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Abstract: Abnormal expression of CRIP1 has been identified in numerous solid tumors. However, CRIP1 expression 
and its regulation are little known in acute myeloid leukemia (AML). The purpose of this study was to evaluate the 
expression and regulation of CRIP1 and the clinical implications of CRIP1 aberration in AML. Real-time quantitative 
PCR was carried out to detect the level of CRIP1 expression in 138 AML patients and 38 controls. CRIP1 methylation 
was detected by methylation-specific PCR and bisulfite sequencing PCR. Five public available AML datasets from 
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were further analyzed. The level of CRIP1 
expression was up-regulated in AML patients compared with controls (P = 0.045). CRIP1high patients had a signifi-
cantly lower complete remission (CR) rate than CRIP1low patients (P = 0.020). CRIP1high group had a shorter overall 
survival (OS) and leukemia-free survival (LFS) than CRIP1low group in cytogenetically normal AML (CN-AML) patients 
(P = 0.007 and 0.012, respectively). Multivariate analysis further confirmed that high CRIP1 expression was an 
independent risk factor for LFS in CN-AML patients (P = 0.005). However, we found that CRIP1 expression was not 
associated with the status of its promoter, which was nearly fully unmethylated both in controls and AML patients. 
Furthermore, our results were validated using the published GEO datasets and TCGA datasets. Our findings suggest 
that high CRIP1 expression is independently related with unfavorable prognosis in CN-AML. 
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Introduction

Acute myeloid leukemia (AML) is a cytogeneti-
cally, molecularly, and clinically heterogeneous 
malignant clonal disease of hematopoietic st- 
em cells. It is characterized by clonal leukemia 
cells accumulated in bone marrow and other 
hematopoietic tissues, which is caused by un- 
controlled proliferation, differentiation, and bl- 
ocked apoptosis [1]. This biological heteroge- 
neity makes it difficult for risk stratification and 
targeted therapy of the disease. At present, 
long-term survivors among young people and 
the elderly account for 40% and 10% respec-
tively [2]. Acquired chromosomal abnormalities 
are the most important independent predictors 

of complete remission (CR), disease-free sur-
vival, and overall survival (OS) for patients wi- 
th AML [3-5]. However, cytogenetically normal 
AML (CN-AML) accounts for approximately 45%, 
and it is difficult to define risk in patients with 
CN-AML. It has become apparent that the iden-
tification of biological markers is important for 
diagnosis, classification, prognostic evaluation, 
and guiding individual treatment in AML, espe-
cially in CN-AML.

Cysteine-rich intestinal protein 1 (CRIP1) be- 
longs to the LIM/double zinc finger protein fam-
ily. CRIP1 is abnormally expressed in several 
types of tumors, including osteosarcoma, br- 
east cancer, cervical cancer, prostate cancer, 
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pancreatic cancer and colorectal cancer [6-12]. 
In osteosarcoma, negative CRIP1 expression 
was associated with metastases and inferior 
survival [6]. The lack of CRIP1 expression is sig-
nificantly associated with a worse prognosis in 
breast cancer and down-regulation of CRIP1 
expression increases cell proliferation and cell 
invasion in breast cancer cell lines [7]. More- 
over, CRIP1 has been identified as a promising 
biomarker for the staging of breast cancer [7]. 
However, high CRIP1 expression was identified 
as a novel and independent adverse prognostic 
factor in gastric cancer [13].

Epigenetic modification, especially DNA meth-
ylation, can control gene expression by causing 
changes in chromatin structure, DNA conforma-
tion, DNA stability, and the way DNA interacts 
with proteins. 

DNA hypomethylation is often associated with 
activation of affected genes, while DNA hyper-
methylation is closely related to gene silencing 
and loss of tumor suppressor function in can-
cer [14, 15]. CRIP1 is regulated at the transcrip-
tional level in prostate cancer by promoter hy- 
pomethylation [10]. The methylation frequency 
of CRIP1 increases with tumor stage in breast 
cancer, and its methylation status is related to 
poor clinical prognosis [16].

However, CRIP1 expression and methylation 
patterns as well as its role in AML were rarely 
investigated. Therefore, we focused on CRIP1 
expression and methylation in AML and further 
determined the significance of CRIP1 in predict-
ing prognosis.

Materials and methods

Patients and treatment

A total of 38 healthy donors and 138 de novo 
AML patients were included in the study, which 
was approved by Institutional Review Board 
and the Ethics Committee of the Affiliated 
People’s Hospital of Jiangsu University. Bone 
marrow (BM) specimens were collected, after 
the informed consents were signed, from he- 
althy donors and all de novo AML patients as 

well as 9 patients who achieved CR after induc-
tion therapy. Treatment protocols for AML pa- 
tients have been described previously [17].

Gene mutation detection, RNA isolation and 
reverse transcription

Gene mutation detection, RNA isolation and 
reverse transcription were conducted as report-
ed previously [18-26].

Real-time quantitative PCR

The primers for CRIP1 expression were shown 
in Table 1. CRIP1 expression was examined by 
real-time quantitative PCR (RQ-PCR) in 7500 
Thermo Cycler (Applied Biosystems, Foster, CA, 
USA) using TB GreenPremix Ex TaqII (Takara). 
RQ-PCR program was carried out at 95°C for 5 
minutes, followed by 40 cycles at 95°C for 5 
seconds, 62°C for 30 seconds, 72°C for 32 
seconds and 85°C for 32 seconds to collect 
fluorescence, finally followed by 95°C for 15 
seconds, 60°C for 60 seconds, 95°C for 15 
seconds and 60°C for 15 seconds. Relative 
CRIP1 expression levels were calculated by 
2-ΔΔCT method.

DNA isolation, bisulphite modification and real-
time quantitative methylation-specific PCR 

Genomic DNA from AML patients and healthy 
donors were isolated using a genomic DNA 
purification kit (Gentra) and then modified us- 
ing the CpGenome DNA modification kit (Ch- 
emicon). Methylation-specific PCR (MSP) was 
used to detect CRIP1 methylation status by the 
methylation primers (Table 1) with TB Green 
Premix Ex Taq II (Takara). The reaction condi-
tions were 95°C for 30 seconds, 40 cycles for 5 
seconds at 95°C, 30 seconds at 59°C, 30 sec-
onds at 72°C, and 75°C for 32 seconds. The 
quantification of CRIP1 methylation was calcu-
lated as CRIP1 expression using the reference 
gene ALU [17].

Bisulfite sequencing PCR

A 511 bp fragment was amplified from the 
CRIP1 promoter region, using specific primers 

Table 1. The sequences of primers used in CRIP1 expression, MSP and BSP
Forward (5’→3’) Reverse (5’→3’) Product (bp)

CRIP1 expression GCTGAGCACGAAGGCAAACC AAGGGAGCCCTGGGCATCT 196
CRIP1 MSP CGGAATTGGATTCGGGAGATATTATAG TCGCGTTTCGTTTTTAGTTAGGTT 128
CRIP1 BSP TAGTGATGTTTGGTTTAGTTTTGG GTGTTTTAAGTGTAATAAGGAGGTG 511
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for bisulfite sequencing PCR (BSP) (Table 1). 
The reaction conditions were 98°C for 10 sec-
onds, 40 cycles for 10 seconds at 98°C, 30 
seconds at 58°C, 30 seconds at 72°C, and fol-
lowed by 7 minutes extension at 72°C. AxyPrep 
DNA gel extraction kit (AxyGen) was used to 
purify BSP products, ligated into pMD®19-T 
Vector (Takara), and then transfected into 
DH5α competent cells (Vazyme) for cloning. 
Finally, six independent clones of each sam- 

ple were sequenced timely (BGI Tech Solutions 
Co., Shanghai, China).

Public datasets

Five available public AML datasets from The 
Cancer Genome Atlas (TCGA) and Gene Ex- 
pression Omnibus (GEO) were used in this 
study. Two of them consisted of expression 
data for bulk primary AML samples (GSE12417 

Figure 1. Identification of potential oncogenes in AML. A, B: Heatmaps showing 68 up-regulated genes in controls 
versus AMLs, from GSE24006 and GSE63270, respectively. Log2 fold changes of gene expression (log2 FC expres-
sion) are displayed as bar graphs on the right. C: Venn diagram showing the overlap of four gene sets including: 
1031 up-regulated genes (FDR < 0.05, log2 FC > 2) in controls versus all AML patients and 348 up-regulated genes 
in LSCs versus HSCs in GSE24006 datasets (data 1), 535 up-regulated genes in controls versus all AML patients 
and 357 up-regulated genes in LSCs versus HSCs in GSE63270 datasets (data 2). The overlapping region (68) rep-
resents the finally screened oncogene. D, E: CRIP1 expression levels in the GSE24006 and GSE63270 databases, 
respectively.
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Figure 2. CRIP1 expression was up-regulated in AML 
patients compared with controls (P = 0.045).

and the TCGA datasets) and three datasets 
contained both healthy and AML BM samples 
sorted by fluorescence-activated cell sorting 
(GSE24006, GSE63270 and GSE63409).

Statistical analysis

The median level was applied to distinguish the 
expression level of CRIP1. SPSS software ver-
sion 20.0 was used to carry out the statistical 
analysis. For example, Mann-Whitney’s U test 
was performed to compare the differences of 
continuous variables. Pearson’s chi-squared 
analysis was conducted to detect the differ-
ence of categorical variables. Kaplan-Meier 
method and Cox regression (univariate and 
multivariate) analysis were used to analyze the 
effect of CRIP1 on prognosis. P < 0.05 was 
defined as statistically significant and all tests 
were two sided.

Results 

Identification of candidate oncogene in AML

To identify candidate oncogene, the dataset 
GSE24006 (n = 54, data 1) and GSE63270 (n = 
104, data 2) were utilized. In the two groups of 
GEO databases, we performed differential ex- 
pression analysis in controls versus AML pa- 
tients and LSCs versus HSCs, respectively, and 
screened for significantly up-regulated genes 
(FDR < 0.05, log2 FC > 2, Supplementary File 
1). Sixty-eight up-regulated genes, including 
CRIP1, were obtained by the intersection of 
four sets of data (Figure 1A-C). Increased 
expression of CRIP1 was shown in the two GEO 
datasets (P < 0.001, Figure 1D, 1E).

Upregulation of CRIP1 in AML

The expression level of CRIP1 in controls 
ranged from 0.084 to 4.384 (median 0.728). 
CRIP1 transcript level in AML patients ranged 
from 0.004 to 169.190 (median 1.330). CRIP1 
was significantly up-regulated in AML patients 
(P = 0.045, Figure 2). 

Clinical and laboratory characteristics of AML 
patients

The whole cohort of AML patients were divided 
into two groups according to the median value 
of 1.330 (Table 2). No significant differences 
were observed in sex, age, platelets, BM blasts 
and karyotype finding between two groups  
(P > 0.05). There were no correlations between 
CRIP1 expression and the common gene muta-
tions (P > 0.05). However, patients in CRIP1high 
group showed higher white blood cells (WBCs) 
than patients in CRIP1low group (P = 0.002).

Effect of CRIP1 expression on chemotherapy 
response in AML

Compared with CRIP1low group, patients in CRI- 
P1high group had a lower CR (P = 0.020, Table 
2). Clinical characteristics of patients with CR 
and non-CR were further compared. Significant 
differences were found in CRIP1 expression, 
age, WBCs, BM blast, risk group and karyotype 
(P < 0.05, Table 3). CRIP1 expression was fur-
ther found to be obviously decreased in AML 
patients achieved CR (n = 54) compared with 
patients relapsed (n = 21) (Figure 3). Moreover, 
CRIP1 expression was analyzed in 9 patients 
with serial samples, which also confirmed that 
CRIP1 expression significantly decreased after 
CR (P = 0.005, Figure 4). 

The relationship between CRIP1 expression 
and prognosis in AML patients

130 AML patients with available follow-up data 
were analyzed to explore the impact of CRIP1 
expression on clinical prognosis. Kaplan-Meier 
analysis indicated that CRIP1high group had a 
shorter OS time than those CRIP1low group both 
in the whole-cohort AML and CN-AML patients 
(P < 0.05, Figure 5A, 5E). There was a trend 
that patients with CRIP1high group had a shorter 
OS than those in CRIP1low group in no-M3 AML 
(P = 0.057, Figure 5C). We also found that leu-
kemia-free survival (LFS) time of the CRIP1high 
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group was shorter than that of the CRIP1low 
group in CN-AML patients (P = 0.012, Figure 
5F). These results were further demonstrated 
in TCGA dataset and GSE12417 dataset (P < 
0.05, Figures 6 and 7). Cox regression analysis 
was performed to determine the prognostic 
value of CRIP1 expression in AML patients. 
Multivariate analysis included variables in uni-
variate analysis with P < 0.200 [age (≤ 60 vs > 
60 years), WBC (≥ 30×109/L vs < 30×109/L), 

CRIP1 expression (high vs low), gene mutations 
(mutant vs wild type)]. CRIP1 expression was 
identified as an independent risk factor in 
affecting LFS of CN-AML (P = 0.005, Table 4).

Correlation between CRIP1 expression and 
methylation in AML patients

To examine the methylation status of CRIP1 
promoter in AML patients, the MSP and BSP 

Table 2. Comparison of clinical manifestations and laboratory features between AML patients with 
high and low CRIP1 expression
Patient’s parameters CRIP1high (n = 65) CRIP1low (n = 65) P value
Sex, male/female 37/28 39/26 0.859
Median age, years (range) 61 (18-88) 54 (18-85) 0.097
MedianWBC, ×109/L (range) 34.5 (0.3-186.9) 7.0 (0.8-528) 0.002
Median hemoglobin, g/L (range) 74 (34-141) 83 (27-144) 0.046
Median platelets, ×109/L (range) 42 (3-382) 32 (3-415) 0.096
BM blasts, % (range) 42.5 (1-99) 49.5 (3-97.5) 0.962
CR (+/-) 20/45 34/31 0.020
Karyotype classification 0.494
    Favorable 10 (15.4%) 17 (26.2%)
    Intermediate 38 (58.5%) 35 (53.8%)
    Poor 8 (12.3%) 6 (9.2%)
    No data 9 (13.8%) 7 (10.8%)
Karyotype 0.152
    normal 24 (37.0%) 30 (46.3%)
    t (8;21) 4 (6.2%) 3 (4.6%)
    t (16;16) 0 (0%) 1 (1.5%)
    t (15;17) 6 (9.2%) 14 (21.5%)
    11q23 3 (4.6%) 1 (1.5%)
    +8 2 (3.1%) 0 (0%)
    -5/5q- 1 (1.5%) 0 (0%)
    -7/7q- 2 (3.1%) 0 (0%)
    t (9;22) 1 (1.5%) 0 (0%)
    others 3 (4.6%) 0 (0%)
    complex 6 (9.2%) 5 (7.7%)
    No data 13 (20.0%) 11 (16.9%)
Gene mutation
    CEBPA (+/-) 4/38 8/45 0.540
    NPM1 (+/-) 8/34 6/47 0.385
    FLT3-ITD (+/-) 5/37 8/45 0.768
    c-KIT (+/-) 0/42 2/51 0.501
    NRAS or KRAS (+/-) 4/38 3/50 0.696
    IDH1/2 (+/-) 1/41 0/53 0.442
    DNMT3A (+/-) 6/36 3/50 0.177
    U2AF1 (+/-) 2/40 0/53 0.193
    SRSF2 (+/-) 0/42 1/52 1.000
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primer sets were designed at the CpG islands 
of the CRIP1 promoter (Figure 8A). Firstly, 
CRIP1 methylation status was examined by 
MSP, and the results showed that no signifi- 
cant differences were observed between con-
trols and AML patients (Figure 8B). Then, two 
controls and two AML patients were selected 
randomly to verify the MSP results by BSP. The 
CRIP1 promoter was almost completely unme- 
thylated not only in healthy donors but also in 

AML patients (Figure 8C). Differential methyla-
tion analyses were performed in the dataset 
GSE63409 (n = 74). Our analyses yielded 1628 
significantly down-regulated genes (FDR < 
0.05, log2 FC > 2, Supplementary File 2) in con-
trols versus AML patients, however, CRIP1 was 
not included. Moreover, there was no correla-
tion between CRIP1 expression level and CRIP1 
methylation level both in our group and in TCGA 
datasets (Figure 9).

Table 3. Comparison of clinical manifestations and laboratory features between AML patients with CR 
and Non-CR
Patient’s parameters CR (n = 54) Non-CR (n = 76) P value
CRIP1 expression 0.7 (0-32.3) 2.3 (0-169.2) 0.005
Sex, male/female 29/25 47/29 0.372
Median age, years (range) 46.5 (18-73) 61.5 (18-88) < 0.001
Median WBC, ×109/L (range) 6.5 (0.3-528.0) 33.8 (0.9-186.9) < 0.001
Median hemoglobin, g/L (range) 77.5 (34-144) 81 (27-141) 0.727
Median platelets, ×109/L (range) 30 (3-225) 42 (3-415) 0.093
BM blasts, % (range) 38.8 (1.0-97.5) 54.3 (6.5-99.0) 0.010
Karyotype classification < 0.001
    Favorable 20 (37%) 7 (9.2%)
    Intermediate 28 (51.9%) 45 (59.2)
    Poor 4 (7.4%) 10 (13.2%)
    No data 2 (3.7%) 14 (18.4)
Karyotype 0.003
    normal 25 (46.2%) 29 (38.3%)
    t (8;21) 7 (13%) 0 (0%)
    t (16;16) 0 (0%) 1 (1.3%)
    t (15;17) 14 (25.9%) 6 (7.9%)
    11q23 1 (1.9%) 3 (3.9%)
    +8 0 (0%) 2 (2.6%)
    -5/5q- 0 (0%) 1 (1.3%)
    -7/7q- 0 (0%) 2 (2.6%)
    t (9;22) 0 (0%) 1 (1.3%)
    others 0 (0%) 3 (3.9%)
    complex 3 (5.6%) 8 (10.5%)
    No data 4 (7.4%) 20 (26.4%)
Gene mutation
    CEBPA (+/-) 6/38 6/36 1.000
    NPM1 (+/-) 4/40 10/32 0.083
    FLT3-ITD (+/-) 5/39 8/34 0.377
    c-KIT (+/-) 2/42 0/42 0.494
    NRAS or KRAS (+/-) 1/43 6/36 0.055
    IDH1/2 (+/-) 0/44 1/41 0.488
    DNMT3A (+/-) 3/41 3/39 1.000
    U2AF1 (+/-) 0/44 2/40 0.236
    SRSF2 (+/-) 0/44 1/41 0.488
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Discussion

Increasing studies have shown that the abnor-
mal expression of CRIP1 is connected with the 
tumorigenesis of various solid tumors. It has 
been reported that CRIP1 silencing inhibited 
cell migration and invasion in colorectal cancer 
SW620 and HT29 cells [27]. it was reported 
that the high expression level of CRIP1 was 
associated with poor prognosis in endometri- 
al carcinoma [28]. It has been reported that 
CRIP1 acted as an oncogene during cell prolif-
eration, migration and invasion in thyroid carci-
noma [29]. It has been reported that CRIP1 had 
a higher expression in cervical cancer tissues, 
promotes cell migration and invasion [30]. How- 
ever, it was also reported that high expression 
of CRIP1 in breast cancer suggested a better 
prognosis, and decreased expression of CRIP1 
can increase cell proliferation and activate cell 
growth [7]. These results indicate that CRIP1 
plays different roles in different types of tumors. 

In the current study, we detected CRIP1 tran-
script level in BM samples from AML patients, 
and observed that higher CRIP1 expression 
was associated with lower CR rate. Moreover, 
CRIP1 expression was significantly reduced in 
the patients who achieved CR after induction 
chemotherapy and significantly increased in 
the patients who achieved relapsed. These 
results indicate that CRIP1 expression could be 
used to monitoring disease status.

Moreover, we aimed to investigate whether 
CRIP1 could act as a potential biomarker for 
predicting prognosis in AML. It has been report-
ed that CRIP1 overexpression had a poor prog-
nosis in AML patients, but they only analyzed 
the effect of CRIP1 expression on OS, not on 
LFS [31]. Statistically, they only used univariate 
Cox proportional hazards regression, without 
further analyze through multivariate analysis 
[31]. Our study found that although CRIP1 
expression levels affected OS and LFS in the 
whole-cohort AML and CN-AML patients in uni-
variate analysis, only LFS was affected in CN- 
AML patients according to multivariate ana- 
lysis. In addition, the prognostic value of CRIP1 
expression was also confirmed by online data 
available in GEO and TCGA datasets. Taken to- 
gether, above-mentioned data indicate that 
CRIP1 expression may be useful as a biomark-
er to predict a worse chemotherapy response 
and prognosis in CN-AML patients. Of course, 
due to small cohort of the patients and differ-
ent treatment regimen, large and independent 
cohort of studies and clinical trials are requir- 
ed to validate the prognostic value of CRIP1 
expression before it can be used routinely as  
a potential biomarker for risk stratification in 
CN-AML.

In addition to CRIP1 expression, accumulating 
studies also showed that aberrant CRIP1 meth-
ylation, regulating CRIP1 expression, was fre-
quently occurred in diverse human cancers [10, 
16, 32]. We used MSP to assess CRIP1 promot-
er methylation level in patients with AML. CRIP1 
promoter methylation density was also ana-
lyzed by BSP. Unfortunately, aberrant methyla-

Figure 3. Expression of CRIP1 in initial diagnosis (ID), 
complete remission (CR) and relapsed AML patients 
receiving induction therapy. CRIP1 expression was 
increased in AML patients achieved CR than ID pa-
tients (P < 0.001). CRIP1 expression was decreased 
in AML patients achieved CR compared with relapsed 
AML patients (P = 0.013).

Figure 4. Changes of CRIP1 expression in follow-up 
AML patients (n = 9) from the initial diagnosis (ID) 
to complete remission (CR). CRIP1 expression signifi-
cantly decreased after CR (P = 0.005).
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Figure 5. Overall survival (OS) and leukemia-free survival (LFS) between CRIP1high and CRIP1low groups. A, B: Whole-cohort AML patients; CRIP1high group had a 
shorter OS than those CRIP1low group in the whole-cohort AML patients (P = 0.013). C, D: Non-M3 AML patients; there was a trend that patients with CRIP1high group 
had a shorter OS than those in CRIP1low group in no-M3 AML (P = 0.057). E, F: CN-AML patients; CRIP1high group had a shorter OS and LFS than those CRIP1low group 
in CN-AML patients (P < 0.05).
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tion of CRIP1 promoter was not identified in 
both AML patients and controls. The result sug-

gested that CRIP1 expression was not regulat-
ed by its promoter methylation in AML. These 

Figure 6. Overall survival and disease-free survival between CRIP1high and CRIP1low group among CN-AML patients in 
the TCGA cohort (P = 0.010 and 0.008, respectively).

Figure 7. The impact of CRIP1 expression on overall survival in CN-AML by bioinformatics analysis. An independent 
cohort of CN-AML patients was obtained from Gene Expression Omnibus data (http://www.ncbi.nlm.nih.gov/geo/; 
accession number GSE12417). Survival analysis was performed through the online web tool Genomicscape (http://
genomicscape.com/microarray/survival.php). A: Affy U133 plus 2; B: Affy U133A.
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Table 4. Univariate and multivariate analyses of prognostic factors for overall survival (OS) and leuke-
mia-free survival (LFS) in CN-AML patients

Variables

OS LFS
Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P 
value HR (95% CI) P 

value HR (95% CI) P 
value HR (95% CI) P 

value
Age 2.224 (1.134-4.363) 0.020 1.569 (0.716-3.441) 0.260 3.561 (1.236-10.259) 0.019 2.096 (0.663-6.630) 0.208

WBC 3.205 (1.586-6.479) 0.001 2.510 (1.144-5.508) 0.022 3.475 (1.185-10.192) 0.023 1.640 (0.494-5.443) 0.419

CRIP1 expression 2.526 (1.222-5.223) 0.012 1.720 (0.707-4.180) 0.232 6.986 (1.825-26.741) 0.005 6.986 (1.825-26.741)   0.005

CEBPA mutation 0.982 (0.336-2.869) 0.973 - - 0.037 (0-36.528) 0.348 - -

NPM1 mutation 0.776 (0.232-2.595) 0.680 - - 0.543 (0.069-4.305) 0.563 - -

FLT3-ITD mutation 0.678 (0.199-2.307) 0.534 - - 0.716 (0.089-5.736) 0.753 - -

c-KIT mutation Undetermined 0.999 - - Undetermined 0.999 - -

N/K-RAS mutation 0.986 (0.283-3.431) 0.982 - - 0.039 (0-162.382) 0.445 - -

IDH1/2 mutation 5.531 (0.666-45.960) 0.113 2.468 (0.276-22.059) 0.419 Undetermined 0.999 - -

DNMT3A mutation 1.164 (0.398-3.402) 0.781 - - 1.457 (0.307-6.915) 0.636 - -

U2AF1 mutation Undetermined 0.999 - - Undetermined 0.999 - -

SRSF2 mutation 2.802 (0.361-21.718) 0.324 - - Undetermined 0.999 - -

Figure 8. The genomic coordinates (GC) of CRIP1 promoter region CpG island and primer locations. A. The panel 
plots the GC content as a percentage of the total. Each vertical bar in the bottom panel represents the presence 
of a CpG dinucleotide. Black horizontal bars indicate regions amplified by MSP primer pairs and BSP primer pairs. 
This figure was created using CpGplot (http://emboss.bioinformatics.nl/cgibin/emboss/cpgplot) and Methyl Primer 
Express v1.0 software. TSS: transcription start site; MSP: methylation-specific PCR; BSP: bisulfite sequencing PCR. 
B. Relative methylation level of CRIP1 promoter in AML patients and controls. C. Methylation density of CRIP1 pro-
moter in AML patients and controls. Methylation density was determined by BSP. White cycle: unmethylated CpG 
dinucleotide, Black cycle: methylated CpG dinucleotide. C1 and C2: controls; P1 and P2: AML patients.
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results were also confirmed by the analysis of 
the GEO and TCGA datasets.

In conclusion, methylation-independently high 
CRIP1 expression is independently associated 
with unfavorable prognosis in CN-AML. 
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