS1 was adverse-
ly related to ADAMTS9 and participated in the 
PI3K/AKT/mTOR signaling pathway, whereas 
the specified mechanism of regulation in HCC 
requires further studies including more clinical 
samples. It is possible that there may be other 
participants that affect the behavior of 
ADAMTS9-AS1 in HCC that will be investigated 
in future studies to further understand the 
roles of ADAMTS9-AS1 in HCC.

Conclusion

The biological role of ADAMTS9-AS1 in HCC 
cells was investigated. The findings showed 
that ADAMTS9-AS1 may facilitate cell prolifera-
tion, migration, and invasion ability by trigger-
ing the PI3K/AKT/mTOR signaling pathway 
against autophagy and apoptosis. Overall, our 
study provides novel insights into ADAMTS9-
AS1, which is considered a potential therapeu-
tic candidate in the treatment of HCC.
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Figure S1. HepG2 and MHCC97-H cell lines were selected for a series of in vitro assays. Using qPCR, we found that 
compared to the normal live cell line LO2, ADAMTS9-AS1 was highly expressed in four HCC cell lines, obviously in 
HepG2 and MHCC97-H cells. ADAMTS9-AS1, ADAMTS9 antisense RNA 1; NC, negative control; si, short interfering 
RNA. ***, P < 0.001.

Figure S2. The transfection efficacy of ADAMTS9-AS1 was identified in HCC cells. A, B. ADAMTS9-AS1 expression 
was raised in cells transfected with pcDNA3.1-AS1 than that of the control group in HepG2 and MHCC97-H cell lines. 
C, D. ADAMTS9-AS1 expression was reduced in cells transfected with si1-AS1 or si2-AS1 compared with the control 
group in HepG2 and MHCC97-H cell lines. ADAMTS9-AS1, ADAMTS9 antisense RNA 1; NC, negative control; si, short 
interfering RNA. **, P < 0.01, ***, P < 0.001.
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Figure S3. The correlation between of ADAMTS9-AS1 and PI3K/AKT/mTOR using GEO database. A. The distribution of gene expression data was observed, and the 
differences between samples were acceptable. GSE121711 could meet the conditions of analysis. B. The heat map was shown between ADAMTS9-AS1 and PI3, 
and their correlation coefficient was -0.17 from correlation map. C. The heat map was shown between ADAMTS9-AS1 and mTOR, and their correlation coefficient 
was -0.07 from correlation map. D. The heat map was shown between ADAMTS9-AS1 and AKT1, and their correlation coefficient was 0.15 from correlation map. E. 
The heat map was shown between ADAMTS9-AS1 and AKT2, and their correlation coefficient was 0.49 from correlation map. F. The heat map was shown between 
ADAMTS9-AS1 and AKT3, and their correlation coefficient was 0.94 from correlation map. In the correlation coefficient maps, red represents positive correlation and 
blue represents negative correlation. The higher the absolute value of the correlation coefficient, the stronger the correlation. ADAMTS9-AS1, ADAMTS9 antisense 
RNA 1.


