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Abstract: The 2019 novel coronavirus (2019-nCoV) is still spreading rapidly around the world, and one cause of 
lethality for patients infected with 2019-nCoV is acute respiratory distress syndrome (ARDS). ARDS is a severe 
syndrome of acute lung injury (ALI) that is predominantly triggered by inflammation and results in a sudden loss 
of, or damage to, kidney function. Emerging studies reveal that multiple transcription factor-associated signaling 
pathways are activated in the pathology of ALI/ARDS. Of these pathways, the activation of NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1), IRFs (interferon regulatory factors), STATs 
(signal transducer and activator of transcription), Wnt/β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer-binding 
factor), and CtBP2 (C-Terminal binding protein 2)-associated transcriptional complex contributes to ALI/ARDS pa-
thology through diverse mechanisms, such as inducing proinflammatory cytokine levels and mediating macrophage 
polarization. In this review, we present an updated summary of the mechanisms underlying these signaling activa-
tions and regulations, as well as their contribution to the pathogenesis of ALI/ARDS. We aim to develop a better 
understanding of how ALI/ARDS occurs and improve ALI/ARDS therapy.
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Introduction

The lungs are the major pathological target of 
many bacteria and viruses (e.g., SARS coro- 
navirus [SARS-CoV] and the 2019 novel coro-
navirus [2019-nCoV]) [1, 2]. After infection, 
such bacteria and viruses often cause respira-
tory syndrome due to acute lung injury (ALI) or 
its severe form-acute respiratory distress syn-
drome (ARDS) [1, 2]. ALI and ARDS are disor-
ders characterized by rapid dysfunction and 
damage of the lung within a short period (sev-
eral hours to days) [3, 4]. In the past several 
decades, scientists have made great efforts to 
investigate the pathological mechanisms of 
ALI/ARDS [5-9]. Experimental and clinical evi-
dence has revealed that inflammation is an 
important trigger in the occurrence of ALI/ARDS 
[5-9]. 

An inflammation response is a process in which 
innate immune cells respond to external infec-

tion or tissue injury [10, 11]. After infection or 
lung injury, multiple cell types-including resi-
dent neutrophils, macrophages, and dendritic 
cells-as well as circulating monocytes can initi-
ate an immune response [5-11]. The local lung 
injury, or a systemic injury in the extrapulmo-
nary site, can affect the functions of the vascu-
lar endothelium (VE), bronchial epithelium (BE), 
and alveolar macrophages (AMs), resulting in 
an accumulation of edema fluid in the alveoli 
that can, in turn, cause hypoxemia, a gas barri-
er disorder [12, 13]. Of these cell types, resi-
dent AMs are dominant in mediating inflamma-
tion response and the resolution of ALI/ARDS 
[12, 13]. Based on the polarization of macro-
phages, they can be classified into two major 
types: M1 (the classically activated phenotype) 
and M2 (an alternatively activated phenotype) 
[14]. When ALI/ARDS occurs, resident AMs are 
activated, becoming M1-type to initiate a broad 
range of signaling pathways and perpetuate an 
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inflammation response that results in the up- 
regulation of proinflammatory cytokines such 
as interleukin 1 beta (IL-1β), IL-6, IL-8, and 
tumor necrosis factor-alpha (TNF-α) [15-17]. In 
late-phase ALI/ARDS, the activated AMs shift 
to M2-type macrophages, which can eliminate 
apoptotic cells and contribute to lung fibrosis 
[15-17].

Transcription factors’ contribution to ALI/ARDS 
pathogenesis

Immune cells such as macrophages and hel- 
per T cells secrete proinflammatory cytokines, 
which play a dominant role in the pathogenesis 
of inflammatory diseases including ALI/ARDS 
[18, 19]. Proinflammatory cytokines mainly in- 
clude IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α, inter-
feron gamma (IFN-γ), and granulocyte-macro-
phage colony-stimulating factor (GMCSF) [20]. 
Their expression is mainly controlled by tran-
scription factors such as NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B ce- 
lls), AP-1 (activator protein 1), IRFs (interferon 
regulatory factors), and TCF/LEF (T-cell factor/
lymphoid enhancer-binding factor) [21]. Mech- 
anically, PAMPs (pathogen-associated molecu-
lar patterns) (e.g., lipopolysaccharides [LPS], 
endotoxins), and DAMPs (damage-associated 
molecular patterns) (e.g., heat-shock proteins 
and HMGB1 [high-mobility group box 1]) are 
recognized by PRRs (pattern recognition recep-
tors) (e.g., TLRs [Toll-like receptors], mannose 
receptors, and nucleotide-binding oligomeriza-
tion domain-like receptors) [22]. PRRs further 
trigger intracellular signaling cascades and, ul- 
timately, activate transcription factors in order 
to translocate into the nucleus and induce the 
expression of a variety of proinflammatory cy- 
tokines [22]. The extracellular secretion of ma- 
tured proinflammatory cytokines causes infla- 
mmation, eventually leading to the pathogene-
sis inflammatory diseases [21, 22]. Similarly, 
the published results suggest that the induc-
tion of proinflammatory cytokines in ALI/ARDS 
pathogenesis is predominantly controlled by 
transcription factors. In addition to the direct 
activation of proinflammatory cytokines, tran-
scription factors also contribute to regulate the 
expression of some important genes and miR-
NAs in ALI/ARDS pathogenesis. We summarize 
their contributions in the following sections of 
this review.

NF-κB signaling and ALI/ARDS

NF-κB family transcription factors include p65 
(also known as “RelA”), RelB, c-Rel, p50 (also 
known as “NF-κB1”), and p52 (also known as 
“NF-κB2”), which can assemble as different 
heterodimers and homodimers and bind to a 
specific DNA element (5’-GGGRNYYYCC-3’; R 
represents a purine, Y represents a pyrimidine, 
and N represents any nucleotide) of their tar- 
get genes [23]. NF-κB activation is mainly con-
trolled by two pathways: canonical and non-
canonical [23-25]. In the canonical pathway, 
the receptors (e.g., TLR4, IL1 receptor [IL-1R] 
and TNF receptor [TNFR]) on the cellular mem-
brane sense different stimuli and recruit the 
intracellular adaptor proteins TIRAP (TIR do- 
main-containing adaptor protein) and TRAM 
(translocation-associated membrane protein) 
[23-25]. They can further activate a cascade  
to, in turn, activate the IKK (IκB kinase) com-
plex. The activation of IKKs phosphorylates IκB 
results in the degradation of phosphorylated-
IκB by proteases [23-25]. The degraded IκB 
eliminates its inhibition of NF-κB and causes 
the translocation of NF-κB (especially the p50/
p65 heterodimer) from the cytoplasm to the 
nucleus, where it induces the expression of 
genes including proinflammatory cytokines [23-
25]. In the non-canonical pathway, receptors 
such as BAFFR (B-cell activating factor), LTβR 
(lymphotoxin-β receptor), and RANK (receptor 
activator for nuclear factor-kappa B) initiate sig-
naling cascades and cause the activation of 
NIK (NF-κB-inducing kinase) [23-25]. The acti-
vated NIK promotes the phosphorylation of 
IKKα, inducing the processing of p100 into  
the active RelB-p52 isoform, which translo-
cates into the nucleus to regulate gene expr- 
ession [23-25].

In ARDS subjects, the activation of TLR4-de- 
pendent canonical signaling has been observ- 
ed to contribute to increased levels of proin-
flammatory cytokines such as IL-1β, TNF-α, 
IL-6, IL-8, and IL-18. Elevated levels of these 
cytokines have been observed in both bron-
choalveolar lavage fluid and circulating plas- 
ma [26-28]. Mechanically, TLR4 activation re- 
cruits MyD88 (myeloid differentiation primary 
response 88) and TIRAP, IRAKs (IL-1 receptor-
associated kinases), and TRAF6 (TNF receptor-
associated factor 6) to activate IKKs, causing 
IκB to dissociate from the IκB-NF-κB complex 



Transcription factors’ contribution to ALI/ARDS

5610 Am J Transl Res 2020;12(9):5608-5618

[26-28]. The released NF-κB subunits-includ- 
ing p50, p65, and c-Rel-translocate from the 
cytoplasm to the nucleus in order to activate 
the expression of proinflammatory cytokines 
(Figure 1) [26-28]. Interestingly, several studi- 
es have shown that the p50/p50 homodimer is 
dominant in the later phase of inflammation, 
and that it plays an inhibitory role in regulating 
proinflammatory cytokines but enhances the 
expression of anti-inflammatory cytokines such 
as IL-10 [29-31]. In an LPS-induced ARDS rat 
model, Resolvin D1 (an endogenous lipid medi-
ator) can inhibit inflammation by activating 
p50/p50-mediated COX-2 (Cyclooxygenase-2) 
and PGD2 (Prostaglandin D2) expression [29]. 
In LPS-treated cells and in an LPS-injected 
ARDS mouse model, Pooladanda et al. also 
found that TLR4 activation can promote the 
cytoplasmic-to-nuclear translocation of NF-κB 
and HDAC3 (histone deacetylase 3), which 
coordinate to increase proinflammatory cyto-
kines (including IL-1β, IL-6, IL-12, TNF-α, and 
TGF-β [transforming growth factor-beta]) as 
well as chemokines (including MIP-1α [macro-
phage inflammatory protein 1-alpha] and MIP-
1β) but decrease levels of anti-inflammatory 
cytokines (including IL-4, IL-10, and IL-13) [32]. 
Nimbolide, a limonoid tetranortriterpenoid, ex- 
hibits HDAC-inhibitory activity by repressing the 
nuclear translocation of HDAC3 and NF-κB, 
abrogating LPS-induced proinflammatory cyto-

c-Fos, Fra1, and Fra2) [35, 36]. These proteins 
bind to their target genes through two con- 
sensus nucleotide sequences, comprising the 
cAMP-response element (CRE, 5’-TGACGTCA-3’) 
and the tetradecanoylphorbol acetate (TPA)-re- 
sponse element (TRE, 5’-TGAG/CTCA-3’) [35, 
36]. Similar to the activation of NF-κB signal- 
ing, AP1 is also activated by stress inducers, 
pathogens (bacteria and virus), and inflamma-
tory cytokines [35, 36]. Upon different stimula-
tions, TLR4 also triggers and recruits intracel-
lular adaptor proteins to initiate a signaling cas-
cade in which the TLR4/TRAF6 axis signaling 
molecules are the same as in NF-κB signaling 
[35-38]. TRAF6 activates TAK1 (transforming 
growth factor-activated kinase 1), which fur- 
ther triggers a MAPK (mitogen-activated pro-
tein kinase) cascade, including ERK (extracel-
lular signal-regulated kinases), JNK (c-Jun N- 
terminal kinases), and p38, causing the activa-
tion and nuclear translocation of AP1 [35-38]. 
The activated AP1 binds to the promoters of 
proinflammatory cytokines to increase their 
expression [35-38]. The overlapped upstream 
signaling molecules of AP1 and NF-κB suggest 
that these two pathways can cooperate to regu-
late the expression of some proinflammatory 
cytokines [35-38]. 

AP1 activation is also involved in ALI/ARDS 
pathogenesis through transactivating proin-
flammatory cytokines and other genes that 

Figure 1. TLR4/NF-κB signaling’s contribution to ALI/ARDS pathogenesis. 
The stimulation of pathologic stimuli such as LPS activates canonical TLR4/
NF-κB signaling. TLR4 recruits MyD88, TIRAP, IRAK, and TRAF6 to initiate a 
kinase cascade, including IKKs and IκB, causing the release of NF-κB and 
its subsequent translocation to the nucleus, where it induces the expression 
of genes including proinflammatory cytokines such as IL-1B, IL-6, IL-8, IL-12, 
TNFA, and MIP-1α. The elevated proinflammatory cytokines cause inflamma-
tion, eventually leading to ALI/ARDS pathology. 

kines and alleviating lung in- 
jury [32]. In addition, the NL- 
RP3 (NLR family, pyrin domain 
containing 3) inflammasome 
has also been reported to pl- 
ay a pivotal role in causing 
sterile inflammation in ALI 
[33, 24]. The NLRP3 inflam-
masome comprises three co- 
mponents-NLRP3, ASC (apo- 
ptosis-associated speck-like 
protein containing a CARD), 
and procaspase-1, which can 
cleave pro-IL-1β and pro-IL-18 
to generate the matured IL-1β 
and IL-18 [33, 34].

AP1-associated transcription-
al regulation in ALI/ARDS

The AP1 transcription factor 
family proteins comprise se- 
ven members: three Jun pro-
teins (JunB, c-Jun, and JunD) 
and four Fos proteins (FosB, 
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contribute to lung injury (Figure 2). In nuclear 
extracts from AMs and whole-lung tissues  
from ALI patients, AP1 subunits-including JunB, 
c-Jun, JunD, and c-FOS-are significantly abun-
dant [39]. Depletion of the lung macrophage  
or treatment with a TNF-α inhibitor sharply de- 
creases AP1 activation [39]. In a study evaluat-
ing AP1’s role in LPS-induced ALI, Vaz et al. 
found that Fra-1 knockout (Fra-1-/-) mice were 
much more tolerant of LPS administration than 
wild-type mice [40]. Fra-1-/- mice experienced 
decreased mortality, lung injury, and proin- 
flammatory cytokine levels [40]. Heme oxygen-
ase 1 (HO-1), a cytoprotective enzyme requir- 
ed for the lungs’ defense against oxidative and 
inflammatory responses, is significantly upreg-
ulated in ARDS patients and rodent animal 
models [41]. The promoter of the HO-1 gene 
contains an AP-1 consensus motif, which is 
required for HO-1 activation in the treatment  
of LPS (Figure 2) [41]. Many patients with ALI/
ARDS-and especially patients with COVID-2019 
(coronavirus disease 2019)-have significant 
pulmonary fibrosis [2]. A group of genes known 
as “MMPs” (matrix metalloproteases) have be- 
en shown to contribute to the pathology of pul-
monary fibrosis [42]. AP1 plays a critical role in 
regulating MMPs through directly binding to 
their promoters [42]. Fra-1-/- mice are much 
more susceptible to bleomycin-induced pulmo-
nary fibrosis than wild-type mice, and AP1 is 

the M1 macrophage, different stimuli and sig-
nals from the microenvironment-such as IFN-
LPS, and inflammatory cytokines-can activate 
STAT1, IRF5, and NF-κB as well as AP1, respec-
tively, which induces proinflammatory cytokines 
[44, 45]. Specifically, STAT1 activation induces 
the expression of IL-12, NOS2 (nitric oxide syn-
thase 2), and MHC II (major histocompatibility 
complex II) [44-46]. IRF5 activation upregulates 
TNF-α, IL-12, and IL-23 while the activation of 
both NF-κB and AP1 causes an increase in TNF-
α, IL-6, and NOS-2 [44-46]. IL-4 and IL-13–
induced M2 macrophage polarization activates 
STAT6 and IRF4, leading to the induction of 
Arg1 (Arginase 1), Ym1 (also known as “CHIA”, 
chitinase acidic), and IL-10 [44-46].

Emerging evidence has suggested that the 
polarization of macrophages, including resident 
AMs and circulating macrophages, plays a cri- 
tical role in ALI/ARDS pathogenesis [47]. Si- 
milarly, IRFs and STATs also contribute to the 
polarization of AMs in ALI/ARDS [47]. AMs’ po- 
larization is activated mainly via JAK (Janus ki- 
nase)/STAT1 signaling [47]. Once extracellular 
cytokines bind to their receptors (e.g., IFN-γ 
binds to its receptor, INFGR), they trigger the 
activation of JAK1 and JAK2, causing the phos-
phorylation of STAT1 [47, 48]. The activated 
STAT1 translocates to the nucleus, where it 
regulates the expression of SOCS (suppressor 

Figure 2. JNK/AP1 signaling’s contribution to ALI/ARDS pathogenesis. Upon 
LPS stimulation, TLR4 recruits MyD88, TIRAP, IRAK, and TRAF6 to initiate a 
kinase cascade including TAK1, MKK, JNK (or p38) to activate AP1. The acti-
vated AP1 subsequently translocates into the nucleus, where it induces the 
expression of genes including proinflammatory cytokines, HO-1, and MMPs. 
The dysregulation of these genes results in inflammation, oxidative stress, 
and pulmonary fibrosis, eventually leading to ALI/ARDS pathology.

believed to function in pulmo-
nary fibrosis through regulat-
ing MMPs (Figure 2) [43]. 

Interferon regulatory factors 
(IRFs) and signal transducer 
and activator of transcrip-
tion (STATs)-mediated mac-
rophage polarization in ALI/
ARDS

As we mentioned earlier, mac-
rophages can be polarized in- 
to M1 and M2 types, and the 
mechanisms of macrophage 
polarization have been well-
characterized in inflammatory 
diseases [15-17]. Several tr- 
anscription factors-such as 
IRFs, STATs (signal transducer 
and activator of transcription), 
NF-κB, and AP1-are involved  
in the regulation of macroph- 
age polarization [44, 45]. In 
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of cytokine signaling) genes (Figure 3) [49]. On 
the other hand, SOCSs also negatively me- 
diate JAK/STAT1 signaling [49]. The cytoplas-
mic SOCS1 and SOCS3 proteins bind to the 
phosphotyrosine residues of intracellular cyto-
kine receptors, blocking STAT1 from its dock- 
ing sites (Figure 3) [49]. SOCSs’ binding to the 
cytokine receptors inhibits JAKs’ kinase activi-
ties, preventing the phosphorylation of STAT1 
(Figure 3) [49]. As a result, SOCSs inhibit M1 
macrophage polarization [49]. In the absence 
of SOCS3, IRF5 expression is increased, and  
it enhances M1 polarization by directly regulat-
ing IL-12 and IL-23 expression (Figure 3) [50]. 
Circulating leukocytes and monocytes can be 
recruited to the inflammation sites where they 
shift into the M1 macrophage [50]. In the later 
stage of ALI/ARDS, the M1 phenotype shifts to 
the M2 phenotype when pathogenic factors are 
eliminated, and this process is controlled by 
IRF4 and STAT6 transcription factors, which 
induce the expression of anti-inflammatory cy- 
tokines [47, 48].

Wnt/β-catenin-TCF/LEF signaling and ALI/
ARDS

Wnt/β-catenin signaling is a conserved path-
way to function in a variety of biological pro-
cesses, such as embryonic development, axis 

cates into the nucleus, where it interacts with 
TCF/LEF (T cell factor/lymphoid enhancer fac-
tor) to initiate gene transcription [51, 52]. The 
Wnt/β-catenin signaling cross-talks with the 
NF-κB pathway in inflammation response regu-
lation [53, 54]. Current evidence has suggest-
ed that Wnt/β-catenin signaling plays a domi-
nant anti-inflammatory role by repressing NF-κB 
activity [53, 54]. For example, in primary hu- 
man MRC-5 lung fibroblast, β-catenin has been 
revealed to be able to affect RelA acetylation 
and, thus, repress the expression of NF-κB tar-
get genes such as IL-1B and IL-6 [55]. In bacte-
ria-colonized intestinal epithelial cells, overex-
pression of β-catenin causes a significant re- 
duction in NF-κB levels as well as the expres-
sion of its target genes, IL-6, IL-8, and TNFA 
[56]. 

The activation of Wnt/β-Catenin signaling and  
a variety of its target genes has been observed 
in different pulmonary fibrosis models. In an 
idiopathic pulmonary fibrosis (IPF) mouse mo- 
del and IPF patient, Wnt/β-Catenin signaling 
and its target gene, WISP1 (WNT-inducible sig-
naling protein 1), were activated [57]. Treatment 
with recombinant WISP1 in mouse alveolar epi-
thelial type II cells can increase cell prolife- 
ration and epithelial-mesenchymal transition 
(EMT) [57]. Villar et al. found that Wnt/β-Catenin 

Figure 3. STAT1/IRF5 signaling’s contribution to ALI/ARDS pathogenesis. 
The binding of IFN-γ to its receptor, INFGR, activates two kinases-JAK1 and 
JAK2-which phosphorylate STAT1. The phosphorylated STAT1 interacts with 
IRF5, and the complex further translocates into the nucleus, where it acti-
vates IL-12, IL-23, and SOCS. The upregulation of IL-12 and IL-23 promotes 
the M1 polarization of the macrophage. The increased SOCS1 and SOCS3 
proteins bind to the phosphotyrosine residues of INFGR, causing the inacti-
vation of JAKs, preventing the phosphorylation of STAT1, and inhibiting M1 
macrophage polarization. 

patterning, stem cell pluripo-
tency, cell fate specification, 
cell proliferation and migra-
tion, and inflammation [51, 
52]. In the absence of Wnt, 
β-catenin is modified and de- 
graded by a destruction com-
plex, which comprises Axin, 
APC (adenomatosis polyposis 
coli), GSK3 (glycogen syntha- 
se kinase 3), PP2A (protein 
phosphatase 2A), and CK1α 
(casein kinase 1α). Once Wnt 
binds to its receptor, Frizzled, 
its coreceptors LRP5/6 (low-
density lipoprotein receptor-
related proteins 5 and 6) re- 
cruit the destruction complex 
to the membrane, where CK- 
1α and GSK3 phosphorylate 
LRP5/6, causing the accumu-
lation of β-catenin in the cyto-
plasm [51, 52]. The accumu-
lated β-catenin then translo-
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signaling was controlled by mechanical ventila- 
tion (MV) in the lungs, without preexistent lung 
disease [58]. This process significantly increas-
es WNT5A and non-phosphorylated β-Catenin, 
as well as several Wnt target genes-including 
MMP-7, CCND1 (Cyclin D1), VEGF (vascular en- 
dothelial growth factor A), and AXIN2 (Axin 2) 
(Figure 4) [58]. Mesenchymal stem cells (MS- 
Cs) are required for re-epithelization in ARDS 
[59]. Overexpression of β-catenin in MSCs pro-
motes their differentiation into alveolar epithe-
lial cells, improves LPS-induced lung permea-
bility, attenuates pulmonary inflammation, and 
inhibits lung fibrosis [59]. In an LPS-induced 
mouse model, Cheng et al. found that Wnt/β-
catenin promoted the occurrence of ALI throu- 
gh triggering a Th117 (T helper cell 17) respon- 
se [60]. The activated Th17 response promot- 
ed neutrophils infiltration and proinflammatory 
cytokines production [60]. The overexpression 
of a circular RNA known as “circ0001434” was 
revealed to reduce LPS-induced lung inflam- 
mation through upregulation of Wnt/β-catenin, 
but with downregulation of NF-κB [61]. On the 
contrary, miRNA-1246 overexpression promot- 
es an inflammation response through activat-
ing NF-κB signaling but repressing Wnt/β-ca- 
tenin signaling [62].

The heterodimers bind to the hypoxia respon-
sive-elements (HREs) of their target genes and 
initiate transcription [64, 65]. 

A few studies have found that the stabiliza- 
tion of HIFs can benefit lung protection in ALI/
ARDS pathology [66, 67]. In LPS or SEB (staph-
ylococcal enterotoxin B)-induced mouse mod-
els, high concentrations of oxygen cause a 
decreased survival rate within 48-60 hours 
after the injection of toxins because hyperoxia 
can inhibit the activation of the anti-inflamma-
tory response mediated by the adenosine A2A 
receptor [68]. Several studies have endeavored 
to identify HIF targets during ALI, finding that 
NT5E (5’-Nucleotidase, also known as “CD73”) 
[69], Adora2a (Adenosine A2a receptor), and 
Adora2b are direct HIF target genes (Figure 5) 
[70]. A deficiency of the Adora2a and Adora2b 
receptors has been shown to decrease survi- 
val but also increase inflammation in different 
experimental ALI models [68, 70]. The deletion 
of the Adora2b receptor increased proinflam-
matory cytokine levels and caused the activa-
tion of NF-κB in the hearts of septic mice, whi- 
ch implies that HIF-mediated signaling may 
crosstalk with other pathways involved in ALI/
ARDS pathogenesis [71]. In addition, several 
studies have also indicated that hypoxic HIFs 

Figure 4. Wnt/β-catenin signaling’s involvement in ALI/ARDS pathogenesis. 
The binding of Wnt to its receptor, Frizzled, and coreceptors LRP5/6 recruits 
the destruction complex, which comprises Axin, APC, GSK3, and CK1α. This 
recruitment causes the release of β-catenin from the destruction complex, 
and the accumulated β-catenin translocates into the nucleus to assemble 
a complex with TCF/LEF, which further activates the expression of WISP1, 
MMP7, CCND1, VEGF, and AXIN2. The increase in WISP1 can induce pulmo-
nary fibrosis. The upregulation of MMP7, CCND1, VEGF, and AXIN2 contrib-
utes to a differentiation of MSCs, which inhibits pulmonary inflammation.

Hypoxia-inducible factors 
(HIFs)-associated transcrip-
tional regulation in ALI/ARDS

The lungs are oxygenated or- 
gans, and the activation of hy- 
poxia signaling pathways is 
involved in ALI pathology [63]. 
Mammals have evolved pre-
cise mechanisms regulated by 
HIFs in response to hypoxia. 
The HIF family of transcription 
factors comprises three HIF-a 
subunits (HIF-1α, HIF-2α, and 
HIF-3α) induced by hypoxia 
and one constitutively expre- 
ssed HIF-1β subunit [64]. In 
the hypoxia condition, HIF-1α 
is accumulated because the 
activities of prolyl-4-hydroxy-
lases (PHDs) and factor inhib-
iting HIF-1 (FIH) are decreas- 
ed [65]. The accumulated HIF-
1α subunits translocate into 
the nucleus, where they di- 
merize with HIF-1β [64, 65]. 
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activation acts as a critical regulator in the 
acute inflammatory response. In an HIF-1α con-
ditional knockout mouse model, Suresh et al. 
identified hypoxic activation of HIF-1α in type- 
2 alveolar epithelial cells as a major regulator 
to drive inflammation following lung contusion 
(LC), and they found that the downregulation  
of HIF-1α could reverse lung injury and infla- 
mmation [72]. Several proinflammatory cyto-
kines-including IL-1, IL-6, and MCP-5 (monocyte 
chemotactic protein 5)-significantly decreased 
following HIF-1α knockdown [72]. In a bleomy-
cin-induced ALI model, HIF-1α has been shown 
to promote NLRP3 inflammasome activation 
[73]. 

C-terminal-binding proteins (CtBPs)-associated 
transcriptional regulation in ALI/ARDS

CtBPs are important transcription regulators  
in multiple biological processes, such as ap- 

1 to cleave two immature proinflammatory cy- 
tokines, pro-IL-1β and pro-IL-18 (Figure 6) [75]. 
The secretion of mature IL-1β and IL-18 aggra-
vates the inflammation response and causes 
ALI pathology (Figure 6) [75]. Recently, Li and 
colleagues found that CtBP1 and CtBP2 are 
involved in the induction of the inflammation 
response during traumatic brain injury (TBI) 
[76]. CtBPs can transactivate a series of proin-
flammatory cytokine genes, such as IL1B, IL6, 
and TNFA [76]. Although they did not reveal 
how CtBPs couple with other transcription regu-
lators and transcription factors to transacti- 
vate these proinflammatory cytokine genes, we 
speculate that NF-κB is involved in this process 
because the CtBP-activated genes are NF-κB 
targets. These findings suggest that CtBPs may 
have direct and indirect roles in regulating pro-
inflammatory genes and, thus, causing inflam- 
mation.

Figure 5. Hypoxia activates HIFs to protect against lung injury. Hypoxia acti-
vates the heterodimer of HIF1-α and HIF1-β, which activates the expression 
of NT5E, Adora2a, and Adora2b, whose induction inhibits the inflammation 
response, causing lung protection.

Figure 6. The CtBP2-HDAC1-FOXP3 complex’s involvement in ALI/ARDS. The 
CtBP2-HDAC1-FOXP3 complex binds to the promoter of miR-199a-3p and 
represses its expression. The downregulated miR-199a-3p eliminates the 
inhibition of NLRP1. The functional NLRP1 inflammasome cleaves pro-IL-1β 
and pro-IL-18 to release their mature proteins, leading to an inflammation 
response and causing ALI/ARDS pathology.

optosis, tumorigenesis, EMT,  
and cell cycle progression  
[74]. The mammalian genome  
contains two CtBP proteins: 
CtBP1 and CtBP2. They sha- 
re a highly conserved prote- 
in sequence identity (nearly  
80%) [74]. Mechanically, Ct- 
BPs function as both corepre- 
ssors and coactivators to as- 
sociate with histone enzymes  
(e.g., histone acetyltransfer-
ases p300/CBP, and histone 
deacetylases [HDACs]) and tr- 
anscription factors (e.g., KLF3 
[Krüppel-like factor 3], KLF8, 
KLF12, FOXP2 [Forkhead box 
protein P2], and FOXP3) to 
control gene expression [74, 
75]. 

Using the lung tissues from 
ALI patients, we recently dis-
covered that CtBP2 is overex-
pressed, and that it assem-
bles a transcriptional comp- 
lex with HDAC1 and FOXP3  
to repress the expression of 
miR-199a-3p, which can tar-
get the 3’-UTR of NLRP1 (Fi- 
gure 6) [75]. The downregula-
tion of miR-199a-3p causes 
the overexpression of NLRP1, 
which further assembles an 
inflammasome with Caspase- 
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Summary and perspective

ALI/ARDS are seriously life-threatening syn-
dromes with high mortality-especially currently, 
while COVID-2019 is rapidly spreading globally. 
A better understanding of ALI/ARDS pathology 
can help scientists and doctors develop thera-
peutic strategies to treat patients. Currently, 
our understanding of the mechanisms of ALI/
ARDS has significantly improved. Widespread 
inflammation in the lungs is a major cause of 
ALI/ARDS. A variety of signaling pathways-es- 
pecially transcription factor-dependent path-
ways-are activated to directly or indirectly in- 
duce the inflammation response in this proce- 
ss. 

In this review, we have mainly discussed the 
contributions of six transcription factor-depen-
dent pathways-comprising TLR4/NF-κB axis 
signaling, TLR4/AP1 axis signaling, IRFs and 
STATs-mediated signaling, Wnt/β-catenin-TCF/
LEF axis signaling, HIFs-mediated signaling, 
and CtBPs-associated signaling-in the patho- 
logy of ALI/ARDS. Among these pathways, the 
activation of NF-κB and AP1 plays a dominant 
role in inducting an inflammation response th- 
rough upregulating proinflammatory cytokine 
genes at the transcriptional levels [32, 40]. 
IRFs and STATs-mediated signaling pathways 
mainly function in promoting macrophage po- 
larization [47-49]. Wnt/β-catenin-TCF/LEF sig-
naling functions in the regulation of genes in- 
volved in pulmonary fibrosis [57-59]. Hypoxia 
induces HIFs stabilization, which can benefit 
lung protection. The CtBP2-HDAC1-FOXP3 tran-
scriptional complex contributes to ALI patho-
genesis through indirectly activating NLRP1 
and promoting the cleavage of pro-IL-1β and 
pro-IL-18 [76]. Some of these pathways have 
crosslinks. For instance, the upstream signal-
ing of both NF-κB and AP1 depend on the acti-
vation of a TLR4-initiating kinase cascade. In 
regulating the inflammation response, Wnt/β-
catenin signaling plays an anti-inflammatory 
role by repressing NF-κB activity. Although sig-
nificant progress has been achieved regarding 
the molecular mechanisms of ALI/ARDS in past 
decades, several key questions have not been 
answered well. First, the transcription regulator 
proteins that associate with transcription fac-
tors have not been investigated during ALI/
ARDS pathology. The transcription machinery is 
assembled by transcription factors and other 

transcription regulators, such as corepressors 
and corepressors [76]; however, little is known 
about how transcription factors coordinate wi- 
th other transcriptional regulators to regulate 
the expression of genes involved in ALI/ARDS 
pathology. Second, more efforts are required  
to investigate the crosstalk among different 
pathways. Proinflammatory cytokines are con-
trolled by several transcription factors, such as 
NF-κB, AP1, and the CtBP2-associated tran-
scription complex [32, 40, 76]. The inhibition of 
a single signaling pathway may not be suffici- 
ent to completely suppress inflammation. A 
better understanding of the crosstalk among 
these pathways would promote the establish-
ment of effective therapeutic strategies. Third, 
investigating whether the other five types of 
transcription-mediated signaling are controlled 
by hypoxia is also necessary. The lungs are  
oxygenated organs, and their dysfunction ca- 
uses ALI/ARDS. The cells in lung tissues are 
exposed in hypoxia conditions; thus, we specu-
late that hypoxia may also affect other tran-
scription factors, in addition to HIFs.
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