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Abstract: Corilagin is a major active polyphenolic tannins extracted from Phyllanthus urinaria, an important herb 
used in traditional medicine. Previous reports demonstrated that corilagin possesses antioxidant and anti-inflam-
matory properties. Therefore, this study aimed to evaluate its hepatoprotective effects and mechanisms on acet-
aminophen (APAP)-induced liver injury in mice. Mice included in this study were intraperitoneally injected with a 
hepatotoxic APAP dose (300 mg/kg). After a 30 min of APAP administration, corilagin was injected intraperitoneally 
at concentrations of 0, 1, 5, 10, and 20 mg/kg. Then, after 16 h of corilagin treatment, mice were sacrificed for 
further analysis. APAP overdose significantly elevated the serum ALT level, hepatic my eloperoxidase (MPO) activ-
ity, cytokines (TNF-α, IL-1β, and IL-6) production, malondialdehyde (MDA) activity, and ERK/JNK MAPK and NF-κB 
protein expressions. Corilagin treatment significantly decreased these parameters in a dose-dependent manner 
(1-20 mg/kg). This study demonstrated that corilagin may be a potential therapeutic target for the prevention of 
APAP-induced hepatotoxicity by down-regulating the inflammatory response and by inhibiting ERK/JNK MAPK and 
NF-κB signaling pathways.
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Introduction

Liver is considered as the major site of drug 
metabolism. However, drug-induced liver injury 
is also one of the common factors that may 
cause severe hepatotoxicity and even dea- 
th. Acetaminophen (N-acetyl-p-aminophenol or 
APAP) is a frequently used analgesic and anti-
pyretic medication worldwide. Although this 
drug has been considered highly safe, its in- 
tentional or unintentional overdose can cause 
life-threatening acute liver failure [1, 2]. Des- 
pite the number of efforts to reduce the inci-
dence of APAP-induced liver injury, the number 
of liver failure cases reported in the literature 
remains a serious public health problem.

At therapeutic dosages, 85-90% of APAP meta- 
bolism conjugates with glucuronide or sulfate 
to form non-toxic metabolites in hepatocytes, 
and subsequently excreted in the urine and bile 

juice. Other APAPs are converted into a highly 
toxic, reactive intermediate metabolite, N-ace- 
tyl-p-benzoquinone imine (NAPQI) by the cyto-
chrome P450 system. Then NAPQI produced 
from normal doses of APAP is depleted by the 
hepatic glutathione (GSH) antioxidant system 
[3]. However, under toxic APAP doses, sulfation 
and glucoronidation pathways become insuffi-
cient and hepatic GSH is depleted due to ex- 
cessive NAPQI. Consequently, it binds to cellu-
lar proteins in hepatocytes, resulting in oxidant 
stress formation and mitochondrial dysfunc-
tion, which causes centrilobular hepatocyte 
death [4, 5]. After the initial damage to paren-
chymal hepatocytes, innate immunity and oxi-
dative stress participates in the progression  
of APAP-induced inflammation and contribute 
to its severity. Activated Kupffer cells triggered 
by hepatocyte damage may lead to increased 
release of oxidative stress and pro-inflamma- 
tory cytokines such as TNF-α, IL-1β, and IL-6. 
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Then, the number of immune cells (infiltrating 
macrophages and neutrophils) recruited into 
liver vasculature increased, which aggravates 
liver inflammation [6, 7].

APAP-induced hepatotoxicity is related to oxi- 
dative stress, inflammatory response, and ap- 
optosis. Recent studies reported that inflam-
matory mediators, including cytokines and re- 
active oxygen species (ROS) have been associ-
ated with the activation of mitogen-activated 
protein kinase (MAPK) that regulates intracel-
lular signal transduction pathway in APAP-in- 
duced liver injury [8, 9]. Evidence that extracel-
lular signal-regulated kinase (ERK), one of MA- 
PK pathways, participates in the regulation of 
inflammation and cell apoptosis is increasing 
[10]. Moreover, oxidative stress has also been 
shown to activate signal pathways such as 
nuclear factor kappa B (NF-κB), an important 
transcription factor in the nucleus. APAP over-
dose caused NF-κB activation, and then nucle-
ar translocation and binding specific sites in 
the promoter regions of target genes. It up-reg-
ulates gene expressions of numerous pro-
inflammatory cytokines and inflammatory me- 
diators including TNF-α, IL-1β, and cyclooxygen-
ase-2 (COX-2) [11, 12], which have been impli-
cated in the inflammatory response to hepa- 
totoxicity.

Corilagin is a major active polyphenolic tannins 
extract from Phyllanthus urinaria, an important 
herb used in traditional medicine. Previous 
reports demonstrated that it possesses anti-
oxidant and anti-inflammatory properties [13, 
14], and its safety has been clinically proven. 
Previous reports have shown that corilagin can 
inhibit TNF-α expression and radiation-induced 
microglia activation by restraining the NF-κB 
pathway [15]. It is also a potential component 
to relieve cholestasis through anti-inflamma-
tion and anti-oxidation related pathways in a rat 
model of acute cholestasis [16]. Furthermore, 
corilagin has hepatoprotective effects against 
LPS-induced liver injury by suppressing of oxi-
dative stress and apoptosis [17]. These studies 
suggested that corilagin may play important 
roles in the oxidative stress and inflammatory 
reaction. However, its pharmacological effects 
in APAP-induced liver injury have not yet been 
investigated. Therefore, further studies should 
be conducted on the effects and mechanisms 
of corilagin following an APAP-induced liver inju-
ry in a mouse model.

Materials and methods

Animals

The C57BL/6 (B6) mice were purchased from 
BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan). All 
procedures used in this proposal have been 
approved by the Institutional Animal Care and 
Use Committee of Chang Gung Memorial Hos- 
pital. All animal experiments were performed 
according to the guidelines of the Animal Wel- 
fare Act and the Guide for Care and Use of 
Laboratory Animals from the National Institu- 
tes of Health.

Experimental protocols and drug treatment

All animals were housed in an environmentally 
controlled room and fasted overnight before 
the procedure. APAP (Sigma Chemical Co., St. 
Louis, MO, USA) was dissolved in normal saline 
at a concentration of 20 mg/mL. The mice were 
intraperitoneally injected with a hepatotoxic 
dose of APAP (300 mg/kg), whereas the con- 
trol mice were administered with an equal vol-
ume of normal saline. After 30 min of APAP 
administration, the mice were intraperitoneally 
injected with corilagin (Sigma) at concentra-
tions of 0, 1, 5, 10, and 20 mg/kg. Then, 16 h 
after the corilagin treatment, the animals were 
sacrificed via cervical dislocation under isoflu-
rane anesthesia. Blood was drawn from the 
vena cava into heparinized syringes and centri-
fuged. The serum was used to determine liver 
enzyme activities. Immediately after collecting 
the blood, the livers were excised and rinsed 
with saline. A small section from each liver  
was placed in 10% phosphate-buffered forma-
lin. The remaining liver was frozen in liquid 
nitrogen and stored at -80°C. Blood and liver 
samples were obtained for further analysis.

Measurement of serum enzyme

Serum glutamyl pyruvic transaminase (GPT, 
also known as alanine aminotransferase or 
ALT) was measured to determine hepatic injury 
using a Vitros DT60 II Chemistry System (Ortho-
Clinical Diagnostics; Johnson & Johnson, New 
York, NY). All samples processing and proce-
dures are following the manufacture’s manual.

Measurement of tissue myeloperoxidase 
(MPO) activity

Myeloperoxidase is released from the neutro-
phils into the phagosome and acts a biomarker 
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of oxi dative stress and inflammation. Briefly, 
liver tissues of mice were homogenized with a 
Tekmar tissue grinder and centrifuged at 
15000 g for 15 min at 4°C. The pellet was 
resuspended in 10 volumes of room tempera-
ture 50 mM KPO4 buffer, and then incubated 
for 2 h at 60°C. The homogenate was soni- 
cated for 10 s using the sonicator (QSONICA 
Q700) and underwent 3 cycles of freeze/thaw. 
The suspension was centrifuged at 15000 g  
for 15 min at 4°C. Subsequently, the superna-
tant was transferred to phosphate buffer con-
taining o-dianisidine hydrochloride (10 mg/ 
mL), 0.3% hydrogen peroxide, and 50 mM 
KPO4, pH 6.0. The change in light absorbance 
was measured at 460 nm for a period of 5  
min and expressed in units per gram tissue.

Histology examination

The livers were harvested, fixed in 4% para- 
formaldehyde in PBS pH 7.4, and embedded  
in paraffin. Sections of thickness 4 μm were 
subjected to standard hematoxylin and eosin 
(H&E) staining for histology examination.

Immunohistochemistry on liver tissue

Liver sections were blocked with blocking buf-
fer for 30 min and incubated with a specific pri-
mary antibody. For immunostaining of neutro-
phils, tissue sections were incubated with rat 
anti-mouse primary antibody (Ly6G for neutro-
phils). After washing for 5 min twice, samples 
were incubated with biotinylated goat anti-rat 
secondary antibody for 1 h. Then the peroxi-
dase reaction was performed following the 
manufacturer’s protocol (Millipore IHC select 
kit) and the reaction times for all sections were 
identical.

Measurement of tissue cytokine by ELISA

Liver tissue homogenates were used to deter-
mine TNF-α, IL1β, and IL-6 expression. The tis-
sues were homogenized on ice, centrifuged for 
10 min (12000 g, 4°C), and the supernatants 
were assayed for cytokines expressions using 
the eBiosciences ELISA Kit (San Diego, CA, 
USA). 96 well plates were precoated with 2 μg/
mL primary antibodies overnight and were 
blocked with commercial blocking buffer for 1 
h. Then, samples were added into each well 
and incubated at room temperature for 2 h. 
After washing for several times, biotinylated 

detection antibody was added for 1 h. Then, 
after incubation with HRP substrate for 30  
min, the reaction was stopped by adding 2N 
H2SO4 and the absorbance was read at 450  
nm using TECAN infinite 200.

Measurement of tissue malondialdehyde 
(MDA) levels

The tissue samples were homogenized in ice-
cold condition and centrifuged at 1000 g for  
15 min at 4°C. The supernatant was removed 
and re-centrifuged at 35000 g at 4°C for 8  
min. We measured MDA generation as the in- 
dicator of lipid peroxidation using a Bioxytech 
MDA-586 Kit (OxisResearch, Portland, OR, 
USA). Lipid peroxide levels were expressed in 
terms of MDA equivalents as nmol MDA/g 
tissue.

Western blotting

The tissue were lysed in buffer containing 20 
mM Tris-HCl (pH 7.5), 1% Triton X-100, 137 mM 
sodium chloride, 10% glycerol, 0.02% NaN3, 2 
mM EDTA, 1 mM sodium orthovanadate, 25 
Mm b-glycerophosphate, 2 mM sodium pyro-
phosphate, 1 mM phenylmethylsulfonylfluo- 
ride, 1 ug/ml aprotinin and 0.1 ug/ml leupep- 
tin. The cell lysates were centrifuged at 12000 
g for 10 min. Equal quantity of protein from 
each group was separated on 10% sodium 
dodecylsulfate polyacrylamide gel (SDS-PAGE) 
and transferred to polyvinylidene fluoride 
(PVDF) membrane (Schleicher & Schuell, Mid- 
dlesex, UK). The membrane was blocked with 
5% fat-free milk solution and rinsed 3 times 
using Tris-buffer with 1% Tween 20. The mem-
brane was incubated with antibodies to ERK, 
JNK, p38, NF-κB, phospho-ERK, phospho-JNK, 
phospho-p38, and phospho-NF-κB (Cell Sig- 
naling Technology, MA, USA) primary anti- 
bodies overnight at 4°C. After washing with 
horseradish peroxidase-conjugated secondary 
antibody, proteins were detected using an 
enhanced chemiluminescence system (Amer- 
sham, Piscataway, NJ, USA).

Statistical analysis

All data were expressed as mean ± SEM. 
Calculations were performed with GraphPad 
Prism 6.0 Software (GraphPad Software Inc., 
San Diego, USA). The differences of measure-
ment data among groups were analyzed using 
one-way analysis of variance (ANOVA) followed 
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by Tukey-Kramer multiple comparison tests. 
The significance level was set at P < 0.05 for  
all tests.

Results

Protective effects of corilagin against APAP-
induced hepatotoxicity

A single toxic dose of APAP (300 mg/kg) mark-
edly increased the serum ALT levels compared 
with the control animals (Figure 1B). After the 
30-min APAP administration, corilagin treat-
ment significantly decreased the serum ALT 
enzyme activity. Serum ALT levels were mark-
edly lower in the corilagin treatment groups (10 
and 20 mg/kg) than that in the APAP-only 
group. Effects of corilagin were similar whether 
administered at a dose of 10 or 20 mg/kg. 
Histopathological analysis of the liver paren-
chyma in the APAP group showed centrilobular 
necrosis and fatty infiltration as evidenced in 
the H&E staining (Figure 1A). Corilagin treat-
ment (10 mg/kg) significantly decreased the- 
se pathologi cal findings and showed well pre-
served hepatocytes with less area of necrosis.

Effects of corilagin on neutrophil infiltrations in 
APAP-induced hepatotoxicity

Immunohistochemistry staining of the liver tis-
sue with a granulocyte-specific marker, Ly6G 
antibody, was used to investigate neutrophil 
infiltration in APAP-induced liver injury. APAP-
only treated animals demonstrated obvi ous 
infiltrated neutrophils around the necrotic area 
in the liver parenchyma as compared with the 
control animals (Figure 2A). Corilagin-treated 
(1, 5, and 10 mg/kg) animals after APAP injec-
tion had significantly lower liver neutrophil ac- 
cumulation than APAP-only treated animals.

Protective effects of corilagin on MPO activity 
in liver tissues

Hepatic expression of MPO was obviously ele-
vated in the APAP (300 mg/kg) group than that 
in the control group (P < 0.005, Figure 2B). 
After the 30-min APAP administration, corilagin 
treatment (1, 5, and 10 mg/kg) significantly 
decreased hepatic MPO levels compared with 
the APAP-only group (P < 0.01 or 0.005). This 
result demonstrates that corilagin treatment 

Figure 1. Effects of corilagin treatment in APAP-induced 
liver injury. Mice received an intraperitoneal hepatotoxic 
dose injection of APAP alone, equal volume of saline, 
or different concentrations of corilagin treatment 30 
min after APAP injection. All mice were killed 16 h af-
ter treatment for analysis of liver injury. A. Histological 
change by H&E staining of control, corilagin (10 mg/kg) 
alone, APAP (300 mg/kg), or various concentrations of 
corilagin (1, 5, and 10 mg/kg) after 30 min of APAP ad-
ministration. Representative histological images were 
chosen from each group (100× and 200× magnifica-
tions are shown). B. Serum ALT results. Each value rep-
resents mean ± SEM of six mice per group. *P < 0.05, 
**P < 0.01 vs. control; #P < 0.05 vs. APAP alone.
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dose-dependently reduces neutrophil accumu-
lation and inflammation in the liver.

Effects of corilagin on the inflammatory cyto-
kine expressions in liver tissues

Essential pro-inflammatory cytokine expres-
sions including TNF-α, IL-1β, and IL-6 in APAP-
induced liver injury were measured. As shown 
in Figure 3A-C, APAP (300 mg/kg) administra-
tion for 16 h significantly increased these cyto-
kines compared with the control group. After 
30 min of APAP overdose, corilagin treatment 
(1 mg/kg) significantly decreased the hepatic 
TNF-α and IL-6 levels (P < 0.05 and P < 0.005 
respectively). In addition, treatment with a high-
er dose of corilagin (5 mg/kg) markedly low-
ered TNF-α, IL-1β, and IL-6 levels (P < 0.01, P < 
0.01, and P < 0.005 respectively) compared 
with the APAP-only treated group. These re- 
sults indicated that corilagin treatment might 
attenuate the production and release of these 
pro-inflammatory cytokines in APAP-induced 
liver injury.

Effects of corilagin on oxidative stress in APAP-
induced hepatotoxicity

APAP overdose results in the generation of oxi-
dative stress. The production of MDA was con-
sidered as the marker of lipid peroxidation. 
After APAP (300 mg/kg) administration for 16 
h, MDA concentrations were significantly high- 
er in the liver tissues compared with the con- 
trol group (Figure 3D). In mice receiving corila-
gin of 1 mg/kg plus APAP, MDA levels were not 
significantly lower than that in with the APAP-
treated mice. However, treatment with high- 
er dose of corilagin (5 and 10 mg/kg) signifi-
cantly alleviated APAP-induced MDA produc- 
tion (P < 0.005).

Effects of corilagin on immunohistochemistry 
evidence of NF-κB expression in APAP-induced 
hepatotoxicity

To investigate the possible anti-inflammatory 
mechanism of corilagin in APAP-induced he- 
patotoxicity, liver tissues were immunohisto-
chemistry stained with NF-κB antibody. The 

Figure 2. Effects of corilagin treatment on hepatic 
neutrophil infiltration and MPO activity in APAP-in-
duced liver injury. Mice received an intraperitoneal 
hepatotoxic dose injection of APAP alone, equal 
volume of saline, or different concentrations of co-
rilagin treatment 30 min after APAP injection. All 
mice were killed 16 h after treatment for analysis 
by immunohistochemistry and liver MPO activity. A. 
Immunostaining with anti-Ly6G antibody (brown) of 
control, corilagin (10 mg/kg) alone, APAP (300 mg/
kg), or various concentrations of corilagin (1, 5, and 
10 mg/kg) after 30 min of APAP administration. 
Typical images were chosen from each group (100× 
and 200× magnifications are shown). B. Liver MPO 
activity. Each value represents mean ± SEM of six 
mice per group. **P < 0.01, ***P < 0.005 vs. control; 
##P < 0.01, ###P < 0.005 vs. APAP alone.
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Figure 3. Effects of corilagin treatment on hepatic TNF-α (A), IL-1β (B), IL-6 (C), and MDA (D) expressions in APAP-
induced liver injury. Mice received an intraperitoneal hepatotoxic dose injection of APAP (300 mg/kg) alone, equal 
volume of saline (control), or various concentrations of corilagin treatment (1, 5, and 10 mg/kg) 30 min after APAP 
injection. All mice were killed 16 h after treatment for analysis of these biochemical markers. Each value represents 
mean ± SEM of six mice per group. *P < 0.05, **P < 0.01, and ***P < 0.005 vs. control; ##P < 0.01, ###P < 0.005 vs. 
APAP alone.

APAP-only treated group showed significantly 
higher NF-κB expressions in liver tissues com-
pared with the control animals (Figure 4C). 
Corilagin (5 and 10 mg/kg)-treated group after 
APAP injection had a significantly lower NF-κB 
expression around the inflammatory area of 
hepatotoxicity in the liver parenchyma (Figure 
4E, 4F).

Effects of corilagin on hepatic ERK, JNK, and 
NF-κB expres sions and activity

The hepatic MAPK fam ily protein, including 
ERK, JNK, and p38 kinase, and NF-κB expres-
sions in APAP-induced hepatotoxicity were in- 
vestigated. The ERK and JNK activity, as de- 
termined by their phosphorylation, was signifi-
cantly higher in the APAP group than that in  
the control group (Figure 5A, 5B). However, no 

significant differences in hepatic p38 protein 
expressions were observed (data not shown). 
Corilagin treatment (10 mg/kg) after 30 min of 
APAP challenge significantly decreased hepatic 
phosphorylated ERK and JNK expressions com-
pared with the APAP-only group. We next looked 
at another intracellular signal protein NF-κB. 
Our result (Figure 5C) revealed that phosphory-
lated NF-κB significantly increased after the AP- 
AP administration (P < 0.005). Corilagin treat-
ment (10 mg/kg) effectively suppressed the 
phosphorylation of NF-κB proteins after the 
APAP challenge (P < 0.005).

Discussion

APAP is a widespread and very effective drug 
used as an analgesic and antipyretic. However, 
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its acute overdose is considered as the major 
cause of severe liver damage and even liver fail-
ure. In our study, the protective effects of cori-
lagin, an important component purified from 
Phyllanthus urinaria extract, were investigated 
in APAP overdose-induced hepatotoxicity in 
mice. Serum ALT concentration, hepatic MPO 
expressions, pro-inflammatory cytokines, and 
oxidative stress and intracellular signal trans-
duction parameters were increased after the 
APAP challenge for 16 h. Corilagin treatment 
significantly attenuated the elevation of these 
hepatic parameters. In addition, the protective 
effects of corilagin treatment in a dose-depen-
dent manner in APAP-induced liver injury were 
also observed.

APAP-induced hepatotoxicity is characterized 
by mechanisms of innate immune response. 
Excessive electrophilic metabolite NAPQI may 
cause mitochondrial dysfunction and hepato-
cyte necrosis. Hepatocyte death results in the 
release of damage associated molecular pat-
tern (DAMP) molecules that are recognized by 
the resident and infiltrating hepatic macroph- 
ages through toll-like receptors [18, 19]. Acti- 
vated macrophages would release pro-inflam-
matory cytokines and C-X-C motif (CXC) che- 
mokines to recruit monocytes and neutrophils 
into the necrotic areas of the liver [20]. Recent 
studies reported that TNF-α and IL-6 mediated 
acute inflammatory response and increased 
neutrophil accumulation in hepatic ischemia-
reperfusion injury models [21]. Neutrophil infil-
tration and transmigration into the liver paren-
chyma were associated with increased cyto-
kine and chemokine release in a model of  

drug-induced liver injury [22]. Therefore, ma- 
crophage activation together with neutrophil 
infiltration into the hepatic vasculature is a  
vital component of APAP-induced liver injury. 
Previous evidence showed that major extracts 
of Phyllanthus urinaria exhibited strong immu-
nomodulatory effects on neutrophil and ma- 
crophage cells. Another report also suggested 
that they have a strong inhibitory activity 
against ROS formation and neutrophil chemo-
taxis [23, 24]. In our results, early corilagin 
treatment after an APAP overdose attenuated 
macrophage and neutrophil accumulation, he- 
patic pro-inflammatory cytokine expressions 
(i.e., TNF-α, IL-1β, and IL-6), and MPO activity. It 
suggested that the protective effects of corila-
gin in APAP-induced liver injury may be mediat-
ed by reduced activation of macrophage and 
downstream effectors of inflammatory cyto - 
kine production and neutrophil infiltration.

Evidence that oxidative stress plays a key role 
in APAP-induced hepatotoxicity is increasing. 
Excessive NAPQI depletes GSH in the cellular 
storage and inhibits the antioxidant enzyme 
activity, which results in increased oxidative 
stress and ROS formation in APAP toxicity  
[4, 25]. Previous studies demonstrated that 
corilagin might exert hepatoprotective effects 
for hepatitis C virus-infected liver in oxidative 
stress modulation [26]. Another study also 
showed that corilagin could relieve acute cho-
lestasis through its anti-oxidative effects [16]. 
Our results showed that APAP significantly in- 
crease the MDA level, indicating ROS produc-
tion and accumulation of lipid peroxidation. 
However, after the corilagin treatment, this 

Figure 4. Effects of corilagin treatment on hepatic NF-κB expression in APAP-induced liver injury. Mice were treated 
with (A) normal saline (control), (B) corilagin (10 mg/kg) alone, (C) APAP (300 mg/kg) alone or various concentra-
tions of corilagin (D: 1 mg/kg; E: 5 mg/kg; F: 10 mg/kg) after 30 min of APAP administration, and were sacrificed 16 
h after treatment for analysis by immunohistochemistry. Liver tissues were immunostained with anti-NF-κB antibody 
(brown). Typical images were chosen from each group (100× and 200× magnifications are shown).
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APAP-induced change in the MDA level was 
reduced, suggesting that corilagin can be used 
to protect against APAP-induced hepatotoxicity 
by decreasing oxidative stress.

ROS can further elicit the MAPK activation, a 
family of serine-threonine protein kinases, that 
plays an essential role in intracellular signaling 
pathways in APAP-induced hepatotoxicity [8, 9]. 
The MAPK family is associated with cell death, 
especially ERK and JNK. They are also respon-
sible for the ROS and pro-inflammatory cyto-
kine production [27]. Previous studies showed 
that ERK is one of the essential members of 

the MAPK family and associated with oxidative 
stress and apoptotic event [10, 28]. The protec-
tion against APAP-induced hepatotoxicity was 
mediated by regulating pro-inflammatory cyto-
kine and suppressing the activation of ERK sig-
naling pathways [29]. A recent study also dem-
onstrated that ERK pathway inhibition protects 
against APAP-induced liver injury and this is 
accompanied by reduced ROS production [30]. 
In addition, JNK activation promotes mitochon-
drial dysfunction and further contributes to the 
mitochondrial oxidant stress and ROS forma-
tion, which led to hepatocyte apoptosis in APAP 
overdose [31, 32]. Blockade of JNK phosphory-

Figure 5. Effects of corilagin treatment on hepatic 
ERK (A), JNK (B), NF-κB (C) expressions in APAP-
induced liver injury. Hepatic expression and phos-
phorylation status of ERK, JNK, and NF-κB were 
evaluated in mice treated with normal saline (con-
trol; lane 1), corilagin (10 mg/kg) alone (lane 2), 
APAP (300 mg/kg) alone (lane 3), or corilagin (10 
mg/kg) at 30 min after APAP administration for 
30 min (lane 4). β-actin was used as the loading 
control in all lanes. The bands were analyzed using 
densitometry, and each value represents mean ± 
SEM of six mice per group. *P < 0.05, ***P < 0.005 
vs. control; #P < 0.05, ###P < 0.005 vs. APAP alone.
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lation or gene expression decreased hepatic 
damage in APAP toxicity [33]. A previous study 
reported that corilagin targeted the MAPK sig-
naling pathways to exert its antioxidant and 
anti-inflammatory effects in LPS-induced liver 
injury [34]. In this experiment, our western blot 
data showed that APAP activated the p-ERK 
and p-JNK expressions, which result in hepato-
cyte apoptosis. After the APAP toxicity, corilagin 
effectively protected liver against injury by sup-
pressing ERK/JNK MAPK pathways.

APAP overdose can trigger ROS-mediated he- 
patocyte death by activating intrinsic signaling 
pathways, including MAPK and NF-κB. The tran-
scription factor NF-κB plays a key role involved 
in cellular inflammatory responses. In the inac-
tivated form, NF-κB is normally sequestered in 
the cytoplasm. After the stimulation by extra-
cellular stimuli, NF-κB is translocated into the 
nucleus and leads to the transcription of pro-
inflammatory genes [11, 12]. Previous studies 
showed that APAP-induced liver damage oc- 
curred through the up-regulation of myeloid dif-
ferentiation factor 88 (MyD88) and NF-κB [35, 
36]. Macrophages are activated by this tran-
scription signaling pathway and induce the pro-
inflammatory gene expression, including those 

encoding TNF-α, COX-2, IL-1β, and IL-6 [37]. 
Recent studies also demonstrated that MAPK-
dependent activation and up-regulation of NF- 
κB can cause production of pro-inflammatory 
mediators and cytokines in LPS-stimulated 
macrophage and drug-intoxicated liver injury 
models [38-40]. In apoptosis and anti-tumor 
pathway, corilagin potentially reduced the nu- 
clear expression of NF-κB/p65 protein, which 
resulted in the attenuation of downstream  
transcription of inflammatory mediators in the 
neural cancer [41]. In our results, corilagin can 
decrease the NF-κB expression and downstr- 
eam the inflammatory response. It suggested 
that the inhibition of ERK/JNK MAPK protein  
by corilagin may contribute to the suppression 
of NF-κB-mediated inflammatory pathways.

Conclusions

This study demonstrated that corilagin exerted 
protective effects against APAP-induced hepa-
totoxicity. Its mechanism is attributed to anti-
inflammatory and anti-oxidation activities by 
suppressing ERK/JNK MAPK and NF-κB signal-
ing pathways (Figure 6). These results suggest 
that corilagin may be used as a potential target 
drug for APAP-induced liver injury in the future.

Figure 6. Schematic summary of possible mechanism underlying the protective effects of corilagin treatment in 
APAP-induced liver injury. Corilagin treatment effectively protects against APAP-induced liver injury in mice through 
anti-inflammatory and anti-oxidation mechanisms, and by inhibition of ERK/JNK MAPK and NF-κB pathways.
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