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Abstract: Background: Gastric cancer is the fifth most prevalent malignancy worldwide, and the third leading cause
of cancer-related death. Activating mutations of the JAK/STAT pathway on cellular biological process, inflammation,
and immunity of cancer cells have made them promising biomarkers for drug exploitation and malignancy treat-
ment. Specific functions of the STAT family in stomach adenocarcinoma (STAD) have not yet been systematically
described. Methods: Bioinformatics web resources, including UALCAN, The Kaplan Meier plotter, and GSCALite,
were used to identify immune checkpoint inhibitors and biomarkers among the STAT family in STAD. Results: STAT1,
STAT4, STAT5A, and STAT6 were upregulated in STAD at both the mRNA and protein level. STAT1 and STAT5A may
act as potential prognostic and prognostic biomarkers in STAD. Among all members of the STAT family, STAT5B
(33%), STAT1 (27%), and STATH5A (18%) were the top three frequently mutated genes, and missense mutations
were the most common types of genetic alteration. The STAT family has mainly been associated with the activity
of several well-known cancer-associated pathways. Low expression of STATS5A and STAT5B were resistant to most
of drugs or small molecules in the Genomics of drug Sensitivity in Cancer (GDSC). The functions and pathways of
STAT5A in STAD were mainly associated with immune responses, chemokine signaling pathways, and cell adhesion
molecules. In addition, we identified several STAT5A associated-targets (transcription factor, kinase, and miRNA
targets). Immuno-infiltration analysis suggested a strong association between the STAT5A level, the abundance of
immune cells, and the level of immune biomarkers. Conclusions: We identified the immune checkpoint inhibitor
and biomarkers among the STAT family in STAD, thereby providing additional information about the significant role
of the STAT family in STAD.
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Introduction the prognosis of patients in advanced or meta-
static disease is disastrous with an overall sur-

Gastric cancer is the fifth most prevalent ma- vival of about 12 months [4]. Therefore, explo-

lignancy worldwide, and the third leading cause
of cancer-related death [1]. Although identifi-
cation of Helicobacter pylori (H. pylori) has
reduced the incidence of gastric cancer, 1.3
million patients were estimated to be diag-
nosed with gastric cancer and 819,000 pa-
tients were estimated to die of gastric cancer-
related diseases in 2015 in developed coun-
tries [2, 3]. Gastric adenocarcinoma (stomach
adenocarcinoma, STAD) is the most common
subtype of gastric cancer, ranking over 95% of
all gastric cancer cases. The current therapeu-
tic landscape for gastric cancer is limited, and

ration and identification of immune checkpoint
inhibitors and biomarkers for diagnosis, thera-
py, and prognosis of STAD would is of utmost
importance.

Increasing evidence has clarified the regulation
of JAK/STAT signaling cytokines and the action
of interferons, thereby affecting gene expres-
sion [5]. Activating mutations of JAK/STAT sig-
naling or members of cellular biological pro-
cess, inflammation and immunity of cancer
cells have made them promising biomarkers for
drug exploitation and malignancy treatment [5,
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6]. A total of seven members of the STAT family
have been identified in mammals, including
STAT1/2/3/4/5A/5B/6. The STAT family was
proposed as biomarkers orimmune checkpoint
inhibitors for the prognosis prediction or thera-
py in various types of solid tumors, including
STAT3 and STAT5A in breast cancer [7, 8],
STAT3, STAT5A, and STAT6 in lung cancer [9],
and STAT3 and STAT5A in prostatic cancer
[10]. However, specific functions of the STAT
family in STAD have not yet been systematical-
ly described.

In our study, we performed comprehensive an-
alysis of expression of members of the STAT
family, and their correlation with clinicopatho-
logical parameters and patients’ survival was
evaluated in primary STAD. Moreover, we ana-
lyzed genetic alterations and chemotherapy
resistance of the STAT family. The association
between STAT2 with immune cells and bio-
markers, and the functional regulation network
of STAT2 in primary STAD were also explored.
Taken together, our results may provide more
evidence on the significance of STAT family
members in primary STAD.

Materials and methods
Oncomine

Oncomine, a comprehensive and user-friendly
platform for gene expression, pathway, and
network analysis, contains 715 datasets of
86733 samples [11]. The mRNA level of the
STAT family in primary STAD was explored us-
ing Oncomine (P < 0.05, fold-change (FC) =2).

UALCAN

UALCAN is designed for gene expression analy-
sis, prognosis analysis, and methylation analy-
sis and is based on data of The Cancer Geno-
me Atlas Program (TCGA) [12]. TCGA is a land-
mark cancer genomics program, and molecu-
larly characterized over 20,000 primary cancer
and matched normal samples spanning 33
cancer types. Gene expression of the STAT
family and STAT family expression in molecular
subtypes of STAD were explored using UALCAN
using a primary STAD TCGA dataset (n=415). P
< 0.05 indicated statistical significance.

The human protein atlas
As a comprehensive bioinformatics web re-

source, The Human Protein Atlas is designed
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for mapping all human proteins [13]. The tis-
sue atlas and the human pathology atlas mod-
ule were used to determine the protein level of
STAT family members in STAD.

The Kaplan Meier plotter (KM plotter)

The Kaplan Meier plotter (KM plotter) is a com-
prehensive bioinformatics tool designed for
evaluating the prognostic value of input genes
in cancer patients [14]. The STAT family was
submitted to KM plotter and the prognostic
significance of the STAT family in cancer pati-
ents was evaluated. The survival analysis com-
prised overall survival (0S), post progression
survival (PPS), and first progression (FP) analy-
sis. Patients were divided by the medium val-
ue of gene expression. All survival curves were
created by the Kaplan Meier method.

GSCALite

As a bioinformatics platform for gene set can-
cer analysis, GSCALite offers several type of
analyses, including methylation analysis, can-
cer-related pathway analysis, miRNA network
analysis, etc. [15]. In the current study, GS-
CALite was used to analyze the CNV profile of
the STAT family in primary STAD. Moreover, the
effect of the STAT family in cancer-related sig-
naling and the correlation between expression
of the STAT family and drug sensitivity based on
the data of Genomics of drug Sensitivity in
Cancer (GDSC) were analyzed. In cancer-relat-
ed pathway analysis, gene expression was
divided into 2 groups (group High and group
Low) by median expression. The difference of
the pathway activity score (PAS) between
groups was defined by student T test. The
Spearman correlation was used to explore the
correlation between the gene expression and
drug sensitivity. All analyses were performed
using the STAD TCGA dataset (n=415).

LinkedOmics

LinkedOmics is a bioinformatics web portal
designed for accessing, analyzing, and compar-
ing cancer multi-omics data of various types of
cancer [16]. We submitted STAT5A to the pri-
mary TCGA STAD datasets of 415 STAD patien-
ts and analyzed STATH5A-associated genes us-
ing the Pearson Correlation test. In the “Link-
Interpreter” module, Gene Set Enrichment An-
alysis (GSEA) was conducted to explore the en-
richment function of STAT5A and neighboring
genes with 3 as the minimum number of genes

Am J Transl Res 2020;12(9):4977-4997



STAT family as biomarkers in stomach adenocarcinoma

Table 1. The mRNA levels of STAT family in STAD (ONCOMINE)

TLR Type Fold Change P value t-test Reference
STAT1 Gastric Intestinal Type Adenocarcinoma 2.703 6.96E-15 9.751 PMID:12925757
Gastric Mixed Adenocarcinoma 2.449 1.34E-04 5.291 PMID:12925757
STAT2 NA NA NA NA NA
STAT3 Gastric Mixed Adenocarcinoma 2.190 6.45E-06 7.834 PMID:19081245
Diffuse Gastric Adenocarcinoma 2.096 4.08E-04 5.117 PMID:19081245
Gastric Intestinal Type Adenocarcinoma 2.252 2.26E-10 7.653 PMID:19081245
STAT4 NA NA NA NA NA
STAT5A  Gastric Mixed Adenocarcinoma 2.563 4.53E-04 5.012 PMID:19081245
STAT5B  Gastric Mixed Adenocarcinoma 2.895 5.59E-04 5.077 PMID:19081245
STAT6 NA NA NA NA NA

Table 2. The Kinase, miRNA and transcription factor-target networks of STAT5A in STAD (LinkedOmics)

Enriched Category Geneset LeadingEdgeNum P Value
Kinase Target Kinase_LCK 29 0
Kinase_LYN 30 0
Kinase_SYK 16 0
Kinase_JAK3 8 0
Kinase_HCK 17 0
miRNA Target GTGCCAA, MIR-96 91 0
TGCACTT, MIR-519C, MIR-519B, MIR-519A 140 0
TGCACTG, MIR-148A, MIR-152, MIR-148B 97 0
GTGCCTT, MIR-506 213 0
TATTATA, MIR-374 105 0.002
Transcription Factor Target V$IRF_Q6 104 0
V$NFKB_Q6_01 57 0
V$ELF1_Q6 84 0
V$PEA3_Q6 81 0
V$PU1_Q6 150 0

and 0.05 as the p-value. Enrichment analysis
involved GO and KEGG pathways, kinase,
miRNA, and transcription factor-target analy-
sis.

GENEMANIA

GENEMANIA (http://genemania.org/) can help
us better understand the potential functions
and other associated genes of our candidate
genes via the protein-protein interaction (PPI)
network [17].

TIMER

TIMER is a comprehensive resource for sys-
tematical analysis of immune infiltrates across
diverse cancer types [18]. We analyzed STAT5A
expression and the correlation with immune
cell infiltrates in the “Gene” module using the
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primary STAD TCGA dataset (n=415). In the
“correlation” module, we analyzed STAT5A ex-
pression and its correlation with gene biomark-
ers (Table 3) of immune cells [19-21]. All analy-
ses were performed using Spearman correla-
tion and P < 0.05 indicated statistical signifi-
cance.

Results
The expression of STAT family in STAD

The expression level of the STAT family in pri-
mary STAD was first determined via Oncomine,
which revealed seven members of the STAT
family in human beings (Figure 1). Table 1 pres-
ents the mRNA level of the STAT family in pri-
mary STAD, revealing that STAT1/3/5A/5B were
upregulated in tumor tissues compared with
gastric tissue. Data obtained by Chen et al.
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Table 3. Correlation analysis between STAT5A and gene biomarkers of immune cells in STAD (TIMER)

STAT family as biomarkers in stomach adenocarcinoma

. None Purity
Immune cells Biomarkers
Cor P-value Cor P-value
CD8+ T cell CD8A 0.514 hk 0.479 wkAk
CD8B 0.292 wAKx 0.259 i
T cell (general) CD3D 0.461 wkk 0.424 kA
CD3E 0.489 wokk 0.454 KAk
CD2 0.488 wokk 0.455 kA
B cell CD19 0.385 wokk 0.356 i
CD79A 0.392 wokk 0.362 i
Monocyte CD86 0.437 RA 0.416 TxK
CD115 (CSF1R) 0.496 wAKx 0.488 i
TAM CCL2 0.258 wAKx 0.228 wkx
CD68 0.313 wAK 0.296 whx
IL10 0.436 wokk 0.411 kA
M1 Macrophage INOS (NOS2) 0.103 * 0.104 *
IRF5 0.295 wokk 0.257 i
COX2 (PTGS2) 0.06 0.224 0.044 0.392
M2 Macrophage CD163 0.465 it 0.452 i
VSIG4 0.386 wAKx 0.376 wkx
MS4A4A 0.476 whk 0.452 wkx
Neutrophils CD66b (CEACAMS) -0.019 0.693 -0.041 0.429
CD11b (ITGAM) 0.565 wAKx 0.548 i
CCR7 0.452 wokk 0.42 wkAk
Natural killer cell KIR2DL1 0.18 wokk 0.147 ok
KIR2DL3 0.165 wokk 0.129 *
KIR2DL4 0.233 wokk 0.186 i
KIR3DL1 0.22 whk 0.202 wx
KIR3DL2 0.317 wAKx 0.285 wkx
KIR3DL3 0.074 0.133 0.064 0.214
KIR2DS4 0.133 ol 0.094 0.0674
Dendritic cell HLA-DPB1 0.477 wokk 0.454 kA
HLA-DQB1 0.395 wokk 0.349 i
HLA-DRA 0.48 wokk 0.45 i
HLA-DPA1 0.49 wokk 0.463 i
BDCA-1 (CD1C) 0.392 wAKx 0.356 i
BDCA-4 (NRP1) 0.342 wAKx 0.306 i
CD11c (ITGAX) 0.487 wAKx 0.466 i
Thl T-bet (TBX21) 0.525 wAx 0.497 wkx
STAT4 0.467 wokk 0.452 kA
STAT1 0.241 wokk 0.226 i
IFN-y (IFNG) 0.291 wokk 0.267 i
TNF-o (TNF) 0.206 wokk 0.165 wx
Th2 GATA3 0.357 wAKx 0.321 kK
STAT6 0.235 wAKx 0.251 Hkk
STAT5A - - - -
IL13 0.131 ol 0.138 wkx
Tfh BCL6 0.263 wkk 0.235 kA
IL21 0.312 wokk 0.27 KAk
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Th17 STAT3 0.45 il 0.43 il
IL17A -0.098 0.0469 -0.106 0.04

Treg FOXP3 0.45 xkk 0.419 i
CCR8 0.505 *kk 0.481 i

STAT5B 0.516 *kk 0.533 i

TGFb (TGFB1) 0.367 *kk 0.357 i

T cell exhaustion PD-1 (PDCD1) 0.482 i 0.448 i
CTLA4 0.351 il 0.308 il

LAG3 0.393 il 0.364 il

TIM-3 (HAVCR2) 0.49 Rl 0.467 i

GZMB 0.269 xxk 0.227 il

*P <0.05, **P < 0.01, ***P < 0.001.

Cancer Cancer Cancer Cancer Cancer Cancer Cancer
VS, Vs, VS, VS, VS, VS, VS,
Normal Normal Normal Normal Normal Normal Normal

Analysis Type by Cancer
STAT1 STAT2 STAT3 STAT4 STAT5A| |STAT5B STAT6

Bladder Cancer

Brain and CNS Cancer
Breast Cancer
Cervical Cancer
Colorectal Cancer

Esophageal Cancer

o

Gastric Cancer

Head and Neck Cancer

Kidney Cancer

Leukemia
Liver Cancer

Lung Cancer

Lymphoma
Melanoma
Myeloma

Other Cancer
Ovarian Cancer

Pancreatic Cancer

Prostate Cancer

Sarcoma

Significant Unique Analyses

Total Unique Analyses 426 445 415 462 448

Figure 1. STAT family expression in STAD at mRNA level (ONCOMINE). The number in the Figure was the numbers of
datasets with statistically significant (P < 0.01) mRNA over-expression (red) or down-expression (blue) of STAT family,
which was obtain with the P-value of 0.05 and fold change of 2.

revealed an upregulation of STAT1 in gastric [22]. Three data sets indicated that STAT3 was
intestinal type adenocarcinoma (fold change upregulated in STAD [23]. Data by Mariarosaria
=2.703, P=6.96E-15) and gastric mixed adeno- et al. showed that STAT5A (FC=2.563) and
carcinoma (fold change =2.449, P=1.34E-04) STAT5B (FC=2.895) were upregulated in STAD

4981 Am J Transl Res 2020;12(9):4977-4997



STAT family as biomarkers in stomach adenocarcinoma

(P=4.53E-04 and P=5.59E-04, respectively).
We also determined the expression level of the
STAT family in STAD using the TCGA database.
When compared with gastric tissue, the expres-
sion of STAT1, STAT2, STAT3, STAT4, STATHA,
and STAT6 was significantly elevated in STAD
tissue (Figure 2A, all P < 0.01). Expression of
the STAT family in STAD at the protein level was
also determined using The Human Protein
Atlas, which demonstrated that high protein
expression of STAT1, STAT4, STAT5A, and STAT6
was observed in cancer tissues (Figure 2B).

The prognostic value of the STAT family in
STAD

The prognostic value the STAT family in STAD
was evaluated using KM plotter and the results
are presented in Figure 3. The mRNA level of
STAT1 was significantly associated with a bet-
ter OS (P=5e-05), PF (P=0.00091), and PPS
(P=4.9e-06) (Figure 3A). As shown in Figure
3B-D, increased mRNA levels of STAT2, STAT3,
and STAT4 had little influence on the progno-
sis of STAD patients (0S, PF, and PPS). STAD
patients with a high STAT5A level experienced
a poor 0OS (P=0.0094) and PPS (P=0.00016)
(Figure 3E). Similarly, STAD patients with a
high STAT5B level experienced a poor OS (P=
6.8e-07), PF (P=4.4e-06), and PPS (P=4.2e-
14) compared with patients with a low STAT5B
level (Figure 3F). For the prognostic value of
STAT6 in STAD, we observed a poor OS (P=
0.0042) and PPS (P=0.0063) in patients. Th-
erefore, STAT1/5A/5B/6 may act as potential
prognostic biomarkers in STAD (Figure 3G).

The diagnostic value of the STAT family in
STAD

The above-mentioned results revealed that
STAT1/5A/6 was elevated in STAD (at both the
MmRNA and protein level) and was associated
with a patients’ prognosis. Thus, we determin-
ed the level of STAT1/5A/6 in STAD by perform-
ing sub-group analysis to evaluate their diag-
nostic value. We observed that the mRNA level
of STAT1 and STAT5A was upregulated in STAD
by sub-group analyses based on patients’ race,
gender, and age, and H. pylori infection status,
histological subtypes, tumor grade, individual
cancer stages, and nodal metastasis status
(Figure 4A, 4B). Therefore, STAT1/5A/6 may
play a significant role in STAD aggressiveness.
However, although some of the results were
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significant, the STAT6 results were non-ideal in
sub-group analyses (Figure 4C). Thus, STAT1
and STAT5A may act as potential diagnostic
markers in STAD.

Genetic alteration, pathway and drug sensitiv-
ity analysis of STAT family in STAD

Because of the importance of the STAT family
in STAD, genetic alteration, pathway, and drug
sensitivity analysis of the STAT family were per-
formed. As shown in Figure 5A, genetic altera-
tion of the STAT family involved single nucleo-
tide polymorphism (SNP), insertion, and dele-
tion. The altered form and frequency are shown
in Figure 5B. Among all members of the STAT
family, STAT5B (33%), STAT1 (27%), and STAT5A
(18%) were the top three most frequently
mutated genes (Figure 5B). The most common
genetic alterations were missense mutation
(Figure 5B). In common cancer related path-
ways (TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT,
hormone ER, hormone AR, EMT, DNA damage
response, cell cycle, apoptosis pathways) anal-
ysis, we observed that the STAT family was
mainly associated with the activity of apopto-
sis, cell cycle, DNA damage response, EMT,
hormone ER, and RAS/MAPK pathways (Sup-
plementary Figure 1). We next evaluated the
role of the STAT family level in drug sensitivity.
As shown in Figure 6, a low STAT5B level was
resistant to 56 drugs or small molecules, wh-
ereas a low STATHA level was resistant to 42
drugs or small molecules (Figure 6). The re-
sults may suggest that STAT5A is a potential
biomarker for drug screening.

Enrichment analysis of STAT5A and correlated
genes in STAD

The above-mentioned results revealed that
STAT5A may be of significance in STAD and may
serve as a biomarker in the diagnosis, progno-
sis, target therapy, and drug screening. Thus,
we selected STATS5A for further analysis. The
co-expression genes correlation analysis in
Figure 7A revealed that 5786 genes positively
correlated with STAT5A, and 4934 genes nega-
tively correlated with STAT5A in STAD. Figure 7B
and 7C show the top fifty genes that are most
significantly associated with STAT5A in STAD,
respectively. As shown in Supplementary Figure
2, IL10RA (cor=0.618, P=3.98E-45), DOCK2
(cor=0.610, P=9.84E-44), and SNX20 (cor=
0.609, P=1.49E-43) were most positively asso-
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Figure 2. The expression of STAT
family in STAD. A. The expres-
sion of STAT1, STAT2, STAT3,
STAT4, STAT5A and STAT6 were
significant elevated in STAD tis-
sues at mMRNA level (UALCAN). B.
High protein expression of STAT1,
STAT4, STAT5A and STAT6 were
obtained in tumor tissues (The
Human Protein Atlas). *P < 0.05,
**P <0.01, ***P < 0.001. T, tu-
mor tissues; N, normal tissues.
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Figure 3. The prognostic value of STAT family in STAD (KM plotter). A. STAD pa-
tients with high STAT1 mRNA level had a better OS, PF and PPS. B, C. The mRNA
levels of STAT2 and STAT3 had no effect on STAD patients’ prognosis (0S, PF,
and PPS). D. STAD patients with high STATL mRNA level had a worse PPS. E.
STAD patients with high STAT5A level would experience a poor OS and PPS. F.
STAD patients with high STAT5B level would experience a poor 0OS, PF, and PPS.
G. STAD patients with high STAT6 level had a poor OS and PPS. All the analyses
were performed with Kaplan-Meier analysis. HR, Hazard Ratio; OS, overall sur-
vival; PPS, post progression survival; FP, first progression.

Am J Transl Res 2020;12(9):4977-4997



A Expression of STAT1 in STAD based on patient's race

STAT family as biomarkers in stomach adenocarcinoma

Expression of STAT1 in STAD based on patient's gender

Expression of STAT1 in STAD based on patient's age

Expression of STAT1 in STAD based on H.pylori infection

80051 *kk 007 0] status
500
400 400 *k%k bl T *kk
_ i Tk A, 00
5 20 § 4ol §
= H . { § *k%
£ £ E o £ 300 -
= : M 2
§ ™ g ™ : 2 |
i - i
2 H H H
}or }or o O ==
n . T s
0 0+ o - o
-100 -100 100 -100
Normal Caucasian Atican-american Asian Notmat Mate Femate Normal 2-40Ys  41-60Ys  61-80Yis  B1-100Vs Noumal With H g Vithout W gylont Not avalable
(0=38) (0e260) n=12) (08D (=38) (ae269) (w137 (ne38) ey (ne128) (w253 (e25) (ae34) Infection infecton (e153)
TCGA samples TCGA samples TCGA samples (a=20) Laicd
TCGA samples
Expression of STAT1 in STAD based on tumor grade Expression of STAT1 in STAD based on individual cancer Expression of STAT1 in STAD based on nodal metastasis
6y status
i $ i ¢ 500 St 500 )
Expression of STAT1 in STAD based on histological subtypes i Ak S %
50 xR 0 b 400 T *i“_* *x% ]
| |
w0 ik 5 e 5 5 | | E
H H H 2 300 £ 300 i
£ s H 5 300+ £ €
H i . & g 200 . 0.
5 i 2 2 20 5 00
g 200 T okwew § 201 '§' H -
= 2 H
g 100 * £ 100 -{ § 100 £ w0 — : :
- |
& == i T - L - 4
o4 = 0 0 o]
-100 -100 -100 ~100
> & N Normal Grade 1 Grade 2 Grade 3 Normal Stagel Stagez Stages Staged Normal "o N N2 N3
& S S8 (n=34) (n=12) (a=148) (n=246) (n=34) (n=18) (n=123) (1=169) nedl) (ne34) (n=123) (a=112) (0=79) (n=82)
« ¢ S TCGA samples TCGA samples TCGA samplos
TCGA samples
Expression of STATSA in STAD based on patient's race Expression of STATSA in STAD based on patient's gender Expression of STATSA in STAD based on patient's age " : 3a "
B P! P P! P 9 P! P 9 Expression of STATSA in STAD based on H.pylori infection
80 0] ke 601 status
*kk
pak fudadd - | wedek 501
40 T 40 L2 —_
{ 40
H 40
§ - § - s § g
H H i £ o H 30
] $ - $ i T €
5 20 5 20 H 5 { H
a -3 H & o 20+
; i i | . i
104 10
g g E ol , § o] :
i i -4 " H
0 0 0 == 0
-10 -10 -10 -10
Normal Cavcasian Afrcan-american Asian Normal e Femate Normal 2-40Y  41-60¥is  61-80Ys  81-100¥rs Normal With M pylort infection  Without W glont Not avalabie
(ne30) (01=260) (oe12) (ne87) (=30) (a=268) (=147 (38) (aed) (ne128) (ae253) (0=259) e38) (e20) infect (ne153)
TCGA samples TCGA samples. TCGA samples. {as152)
TCGA samples

4986

Am J Transl Res 2020;12(9):4977-4997



Transcript per million

C

Transcript per million

Transcript por million

Figure 4. The expression of STAT1, STAT5A, and STADG in STAD in sub-group analyses (UALCAN). A, B. STAT1 and STAT5A were upregulated in STAD tissues in sub-

200

STAT family as biomarkers in stomach adenocarcinoma

Expression of STATSA in STAD based on tumor grade Expression of STATSA in STAD based on individual cancer Expression of STATSA in STAD based on nodal metastasis
60 stages status
60 509
Expression of STATSA in STAD based on histological *kk
4 L *kk b
S0 T
subtypes - 50 s T od T k% T rkk
** i T i ] | T
T § 4 i 0 *kk i i H | | | |
H i ‘B - i i & 30 | | i !
i %% H = H i H ] | i
i - € %04 i z i i E | | i
I g : g : g T ‘—I
H i g T =T = - H - 8 | [_
N, ||pgg o Eu g BEN im =
S H 2
& i B T ollm . e L e
H i i i = H H | i
1 { 4 i — { H H H H H H i £ 4 4
i i el b - ai <t o H 4
k3 od o+ i o
-10 -10 10
> $ 03 o S o Py Normal 2 rade 2 rade Normal St Stage2 Stage3 Staged Normal NO N n N3
& D o D S e o ey ety ot bt prtrs e i) P4 pro ety 2y i 9 (w8
& Fe FF S P S SN &Y TCGA samples TCGA samples TCGA samples.
s ¢ & & &
o « &
TCGA samples.

Expression of STAT6 in STAD based on patient's race

Expression of STAT6 in STAD based on patient's gender

Expression of STAT6 in STAD based on patient's age

Expression of STAT6 in STAD based on H.pylori infection

250 200
status
*%
e 2009 *
* i %%
200 ﬁ - i - =
] 1501 ] i H
€ 1504 i € i - { i i = - i
H o i i 20l m —_ [—‘_] £
$ o] : ; T i
% H H i H L H H Lo i H 1 H g 1 . H 1
“ ] i b s i i i 7 ] i i F 50 | = H
| { — H H i { i £ —_ 1 i i
o o o
Normal Cavcasian African-ametican Asian Normat e Female Normal 240w A1-6ovs  G1-80vs  81-100vis Normal Wit o Vithoat Woion ot matavie
(ae38) (8e260) ne12) @@8n iy (a=26% e e38) (amt) (o128 w25y (2-29) (038) nfection intection (ae153)
TCGA samples TCGA samples TCGA samples 1=20), {ae137)
TCGA samples
Expression of STAT6 in STAD based on tumor grade Expression of STAT6 in STAD based on individual cancer Expression of STAT6 in STAD based on nodal metastasis
250 1 stages status
. . . 2 1 2009
Expression of STAT6 in STAD based on histological subtypes el *% *%
T T
200 %% | |
200 T i | *
g * i 150 -T i | Jal
H £ == i é ! i I
T 150 - - { - s :
: H T i i i i 2
a H H H - H s | 1
i EF R R R E B -
2 = 3 - i
H i - , . £ ! ‘ ’
v H { i 1 H s0] | | |
L so4 £ | i | | s
| - A A -
o o 0 ° ¢ N 1 NO N1 N2 N3
. N N S Normal Grade 1 Grade 2 Grade 3 ormal Staget Stuact Staged Staget orma
B e &S B e o O e38) o12) (14) (ae246) (30 ety e (o6 sy (38 o123 @e12) @79 =82
¥ FE 5 & ‘y«" ¢S &N TCGA samples TCGA samples TCGA samples
& & &
TCGA samples
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Figure 5. The single nucleotide variation (SNV) analysis of STAT family in STAD (GSCALite). A. Summary plot displays
SNV frequency and variant types of STAT family in STAD, and genetic alteration of STAT family constitutes SNP, inser-
tion and deletion. B. Waterfall plot shows the mutation distribution of STAT family in STAD and STAT5B (33%), STAT1
(27%), and STATHA (18%) were the top three frequently mutated genes among all the numbers of STAT family.

ciated with STAT5A in STAD. This was followed
by function analysis of STAT5A and associated
genes. Enrichment analysis by GO indicating
that the role of STAT5A in STAD was associated
with leukocyte activation and differentiation,
immune responses, cell adhesion and chemo-
taxis, extracellular matrix structural constitu-
ents, and cytokine binding (Figure 7D-F). More-
over, the functions of STAT5A in STAD were
mainly associated with chemokine signaling
pathway, cell adhesion molecules (CAMs), toxo-
plasmosis, and Th1/2/17 cell differentiation by
KEGG pathway analysis (Figure 7G and 7H).
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Kinase, miRNA and transcription factor targets
of STAT5A in STAD

For kinase targets of STAT5A in STAD, the
results suggested that kinases LCK, LYN, SYK,
JAK3, and HCK were the most significant tar-
gets (Table 2). Regarding miRNA targets in
Table 2, the most significant targets were
GTGCCAA (MIR-96), TGCACTT (MIR-519C, MIR-
519B, MIR-519A), TGCACTG (MIR-148A, MIR-
152, MIR-148B), GTGCCTT (MIR-506), and
TATTATA (MIR-374). The transcription factor-tar-
get network was mainly associated with V$IRF_

Am J Transl Res 2020;12(9):4977-4997
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relation represent the gene expression correlates with the drug. The positive correlation means that the gene high
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Q6, VENFKB_Q6_01, VSELF1_Q6, VSPEA3_Q6,
and V$PU1_Q6 (Table 2). We also constructed
PPl network using GeneMANIA to explore the
potential functions of the kinases LCK network,
mMiRNA-96 network, and V$IRF_Q6 network.
Genes of the LCK kinase network were mainly
responsible for T cell activation, receptor sig-
naling pathways, and immune responses
(Figure 8). Genes of the miR-96 network were
mainly responsible for immune responses and
system process regulation (Supplementary
Figure 3). Furthermore, genes of the V$IRF_Q6
network were mainly responsible for type |
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interferon, positive regulation of cytokine pro-
duction, and antigen processing and presenta-

tion (Supplementary Figure 4).
Immune infiltration of STAT5A in STAD

The above-mentioned results revealed that
STATH5A plays an important role in immune-
related functions and pathways. We next
explored the role of STAT5A in the immune infil-
tration in STAD using the TIMER database. As
expected, a strong association was found
between the STAT5A level and the abundance

Am J Transl Res 2020;12(9):4977-4997
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Figure 7. The enrichment analysis of STAT5A in STAD (LinkedOmics). A. A Pearson test was used to analyze correlations between STAT5A and genes differentially
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Figure 8. Protein-protein interaction (PPI) network of LCK kinase-target networks (GeneMANIA). PPl network and
functional analysis indicating the gene set that was enriched in the target networks of kinase LCK. Different colors
of the network edge indicate the bioinformatics methods applied: co-expression, website prediction, co-localization,
shared protein domains, physical interaction, pathway and genetic interactions. The different colors for the network
nodes indicate the biological functions of the set of enrichment genes.

of CD8+ T cells (cor=0.419, P=3.63e-17), CD4+ 0.436, P=1.21e-18), and dendritic cells (cor=
T cells (cor=0.35, P=5.41e-12), Macrophages 0.543, P=8.07e-30) (Figure 9). In immune bio-
(cor=0.354, P=2.39e-12), Neutrophils (cor= marker analysis, we revealed a strong correla-
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tion between STAT5A and immune biomarkers
in STAD (Table 3). Previous studies reported on
these biomarkers of immune cells [19-21].

For biomarkers of CD8+ T cells (CD8A and
CD8B), T cells (CD3D, CD3E, and CD2), B cells
(CD19 and CD79A), monocytes (CD86 and
CD115), and tumor associated macrophages
(TAM) (CCL2, CD68, and IL10), we revealed that
their expression positively correlated with
STAT5A expression in STAD. Expression of the
biomarkers of M1 macrophages (INOS and
IRF5) and M2 macrophages (CD163, VSIG4,
and MS4A4A) showed strong correlations with
the STAT5A level in STAD. Moreover, the level of
CD11b and CCR7 (neutrophils) presented posi-
tive correlations with the STAT5A level in STAD.
All markers of dendritic cells and most biomark-
ers of natural killer cells were significantly cor-
related with STAT5A expression. STAD patients
with a high STAT5A level also presented with
high levels of T-bet, STAT4, STAT4, IFN-y, TNF-c,
GATA3, STATG6, IL13, BCL6, and IL21. Moreover,
the level of immune biomarkers of T reg cells
(FOXP3, CCRS8, STAT5B) and T cell exhaustion
(PD-1, CTLA4, LAG3, TIM-3, GZMB) positively
associated with the STATHA level. Therefore,
STAT5A may serve as an immune checkpoint
inhibitor in the immunological therapy of STAD.

Discussion

The STAT gene family has been shown to regu-
late cytokine signaling, which affects basic cel-
lular mechanisms, including cell invasion, pro-
liferation, apoptosis, and cellular immunity [6,
24]. The JAK/STAT signaling pathway was found
to be associated with the genesis and progres-
sion of tumors, such as breast cancer, prostate
cancer, and lung cancer [25-27]. To the best of
our knowledge, the expression and the role of
the STAT family in STAD had not yet been eluci-
dated. Therefore, the current bioinformatics
analysis was performed to evaluate the level,
diagnostic and prognostic value, and functional
regulation network of the STAT family in primary
STAD.

Expression analysis showed that STAT1, STAT4,
STAT5A, and STAT6 were upregulated in prima-
ry STAD compared with normal tissues at both
the mRNA and protein level. Moreover, prog-
nostic value analysis revealed that STAT, STAT4,
STAT5A, and STAT6 may act as potential prog-
nostic biomarkers in STAD. Moreover, diagnos-
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tic value analysis demonstrated that STAT1 and
STAT5A may act as potential diagnostic bio-
markers in STAD. In previous studies, it was
suggested that some STAT family members
may serve as biomarkers for various types of
cancer. Data by Juliana et al. suggested that
STAT1 functioned as both a prognostic and pre-
dictive biomarker in ovarian cancer [28]. In
another study, it was indicated that STAT3,
STAT4, STATHA, STAT5B, and STAT6 functioned
as a potential favorable prognostic biomarker
in breast cancer [29].

We next performed genetic alteration, pathway,
and drug sensitivity analysis of the STAT family
in STAD. We found that STAT5B (33%), STAT1
(27%), and STATHA (18%) were the top three fre-
quently mutated genes, and the most common
genetic alteration type was a missense muta-
tion. These genetic alterations may associate
with the pathogenesis and progress of STAD
and affect the prognosis of STAD patients.
These findings were consistent with the above-
mentioned results, which suggested STAT1 and
STAT5A may serve as potential diagnostic and
prognostic markers in STAD. Cancer hallmarks
demonstrated the involvement of STAT family in
the activity of apoptosis, cell cycle, DNA dam-
age response, EMT, hormone ER, and RAS/
MAPK pathways. In previous studies, the asso-
ciations between the STAT family and these
pathways have also been reported. Interference
of STAT5B expression could enhance the che-
mosensitivity of tumor cells to gefitinib by cell
apoptosis in gastric cancer [30]. In another
study, it was revealed that the JAK-STAT3 sig-
naling pathway regulated by miR-340 affected
cell proliferation, arrest the cell cycle, and
apoptosis in gastric cancer [31]. Thus, dysregu-
lation of the STAT family may affect the patho-
genesis and progress of STAD via these path-
ways. Drug sensitivity analysis revealed that
low expression of STAT5A and STAT5B were
resistant to most drugs or small molecules of
GDSC. Combined, these results indicated that
STAT5A was a potential biomarker for the diag-
nosis, prognosis, and therapy target in STAD.
Therefore, STAT5A was selected for further
studies.

For identifying the role of STATH5A in STAD,
enrichment analysis was performed. The data
suggested that the functions and pathways of
STAT5A in STAD were mainly associated with
leukocyte activation and differentiation, im-
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mune responses, cell adhesion and chemotax-
is, cytokine binding, chemokine signaling path-
ways, CAMs. Interestingly, these functions and
pathways were involved in tumor progression
and immune responses. In breast cancer, che-
mokine signaling promoted tumor cell survival
and invasion in early-stage breast cancer [32].
CAMs acted as signaling receptors and trans-
duced signals initiated by cellular interactions,
which regulated many diverse processes,
including cell division, migration, and differen-
tiation [33]. These results further confirmed
the significant role of STAT5A in STAD.

The above-mentioned results suggested that
STATH5A was a potential biomarker for the diag-
nosis, prognosis, and therapy target in STAD,
and that the functions of STAT5A were involved
in tumor progress and immune responses. We
further explored the correlation of STAT5A and
immune cells and immune biomarkers. A strong
association was found between the STAT5A
level and the abundance of CD8+ T cells, CD4+
T cells, macrophages, neutrophils, and dendrit-
ic cells. We also revealed that the STAT5A level
significantly associated with most immune bio-
markers. In fact, these immune cells and bio-
markers acted as immune checkpoint inhibi-
tors and biomarkers, or were involved in the
tumorigenesis and progression of various types
of cancer, including STAD [34]. Data by Li et al.
[35] showed that CD4+/CD8+ T cells func-
tioned as prognostic biomarkers in gastric can-
cer, and affected tumor progression and
patients’ survival. As immune checkpoints for
gastric cancer, CTLA-4 and PD-1 play a signifi-
cant role in cancer metastasis [36, 37].

Our study has several limitations. Most analy-
ses were performed at the mRNA level, and the
analysis performed at the protein level may be
preferred. Furthermore, validating our results
via another independent cohort and basic
research is warranted.

In conclusion, we aimed to identify the expres-
sion and diagnostic and prognostic biomarkers
among the STAT family in STAD using data min-
ing. Furthermore, genetic alteration, pathway
and drug sensitivity analysis of the STAT family
in STAD were performed, which may be of great
clinical importance. STAT5A was selected for
further study, and we explored the functions,
transcription factor targets, kinase targets, and
immune cell infiltration of STAT5A, which dem-
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onstrated that STAT5A serves as an immune
checkpoint inhibitor and biomarker for the diag-
nosis and prognosis in STAD.
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Supplementary Figure 1. The role of STAT5A in the famous cancer related pathways in STAD (GSCALite). STAT fam-
ily were mainly associated with the activity of apoptosis, cell cycle, DNA damage response, EMT, Hormone ER, and
RAS/MAPK pathways.
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Supplementary Figure 2. The correlation between the top 3 associated genes and STAT5A in STAD (LinkedOmics).
The scatter plot shows Pearson correlation of STAT5A expression with expression of IL1ORA (A), DOCK2 (B), and
SNX20 (C).
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Supplementary Figure 3. PPl network of miR-96-target networks (GeneMANIA). PPI network and functional analysis
indicating the gene set that was enriched in the target networks of miR-96. Different colors of the network edge
indicate the bioinformatics methods applied: co-expression, website prediction, co-localization, shared protein do-
mains, physical interaction, pathway and genetic interactions. The different colors for the network nodes indicate
the biological functions of the set of enrichment genes.



STAT family as biomarkers in stomach adenocarcinoma

ZBTB32

CXCL10

TAPBPL

w @ @ @
ITGB7~ SLC15A3

@ @ .
UBE2L6 | RSAD2
@ WDR82. “TIMD4 R DDX60  ~/BST2

ESR' ““ETV6~ LC40A1 FC ~1LMO2” CYBB DCLK1~ ‘RORB

ZEB2 LY86

@ @ BBX [TLR7” “DAPP1
@ @ PCDHGC ADAM12 w NPR3~ ~USP44

Networks Functions
Co-expression B response to type I interferon
Co-localization W cellular response to type I interferon
Physical Interactions type I interferon signaling pathway
Predicted B response to interferon-gamma
Pathway I positive regulation of cytokine production
Genetic Interactions W antigen processing and presentation

Shared protein domains

Supplementary Figure 4. PPl network of transcription factor IRF-target networks (GeneMANIA). PPl network and
functional analysis indicating the gene set that was enriched in the target networks of transcription factor IRF. Dif-
ferent colors of the network edge indicate the bioinformatics methods applied: co-expression, website prediction,
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for the network nodes indicate the biological functions of the set of enrichment genes.
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