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Abstract: Bladder cancer (BLCA) is a common malignancy arising from the urinary bladder and therapeutic options 
are limited. However, the mechanisms underlying BLCA development are poorly understood. In this study, robust 
rank aggregation was used to integrate five GEO BLCA microarray datasets for identifying differentially expressed 
genes (DEGs) between non-muscular invasive BLCA and muscular invasive BLCA. One-hundred fifty-four DEGs re-
lated to the degree of BLCA infiltration, including 24 immune-related genes (IRGs), were identified. Missense muta-
tions were the most common type in IRGs. Ten hub IRGs were identified by protein-protein interaction network analy-
sis. Gene set enrichment analysis and gene set variation analysis of two novel BLCA-related genes (TYROBP and 
FCER1G) revealed that they were related to immunity. Nine survival-related IRGs were identified, and their potential 
regulation by transcription factors was analyzed. An immune-related gene-based prognostic index (IRGPI) compris-
ing CTSE, CXCL10, FAM3B, MMP9, OLR1, and S100P was constructed using multivariate analysis. The reliability of 
the IRGPI was evaluated using independent datasets, and correlations between the IRGPI and clinicopathological 
characteristics, as well as the immune microenvironment, were evaluated. Finally, a nomogram was established 
to evaluate the prognosis of patients with BLCA. Our data provide new insights into the pathogenesis of BLCA and 
target genes for immunotherapy. The application of molecular markers for hierarchical prediction paves the way for 
precision medicine.

Keywords: Immune-related genes, invasive bladder cancer, non-invasive bladder cancer, prognostic index, im-
mune cell infiltration

Introduction

In the 1940s, Juett and Strong conducted a 
detailed study of bladder cancer (BLCA) autop-
sy samples [1]. They found that the incidence of 
extravesical spread and metastasis was higher 
in patients with tumors invading the muscular 
layer than in patients with tumors confined to 
the submucosa. Over the next few decades, the 
hypothesis that muscle-invading primary blad-
der tumors reflect a unique and fatal disease 
biology was confirmed [2]. It has been estimat-
ed that there will be 81,400 new BLCA cases 
and approximately 17,980 deaths in the USA in 
2020 [3]. Among the BLCA patients, 70% have 
non-muscular invasive BLCA (NMIBC), charac-
terized by a high recurrence rate and low mor-
tality, and 30% have muscular invasive BLCA 
(MIBC), which is prone to early metastasis and 

is fatal in half of the cases [4, 5], indicating that 
the molecular characteristics of NMIBC and 
MIBC are very different.

The state of myometrial invasion can be judged 
from basal tumor tissue obtained by transure-
thral resection of the bladder tumor. It is worth 
noting that it is difficult to precisely determine 
the tumor stage based on the resected trans-
urethral bladder, as this requires expertise. 
Additionally, tissue destruction often occurs be- 
cause of the use of a high-energy laser. Studies 
have shown that the tumor stage may be under-
estimated in 25% of cases [6, 7]. A lack of 
expertise on the part of the surgeon can result 
in incomplete resection and residual lesions, 
which can lead to recurrence and progression 
and, eventually, death [8]. Therefore, it is very 
important to develop a more accurate diagnos-
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tic method for predicting whether NMIBC would 
progress to MIBC.

Cisplatin-based combination chemotherapy 
and surgery are currently the main treatment 
approaches for MIBC. In patients undergoing 
radical cystectomy, the 5-year disease-free sur-
vival (DFS) and overall survival (OS) are 68% 
and 60%, respectively, and the 10-year DFS 
and OS are 66% and 43%, respectively [9]. 
Patients with metastatic urothelial cancers ge- 
nerally receive chemotherapy combined with 
cisplatin, but the prognosis is poor, with a 
5-year OS of only 15% [5, 10]. Despite the ti- 
me, effort, and funds devoted to BLCA-related 
research, the overall morbidity and mortality 
have barely changed in the past 20 years, and 
no new drugs have been approved [11].

The 2018 Nobel Prize in Physiology or Medicine 
was awarded to the American immunologist 
James Allison and the Japanese biologist Ta- 
suku Honjo for their contribution to the discov-
ery of immunomodulatory therapy for cancer, 
which represents a milestone in the fight ag- 
ainst cancer. Immune checkpoint inhibitors 
have revolutionized cancer treatment [12]. As 
BLCA has a very high tumor mutation burden 
[13, 14], immunotherapy has become a key 
treatment for advanced BLCA. While immuno-
therapy is approved for the treatment of MIBC, 
only a small subset of patients are responsive 
to the treatment [15]. Studies have shown that 
in order for these drugs to achieve clinical effi-
cacy, the tumor must be in a pre-activated 
immune state [16]. Thus, there is an urgent 
clinical need to identify molecular biomarkers 
that can more accurately judge the degree of 
tumor invasion and identify the immune state 
of the tumor. Therefore, this study aimed to 
evaluate the potential functions of DEGs and 
immune-related genes (IRGs) in the prognosis 
of BLCA and their potential significance as bio-
markers for targeted therapy.

Materials and methods

Data collection

BLCA RNA-sequencing data, data on copy num-
ber variation, and clinical data were download-
ed from The Cancer Genome Atlas (TCGA) 
(https://cancergenome.nih.gov/). In addition, 
the GSE13507, GSE31684, GSE32548, GSE- 
32894, and GSE48075 BLCA microarray da- 
tasets were downloaded from the Gene Expre- 

ssion Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/) and used for further bio-
informatics analysis. An updated list of IRGs 
actively involved in immune activity and associ-
ated with cancer was downloaded from the 
Immunology Database and Analysis Portal (Im- 
mPort).

Identification of differentially expressed genes 
(DEGs)

The ‘limma’ package in R was used to normal-
ize the data and identify DEGs between NMIBC 
and MIBC [17]. Robust rank aggregation (RRA) 
was used to integrate the five datasets before 
DEG identification. Genes with P < 0.05 were 
identified as DEGs in RRA analysis. Differential- 
ly expressed IRGs were screened from the IRG  
list from ImmPort (https://www.immport.org/
shared/home).

Functional enrichment analyses

The ‘clusterprofiler’ package in R was used to 
analyze Gene Ontology (GO) term (biological 
processes, molecular function, and cellular co- 
mponent) enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analy-
sis. Significance was defined as P < 0.05, and 
data were graphically visualized.

Survival analysis and molecular characteris-
tics of survival-related immune-related genes 
(IRGs)

IRGs showing a significant correlation with OS 
in the TCGA BLCA data were identified by uni-
variate Cox proportional hazard regression 
analysis. P < 0.05 was used as a threshold. 
Transcription factors (TFs) among DEGs were 
identified using the Cistrome cancer database 
(http://cistrome.org/), and a regulatory net-
work of IRGs and TFs was constructed. Final- 
ly, gene mutations in 24 IRGs were identified 
based on TCGA copy number variation data. 
The GenVisR package was used to generate a 
waterfall map of gene mutations.

Protein-protein interaction (PPI) network analy-
sis and analysis of the molecular characteris-
tics of hub IRGs

The STRING database (https://string-db.org/) 
was employed to analyze relationships among 
proteins. The 24 IRGs were imported into the 
STRING database, and the combined score was 
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set to ≥ 0.4 [18]. The Molecular Complex 
Detection plugin in Cytoscape was utilized for 
network analysis. Gene set variation analysis 
(GSVA) provides an overall pathway or gene set 
activity score for each sample, and the ‘GSVA’  
R package was used to identify pathways th- 
at were most relevant to the hub genes. TCGA 
samples were divided into two groups based  
on the median expression of hub genes, using 
a p-value cut-off of 0.05. In addition, hub genes 
were analyzed by Gene set enrichment analysis 
(GSEA) software v. 4.0, and a GSEA map was 
generated.

Construction of an IRG-based prognostic index 
(IRGPI) and a prognostic signature

The survival-related IRGs obtained by univari-
ate Cox analysis were treated as candidate 
prognostic biomarkers. Multivariate Cox regres-
sion analysis was then used to build an optimal 
prognostic signature. The threshold used was P 
< 0.05. The final prognostic signature consist-
ed of six genes. An IRGPI risk score was calcu-
lated for each tumor type based on the relative 
expression of each IRG and its correlation coef-
ficient, using the following formula: risk score = 

1
n
=b/  (coef β × Expr β), where coef β is the mul-

tivariate Cox coefficient of gene β and Expr β is 
the relative expression of the gene in the IRGPI. 
The six IRGs in the model were subjected to GO 
functional enrichment analysis and KEGG path-
way analysis.

Evaluation of the prognostic value of the IRGPI 

Based on the risk score for the IRG signature in 
the TCGA training set, the median value was set 
as a threshold, and patients were divided into 
low- and high-risk groups. Kaplan-Meier (KM) 
survival analysis was carried out, and the prog-
nostic value of the prediction model was evalu-
ated based on the area under the time-depen-
dent receiver operating characteristic (ROC) 
curve (AUC). The survivalROC software package 
in R was used to test the prediction accuracy of 
the model.

Validation of the prognostic value of the IRGPI 
in an independent dataset

OS in GSE13507 and GSE48075 and DFS in 
GSE13507, GSE48075, GSE31684, and GSE- 
32894 were used as external verification sets 
to verify the clinical prognostic value of the 
IRGPI. KM survival and time-dependent ROC 
analyses were used to evaluate the survival 

prediction accuracy of the model. A p-value < 
0.05 was considered statistically significant.

Correlation between the IRGPI and clinicopath-
ological characteristics

The relationships between age, sex, tumor gr- 
ade and cancer stage, pathological TNM sta- 
ge, and the prognostic index (PI) were analyz- 
ed. The relationships between six genes in the 
IRGPI and clinical pathology were also ana-
lyzed. Wilcox test was used to analyze statisti-
cal significance. A p-value < 0.05 was consid-
ered statistically significant.

Generation and validation of a predictive no-
mogram

Univariate and multivariate Cox regression 
analyses were used to determine independent 
prognostic factors for constructing a nomo-
gram. All independent prognostic factors ob- 
tained by multivariate Cox regression analysis 
were selected to construct a combined prog-
nostic model to evaluate the 1-, 3-, and 5-year 
OS in patients with BLCA. A calibration curve 
was used to evaluate the consistency between 
the actual and the predicted survival rate; the 
45° line represents the best prediction, and 
the higher the conformation with this line, the 
better the prediction value of the model.

Validation of immune correlation

CIBERSORT is a gene expression-based algo-
rithm used to infer the relative proportions of 
22 types of immune cells based on bulk gene 
expression profiles of nearly 11,000 tumors. 
Pearson correlation analysis was used to de- 
termine the linear relationship between 22 im- 
mune cell types and the IRGPI. The correlation 
index r and the corresponding p-value were 
plotted.

Results

DEG identification by the RRA method

Five BLCA-related GEO microarray datasets 
were used to identify DEGs between NMIBC 
and MIBC based on the RRA method. We thus 
identified 154 DEGs, including 82 genes that 
were upregulated and 72 that were downregu-
lated in MIBC as compared to NMIBC. Figure 
1A shows the workflow used for DEG identifica-
tion, verification, and functional analysis. The 
20 most upregulated and downregulated DEGs 
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are shown in a heatmap in Figure 1B. GO ana- 
lysis revealed that extracellular matrix organi-
zation, collagen-containing extracellular matrix, 
and extracellular matrix structural constituent 
were the most frequent biological terms in the 
biological process, cellular component, and 
molecular function categories, respectively (Fi- 
gure 2A). According to the results of the KEGG 
pathway analysis, DEGs were enriched for ECM-
receptor interaction and the IL-17 signaling 
pathway (Figure 2B).

Identification and characterization of differen-
tially expressed IRGs

We identified 24 IRGs among the DEGs (Table 
S1). The IRGs were mostly enriched for GO 
terms related to receptor-ligand activity and 
biological behavior of neutrophils and leuko-
cytes (Figure S1A). IL-17 signaling was the most 
frequently identified KEGG pathway (Figure 
S1B). Missense mutation was the most com-
mon type of mutation among the differentially 
expressed IRGs (Figure S2A). 

Identification of hub IRGs

PPI network analysis based on the gene expr- 
ession data revealed that CXCL10, CCL2, 
MMP9, CXCL9, CCL8, S100A8, TYROBP, FC- 
ER1G, S100A9, and CD14 are the IRGs that 
actively participate in BLCA development. Am- 
ong the 10 hub genes identified, we selected 
two genes (TYROBP and FCER1G) that have not 
been previously reported in BLCA to explore 
pathways in which they are involved in BLCA. 
According to the median expression of the hub 
genes in the TCGA data set, BLCA samples 
were divided into high- and low-expression 
group. Notably, GSEA and GSVA revealed that 
the gene sets with high scores were signifi- 
cantly enriched in immune-related pathways 
(Figure 3A-D).

Identification of survival-associated IRGs and 
TF regulatory network establishment

Based on the expression levels of 24 IRGs from 
the TCGA dataset, we identified nine genes that 
were significantly related to survival, based on 

univariate Cox regression analysis. To explore 
the clinical significance of the survival-related 
IRGs and the potential underlying molecular 
mechanism, we studied the regulatory network 
of these genes. Two TFs were identified from 
the DEGs. The regulatory network in Figure S2B 
shows the regulatory relationships between the 
two TFs and the nine survival-related IRGs. 

Establishment of an IRGPI

The nine survival-related IRGs were then sub-
jected to multivariate Cox regression analysis 
to construct an IRGPI. We calculated the bio-
marker index as the model’s prediction proba-
bility multiplied by 100, using the following for-
mula: biomarker index = [CTSE expression * 
(-0.5426) + CXCL10 expression * (-0.3986) + 
FAM3B expression * (-0.9789) + MMP9 expres-
sion * 0.0203 + OLR1 expression * 0.7072 + 
S100P expression * (-0.0305)]. According to 
this model, the patients in the TCGA training set 
were divided into a high- and low-risk group 
according to the median risk score. A KM sur-
vival curve showed that the prognosis was sig-
nificantly better in the low-risk group than in the 
high-risk group (P < 0.0001). Time-dependent 
ROC analysis revealed that the AUC for the 
immune-related gene signature was 0.804, 
which was significantly higher than that for 
other predictive factors (AUC for age = 0.549, 
AUC for sex = 0.436, AUC for stage = 0.648, 
AUC for T = 0.596, AUC for M = 0.522, and AUC 
for N = 0.638), indicating that it has good pre-
diction potential. Figure 4A-C shows the IRGPI 
distribution for patients in the training set, the 
number of patients in the different risk groups, 
and expression heatmaps for the six genes 
included in the model. 

Validation of the IRGPI

Next, we evaluated the predictive ability of the 
prognostic marker genes in different BLCA 
cohorts in the GEO database. Two external 
datasets with OS as a prognostic indicator 
(GSE13507 and GSE48075) and four external 
datasets with DFS as a prognostic indica- 
tor (GSE13507, GSE48075, GSE31684, and 
GSE32894) were used to verify the predictive 
value of the IRGPI. 

Figure 1. A. Study workflow; B. Heatmap of DEGs identified by RRA analysis. The 20 most up- and downregulated 
genes are displayed according to the p-value. Each column represents a dataset, and each row represents a gene. 
Red indicates upregulation, and blue indicates downregulation. The numbers in the heat map represent logarithmic 
fold changes in each dataset calculated by the ‘limma’ R package.
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Figure 2. A. Bubble plot of enriched GO terms. The x-axis represents the z fraction, and the y-axis represents the negative logarithm of the p-value. The higher the 
location of the bubble in the graph, the more significant the difference. The circle size represents the number of genes assigned to the corresponding term. Green 
circles correspond to biological processes, red circles to cellular components, and blue circles to molecular function categories; B. Pathway analysis of differentially 
expressed DEGs. Red circles indicate the number of differentially expressed IRGs in each pathway. Lines between the two red circles represent the ratio of differen-
tially expressed IRGs to the commonly expressed genes in the two pathways; the thicker the line, higher the ratio of the differentially expressed IRGs.
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In the external verification set with OS as the 
prognostic indicator, the survival rate in the 
low-risk group was significantly higher than that 
in the high-risk group (P < 0.05), and the IRGPI 
had significant prognostic value, with AUCs  
of 0.709 and 0.616 in GSE13507 and GSE- 
48075, respectively (Figure 5A, 5B). The DFS 
trends were the same in the four datasets 
used: the prognosis of the low-risk group was 
significantly better than that of the high-risk 
group (P < 0.05, P < 0.05, P < 0.05, and P < 

0.001 for GSE13507, GSE48075, GSE31684, 
and GSE32894, respectively). The AUC values 
were 0.726, 0.590, 0.621, and 0.805, respec-
tively (Figure 5C-F). Thus, the IRGPI could 
accurately predict patient prognosis in in- 
ternal and external datasets.

Clinical utility of the IRGPI

We analyzed the relationship between the 
IRGPI and age, sex, tumor grade, cancer stage, 

Figure 3. GSEA and GSVA of hub genes in the TCGA-BLCA dataset. A, B. TYROBP and FCER1G were enriched in the 
high hub gene-expression group (according to the GSEA score). A. TYROBP; B. FCER1G; C, D. GSVA-derived cluster-
ing heatmaps of differentially expressed pathways for individual hub genes. C. TYROBP; D. FCER1G. Only signaling 
pathways with log(fold change) >0.2 are shown.
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Figure 4. A. KM survival analysis of high- and low-risk groups in the TCGA-BLCA data set; B. Time-dependent ROC of the indicated predictive factors in the TCGA-BLCA 
training set; C. Rank of prognostic index and distribution of groups, survival status of patients in different groups, and expression heatmap of the genes included.



Immune prognostic model of bladder cancer

5196	 Am J Transl Res 2020;12(9):5188-5204

Figure 5. A, B. KM survival (overall survival) and time-dependent ROC analysis of NMIBC and MIBC patients in the GSE13507 and GSE48075 datasets; C-F. KM 
survival (disease-free survival) and time-dependent ROC analysis of NMIBC and MIBC patients in the GSE13507, GSE48075, GSE32894, and GSE31684 datasets.
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tumor T stage, tumor N stage, and tumor M 
stage. The results showed that the IRGPI in- 
creased significantly with late cancer stage, 
high grade, and late T and N stages (Figure 
6A-D). Table S2 shows the relationships bet- 
ween clinicopathological factors and the IRGPI 
as well as the six genes in the IRGPI. 

Clinical application of a nomogram incorporat-
ing the IRGPI

A nomogram is a powerful tool to quantitative- 
ly assess the individual risk in a clinical envir- 
onment by integrating multiple risk factors. 
Through univariate and multivariate Cox regr- 
ession analyses, IRGPI and age were identified 

as potential independent predictors, based on 
which a nomogram was constructed (Figure 
7A). The calibration map shows that the actual 
survival rate was in good agreement with the 
predicted survival rate (Figure 7B), indicating 
that the nomogram has high clinical application 
potential.

Validation of the immune correlation

We analyzed the relationship between the 
IRGPI and immune cell infiltration to determine 
whether it can accurately reflect the immune 
microenvironment of BLCA. The IRGPI was posi-
tively correlated with M0 and M2 macrophages, 
whereas the abundance of CD4+ memory acti-

Figure 6. Relationships between the IRGPI and (A) cancer stage; (B) grade; (C) stage T; (D) stage N.
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vated T cells, T follicular helper cells, and CD8+ 
T cells decreased with increasing of IRGPI 
(Figure 8A-E). 

Discussion

Using five BLCA-related GEO datasets that were 
integrated with the RRA method, we identified 
154 DEGs in MIBC vs. NMIBC. In agreement 
with previously published data [19], these DEGs 
were mainly enriched for ECM organization, 
which indicated that they are indeed involved in 
the development of BLCA. Among these genes, 
we identified 24 IRGs and subjected them to 
GO and KEGG analyses, which revealed that 
they were mainly enriched for neutrophil and 
leukocyte-related biological behavior and the 
IL-17 signaling pathway. Further, we found that 
missense mutation was the most common type 
of mutation in these IRGs. In accordance with 

Le et al.’s report of a strong link between the 
response to immune checkpoint inhibitors and 
defects in the mismatch repair pathway in tu- 
mors [20]. To explore the molecular mecha-
nisms associated with biomarkers of potential 
clinical value, we constructed a TF-IRG network 
to identify TFs that regulate prognosis-related 
genes. This network also provides useful infor-
mation and guidance for future analyses. Am- 
ong the hub genes, we selected two novel 
BLCA-related genes, and GSEA and GSVA re- 
vealed that they were closely related to im- 
munity.

We developed a prognostic prediction model 
for targeted therapy based on six IRGs. Blaveri 
et al. found that CTSE is overexpressed in 
NMIBC when compared with MIBC [21]. Dur- 
ing a long-term follow-up study of 693 cases of 
NMIBC, low CTSE expression was confirmed to 

Figure 7. Nomogram and calibration curves. A. Nomogram for the prediction of 1-, 3-, and 5-year OS in the TCGA-
BLCA training set; B. Calibration curves for the prediction of 3- and 5-year OS.
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Figure 8. Relationships between the IRGPI and 
immune cell infiltration. Correlations were deter-
mined by Pearson correlation analysis. A. CD8+ 
T cells; B. CD4+ memory activated T cells; C. M2 
macrophages; D. M0 macrophages; E. T follicular 
helper cells.
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be significantly related to the progression of 
NMIBC to MIBC [22]. It has also been confirmed 
that MMP9 can lead to tumor recurrence, high 
invasiveness, and poor prognosis in BLCA [23, 
24]. This may be related to the important roles 
of MMP9 in promoting angiogenesis, maintain-
ing the tumor microenvironment, and promot-
ing the proliferation of malignant tumor cells 
[25, 26]. S100P is a member of the S100 pro-
tein family. The positive expression rate of 
S100P in high-grade urothelial carcinoma is 
88% [27], and this protein is used as a marker 
to support urothelial cell differentiation [28]. 
While a role for CXCL10 in MIBC has not been 
reported, its immune effect in NMIBC has been 
confirmed in previous studies. It is suggested 
that CXCL10 may be involved in mediating the 
recruitment of effector cells to the tumor site 
and that it can attract granulocytes and effec-
tor leukocytes into the bladder for tumor clear-
ance, which is conducive to a long-term tumor 
immune response. Therefore, CXCL10, together 
with other pro-inflammatory cytokines, may be 
a biomarker of a good anti-tumor immune re- 
sponse in BLCA treated with BCG [29]. Rela- 
tionships between the other two genes (FAM3B 
and OLR1) and BLCA have not been thoroughly 
investigated to date, and only a few studies 
have shown that these genes are related to  
the occurrence of some tumors. High FAM3B 
expression has been confirmed to be associat-
ed with the specific prolongation of survival in 
papillary thyroid carcinoma [30]. In addition, 
FAM3B expression is increased in esophageal 
cancer, and the expression level is positively 
correlated with the T/TNM stage [31]. Further, 
FAM3B can inhibit esophageal cancer cell de- 
ath, increase tumor growth in vivo, and pro-
mote esophageal cancer cell migration and 
invasion [31]. OLR1 was found to be overex-
pressed in pancreatic cancer tissues, and it 
was confirmed that it promotes the transcrip-
tion of HMGA2 through c-Myc, thus promoting 
the metastasis of pancreatic cancer cells [32]. 

KEGG analysis revealed that all the DEGs iden-
tified were associated with IL-17 signaling. Un- 
der the action of IL-17, IL-17 signal pathway 
components bind with a receptor complex to 
form a signal complex composed of IL17 recep-
tor, Actl, TRAF6, and other factors. Wang et al. 
found that IL-17 mRNA expression was positi- 
vely correlated with the expression of the im- 
munosuppressants CD274, CTLA4, and LAG3, 

and patients with high IL-17 mRNA expression 
were more likely to benefit from immunosup-
pressants [33]. However, the role of IL-17 in 
cancer remains controversial. IL-17 can pro-
mote tumor development by directly stimulat-
ing cancer cells and indirectly inducing an im- 
munosuppressive tumor environment. IL-17 al- 
so indirectly shapes the immune cell microen- 
vironment through chemokines and cytokines, 
supports cancer cell proliferation, stimulates 
early tumor growth, and suppresses the im- 
mune system [34]. However, IL-17 expression 
has also been shown to be associated with a 
better prognosis of cancer patients; in colorec-
tal and lung cancer, IL-17 recruits antineoplas-
tic neutrophils to the tumor environment, th- 
us stimulating T cell responses and improving 
overall survival [35, 36]. The regulatory poten-
tial of IL-17 in the immune microenvironment 
and immune axis renders it an attractive target 
for cancer immunotherapy. 

The performance of the IRGPI in different da- 
tasets was evaluated using GEO data as ex- 
ternal data and OS as a prognosis indicator. 
The results showed that the model is highly 
robust. BLCA characteristically has a high re- 
currence rate compared to other tumors, and 
recurrence can lead to a worse prognosis. 
Based on the results of four independent GEO 
data sets, we found that the IRGPI also has a 
high predictive ability for DFS. Interestingly, our 
data showed that the IRGPI is associated with 
tumor stage, T stage, and N stage. A nomogram 
was used as a predictive tool to evaluate the 
OS in BLCA. The actual survival was closely 
related to the predicted survival, indicating th- 
at the nomogram has good predictive poten- 
tial.

There is evidence that immune cells in the 
tumor microenvironment can affect tumor oc- 
currence and development and patient pro- 
gnosis [37, 38]. Importantly, the pretreatment 
tumor immune status can be used as a predic-
tor of the treatment response and survival [39, 
40]. In this study, high-throughput data were 
used to explore the relationship between the 
IRGPI and immune cell infiltration as a reflec-
tion of the immune microenvironment of BLCA. 
Our analysis showed that the infiltration of  
M0 and M2 macrophages among 22 types of 
tumor-infiltrating immune cells was positively 
correlated with the IRGPI, whereas the infiltra-
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tion of CD8+ T cells, CD4+ memory activated T 
cells, and T follicular helper cells were negative-
ly correlated with the IRGPI. CD8+ T cells have 
been a major focus in cancer research, and it 
has been confirmed that they mediate anti-
tumor functions. Patients with higher CD8+ T 
cell infiltration in metastatic urothelial carcino-
ma exhibited better DFS and OS [41], which is 
in line with our findings. Pre-existing CD8+ T 
cells are located at the edge and in the center 
of invasive tumors, and CD8+ T cells are the 
main cellular source of PD-1 expression [42]. 
CD8+ T cells are also associated with the ex- 
pression of the PD-1/PD-L1 immune inhibitory 
axis [14, 43]. The induction of memory T cells is 
a key focus in the development of tumor vac-
cines and immunotherapy. CD4+ memory T 
cells ‘remember’ their previous effector lineage 
after antigen clearance and can regain lineage-
specific effector function when they re-encoun-
ter antigens [44]. Vahidi et al. indicated that 
CD4+ memory T cells might play a role in pre-
venting lymph node metastasis and tumor pro-
gression [45]. The role of T follicular helper 
cells in immune responses against tumors may 
be dual: (i) they may help to develop or support 
ectopic lymphoid structures that aggregate 
CD8+ T cells, NK cells, and macrophages in- 
volved in anti-tumor immunity; (ii) they may  
support the anti-tumor antibody response of  
B cells [46]. Macrophages are multifunctional 
antigen-presenting cells that play a central role 
in cancer. Increasing evidence suggests that 
M2 macrophages have an immunosuppressive 
function and promote tumor progression and 
metastasis [47, 48]. Xue et al. used ssGSEA 
and CIBERSORT algorithms to explore the infil-
tration of various immune cells based on BLCA 
TCGA data, and found that M2 macrophages 
were the main tumor-infiltrating immune cells in 
the BLCA microenvironment and that they were 
related to histopathological grade and stage as 
well as patient prognosis [49]. Studies have 
shown that M2 macrophages can accumulate 
in hypoxic regions, and hypoxia-induced tran-
scription factors of M2 macrophages can in- 
duce the production of various proangiogenic 
genes, which leads to tumor progression [50, 
51]. Therefore, M2 macrophage infiltration may 
be a potential target for immunotherapy for 
BLCA [47]. 

While we used bioinformatics tools to identi- 
fy immune-related candidate genes that affect 
the prognosis of BLCA based on a large datas-

et, findings based on bioinformatics analysis 
alone are insufficient and require experimental 
verification in vitro or in vivo; the lack thereof is 
a clear limitation of our study.

The main purpose of this study was to gain an 
in-depth understanding of the potential func-
tions of IRGs in the prognosis of BLCA and their 
potential significance as biomarkers for target-
ed therapy. More importantly, by applying the 
CIBERSORT algorithm to large-scale data to 
explore the infiltration of various immune cells.

Conclusion

Based on bioinformatics analysis of large-scale 
data, we identified DEGs and IRGs in MIBC, and 
we developed an IRGPI and a predictive nomo-
gram. The results of this study provide a basis 
for more in-depth immune-related studies of 
BLCA and are of great significance to provide 
predictive and prognostic biomarkers and for 
guiding effective immunotherapy. 
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Table S1. General characteristics of IRGs
Gene P Adj P Log fold change
GREM1 1.83E-10 6.00E-06 1.621916
CCL8 6.55E-12 2.15E-07 1.327437
FABP6 2.87E-11 9.43E-07 -1.15423
MMP9 3.69E-11 1.21E-06 1.386347
CXCL9 3.22E-11 1.06E-0 1.308797
OLR1 3.98E-11 1.31E-06 1.038871
PI3 1.62E-10 5.31E-06 1.152133
CXCL10 2.83E-10 9.29E-06 1.306726
FCER1G 1.41E-10 4.64E-06 1.172468
RBP1 8.36E-10 2.74E-05 1.008813
CCL2 6.68E-11 2.19E-06 1.162726
TYROBP 7.04E-12 2.31E-07 1.190952
CD14 1.92E-12 6.32E-08 1.209238
CTSE 3.44E-12 1.13E-07 -1.36832
CTGF 3.62E-09 0.000119 1.033147
SPP1 4.02E-09 0.000132 1.085566
S100A8 5.50E-15 1.81E-10 1.95885
SEMA6A 3.26E-12 1.07E-07 -1.07824
FAM3D 2.55E-09 8.39E-05 -1.06044
VIPR1 8.69E-12 2.85E-07 -1.03979
FAM3B 2.43E-10 7.98E-06 -1.28727
SYTL1 4.86E-12 1.60E-07 -1.04972
S100A9 2.58E-09 8.48E-05 1.148248
S100P 3.77E-09 0.000124 -1.04785
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Figure S1. A. Enriched GO terms among IRGs in the biological process, cellular component, and molecular function categories; B. KEGG analysis of IRGs. The X-axis 
is the proportion of genes, and the Y-axis is the name of the pathway. The size of the circle indicates the number of genes, and the color of the circle indicates the 
significance of pathway enrichment.
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Figure S2. A. Mutation landscape of IRGs. The panel at the top of the figure represents the mutations in the sample. The panel on the left indicates the frequency of 
each mutation site in the sample. The major panel represents the mutation information carried by each gene in each sample, and the color indicates the mutation 
type of the specified gene in the sample; B. TF-IRG regulatory network. TFs are indicated in cyan, survival-related IRGs in pink.
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Table S2. Relationships between clinicopathological factors and expression of the IRGs in the IRGPI

Gene
Age  

(>65/≤65)
Sex (male/ 

female)
Grade (high 

grade/low grade)
Pathological  

stage (III-IV/I-II)
T stage  

(T3-T4/T1-T2)
M stage  
(M1/M0)

N stage  
(N1-3/N0)

t P t P t P t P t P t P t P
CTSE 2.074 0.041 0.852 0.396 -1.795 0.091 2.565 0.013 2.435 0.017 3.875 1.55E-04 3.199 0.002

CXCL10 -0.48 0.632 -1.474 0.142 3.336 0.001 -0.728 0.468 -1.211 0.228 3.118 0.003 1.439 0.152

FAM3B 2.326 0.022 -0.068 0.946 -5.19 5.24E-05 4.1 1.06E-04 3.72 3.57E-04 3.041 0.013 3.102 0.002

MMP9 0.274 0.785 0.543 0.589 5.555 1.13E-07 -1.686 0.094 -2.001 0.047 -1.026 0.341 -0.546 0.586

OLR1 0.548 0.585 -0.354 0.724 1.688 0.103 -1.337 0.184 -1.288 0.2 3.104 0.003 -0.184 0.855

S100P -0.241 0.81 -2.434 0.016 -2.203 0.034 1.886 0.064 1.896 0.063 -0.022 0.983 2.038 0.043


